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ABSTRACT

This study is motivated by the physical modeling of the longitu-
dinal string vibrations in the piano. Informal listening tests show
that the longitudinal vibrations play an important role in the at-
tack of the sound, and are responsible for the metallic character
of low notes. First, a simple mathematical model is developed for
qualitative understanding. Detailed analysis is given for sinusoidal
transversal displacement with non-rigid termination, clarifying the
generation of phantom partials. To investigate how these effects
develop in more natural circumstances, finite-difference string and
hammer models are used, with parameters taken from real pianos.
For real-time sound synthesis purposes, an efficient modeling ap-
proach is presented. The model extends the digital waveguide
string model by implementing two additional string models, one
for the phantom partials and one for the longitudinal modes.

1. INTRODUCTION

Physical modeling of the piano has been an interesting field of re-
search in the last decades, see, e.g. [1, 2, 3]. As faster processors
emerge, real-time implementations become possible. However, the
quality of synthesized piano sound is still far from perfect. The
digital waveguide [4] used in these models is capable of producing
a quasi-periodic sound, which is built up by exponentially decay-
ing sinusoids. Conversely, when the spectra of a real piano sound
is observed, other components can also be noticed. These corre-
spond to either the longitudinal modes of the string [5], or to the
“phantom” partials generated by nonlinear mixing [6]. We believe
that these two phenomena should be treated together.

The motivation of this research was to refine the quality of
our piano model. However, as no detailed analysis can be found
in the literature on the generation of these phenomena, first the
underlying physics has to be understood before efficient physical
models are developed. The paper is organized as follows: first,
prior work is presented and the basic properties of phantom par-
tials and longitudinal modes are described. This is followed by
the analysis of steady-state motion and by the investigation of the
transient response by a numerical model. Emphasis is given on the
explanation of phantom partials. For real-time sound synthesis,
an efficient algorithm is presented by applying digital waveguide
string models.

2. PRIOR WORK

By observing the spectrum of piano sound, “phantom” partials can
be found between the normal, inharmonic partial series [6]. They
are generated by nonlinear frequency mixing, thus, their frequen-
cies can be computed as the sum or difference of the normal par-

tial frequencies. Those, which appear at the double frequency of a
normal partial, called “even” phantoms. Accordingly, “odd” phan-
toms appear at the sum or difference of two different partial fre-
quencies. In a perfectly harmonic instrument, these sum and dif-
ference frequencies will correspond to the frequencies of “normal”
partials, thus, phantom partials do not influence the sound signifi-
cantly. However, when the transversal vibration has an inharmonic
frequency series, which is the case for the piano, phantom partials
will depart from the normal partials. As measurements show, odd
phantoms are generally produced by adjacent parents (e.g., 5 + 6,
rather than 4 + 7) [6]. That paper does not describe the reason of
this fact, nor the detailed mechanism how these phantoms arise.

Somewhat earlier, a second series (the “lower series”) of par-
tials were extracted from the spectrum of a piano in [7]. This lower
series of partials has a lower inharmonicity. The inharmonicity co-
efficient B has been found to be around the fourth of the one for
normal partials. Explanation of this fact is not given in the paper.
Moreover, the authors argue that the lower series is possibly gen-
erated by the string vibration parallel to the soundboard. However,
there is no physical reason why the string should have a different
dispersion in the two transversal polarizations. We believe that the
“lower series” is equivalent with the phantom partials generated by
nonlinear mixing.

Some phantom partials are displayed in Fig. 1 for an A]
4 note

with circles. The marked phantoms appear at the frequencies in
terms of the normal partial series at f4 +f5, 2f5, f6 +f7, and f7 +
f8. These phantom partials may play a part in differentiating the
timbre between pianos by emphasizing the effect of inharmonicity
with the beats produced between them and the normal partials [6].

The longitudinal modes of the piano string may have a more
significant perceptual effect. In the low range of the piano, the
pitch of these components can be perceived by the listener, and
the subjective quality of the instrument is highly dependent on
the frequency of these modes [5]. The longitudinal modes are a
nonlinear function of the transversal vibration, which justifies the
assumption that they are excited by the string stretching due to a
transversal vibration of a finite amplitude [8].

3. THE BASIC EQUATION

A real piano string is vibrating in two transversal planes, and in the
longitudinal direction as well. Principally, piano hammers excite
one polarization of the string, the other two are gaining energy
through coupling. Throughout the vibration, these polarizations
interact with each other, as a result of nonlinear behavior of the
string.

For simplicity, let us assume that the string is vibrating in one
plane, thus, one transversal and one longitudinal polarization is
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Figure 1: Spectrum of an A]
4 piano tone with some phantoms

marked by circles.

present. When there is a transversal displacement on the string,
the string elongates. This results in a force exciting a longitudinal
wave in the string. The longitudinal wave modulates the tension
along the string, which influences the transversal vibration. As
we are interested in the generation of longitudinal waves, a further
assumption is made: the influence of the longitudinal polarization
on the transversal one is neglected.

The equations describing the interaction of the two transversal
and the longitudinal polarizations are developed e.g., in [9]. After
some approximations, the longitudinal motion can be character-
ized by the following equation:

µ
∂2ξ

∂t2
= ES

∂2ξ

∂x2
+

1

2
ES

∂
(

∂y

∂x

)2

∂x
(1)

where y = y(x, t) and ξ = ξ(x, t) are the transversal and longi-
tudinal displacement of the string with respect to time t and space
x. The mass per unit length is referred by µ, E is the Young’s
modulus and S is the cross-section area of the string. Eq. (1) is the
standard wave equation with an additional force term depending
on the transversal vibration of the string, according to a second-
order nonlinearity.

4. STEADY STATE SOLUTION

By applying the above equations, the coupling between the transver-
sal and longitudinal string vibration can be computed analytically
for sinusoidal transversal vibration. This corresponds to describ-
ing the origin of phantom partials of [6] or the “lower series” of
[7].

4.1. Sinusoidal transversal wave

Considering one single transversal mode of a lossy string with
rigid terminations, the transversal string displacement will be [9]:

y(x, t) = Ak sin(2kπf0t)e
−

t

τ
k sin(

kπ

L
x) (2)

where Ak stands for the initial amplitude, and τk for the decay
time of mode k. The length of the string is referred by L, and f0

is the fundamental frequency, i. e., the frequency of mode k = 1.
According to Eq. (1), the longitudinal excitation force-distribution
Fl,e(x, t) can be obtained as follows:

Fl,e(x, t) = ES
k3π3

4L3
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(3)
From this, some interesting observations can be made. The force
can be separated to a decaying cosine and to a decaying static
force. The amplitude of the force Fl,e(x, t) is proportional to the
square of initial transversal displacement Ak, the decay time is the
half of τk, and the frequency of force variation is the double of the
transversal vibration frequency kf0. Concerning the spatial distri-
bution of Fl,e(x, t), a transversal mode k produces an excitation
force corresponding to a longitudinal mode kl = 2k.

The normal modes of the longitudinal vibration can be written
similarly to Eq. (2). Now the question is if Fl,e(x, t) can excite the
longitudinal mode kl of the string. For efficient coupling, two con-
ditions has to be met: the spatial distribution of Fl,e(x, t) should
not be orthogonal to the longitudinal-mode shape sin( klπ

L
x), and

the frequency of the excitation 2kf0 should be close to that of
the longitudinal mode klfl,0. Coming from the first condition, a
transversal mode k can only excite a longitudinal mode kl = 2k.
Thus, a force with a frequency of 2kf0 should excite a longitudi-
nal mode with a frequency of 2kfl,0 . As fl,0 is of an order higher
than f0 in practice, this results in a small longitudinal motion only,
although it might reach the air through the soundboard.

In reality, the string is terminated with a finite impedance.
Therefore, the normal modes do not have a node at the termination.
This can be taken into account in Eqs. (2) and (3) by substituting
L with L + δL, while 0 ≤ x ≤ L still holds. We can still assume
that the termination is perfectly rigid in the longitudinal direction.
The result will be that the force Fl,e(x, t) is not orthogonal to any
of the longitudinal mode shapes, thus, it excites all of them, al-
though in a different way. If the frequency of the excitation is near
to a longitudinal-mode frequency, i.e., 2kf0 ≈ klfl,0, strong lon-
gitudinal vibration emerges. For example, if fl,0 ≈ 10f0 , then
the fifth transversal mode can excite the first longitudinal mode
strongly. This is in a good accordance with the measurements of
[6], where some cases phantom partials with frequencies near to
the longitudinal mode have produced larger sound pressure than
the neighboring transversal ones.

As the excitation force of Eq. (1) is known, the correspond-
ing longitudinal vibration could be analytically calculated by the
help of the Green’s function [9]. However, as the role of this sec-
tion is to help qualitative understanding, these derivations are not
included in the paper.

4.2. Mode pairs

In practice, the transversal vibration is made up of several modes.
Hence, the excitation force Fl,e(x, t) will contain terms with the
sum and difference frequencies of all the transversal modal fre-
quencies, coming from the second-order nonlinearity of the cou-
pling. When N normal transversal partials are present, they gen-
erate N2 phantom partials. However, these are not all noticeable
in the spectrum: generally the phantoms produced by transversal
parents with consecutive mode numbers (e.g., 5 + 6) appear [6].
Let us examine the reason in detail.

As the nonlinearity is of second order, it is enough to explain
the phenomena for the sum of two sinusoids. When the excita-
tion force Fl,e(x, t) is calculated for the sum of two exponen-
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tially decaying sinusoids described by Eq. (2), the force distribu-
tion Fl,e(x, t) with the sum and difference frequencies will be the
following:

Fl,e(x, t) = −ES k1k2π3

4L3 A1A2Fl,e(t)×

×
(

sin( k1+k2

L
πx)(k1 + k2) + sin( k2−k1

L
πx)(k2 − k1)

)

(4)

where Fl,e(t) is the time dependent component containing two co-
sine functions with the sum and difference frequencies of transver-
sal mode k1 and k2. Note that Eq. (4) does not include the double-
frequency terms for clarity (they are the same as for the single sine
case of Eq. (3)).

We have seen that a longitudinal mode kl is significantly ex-
cited only if the spatial distribution of Fl,e(x, t) is not orthogonal
to the longitudinal mode shape sin( klπ

L
x), and the excitation fre-

quency is close to the modal frequency klfl,0. The sum frequency
of the lower (e.g., k < 10) transversal modes are around the fre-
quency of the first longitudinal mode kl = 1. Accordingly, those
k1 + k2 = m combinations will be present in the longitudinal
motion, where k2 − k1 = 1, since in the spatial distribution of
Fl,e(t) the sin( π

L
x) term will be present. In the case of higher

phantom partials, higher longitudinal modes should be excited,
thus, the parents will be transversal modes with mode numbers
k2 − k1 > 1.

It has to be noted that a phantom generated by modes k2 −

k1 = 1 appears almost at the same frequency where the one pro-
duced by mode k2 − k1 = 3 appears, if k1 + k2 = m is the
same for the two case. This is because the sum frequencies pro-
duced by the frequency pairs k1 + k2 are not distributed evenly on
the frequency axis, but have a larger density around the center fre-
quency determined by k2 − k1 = 1 (the deviation from this center
frequency is proportional to (k2 − k1)

2).
By knowing that odd phantoms are mainly produced by adja-

cent parents, and that even phantoms can be found at the double
frequencies of normal partials, we can easily explain why the in-
harmonicity coefficient B is the 1/4 part of the value for normal
partials. We can calculate the frequencies fm of even phantoms
m = 2k easily, by the help of the inharmonicity formula of [10]:

fm = 2fk = 2f0k
√

1 + Bk2 = f0m

√

1 +
1

4
Bm2 (5)

For even phantoms, the expression is accurate. For odd phantoms,
k = m/2 is not an integer number, but Eq. (5) can be still appli-
cable, since we can assume that the inharmonicity curve is smooth
enough.

These theoretical results were justified by a finite difference
model based on Eq. (1) with losses added. The transversal vibra-
tion has been analytically computed, which have made it easy to
experiment with diffrerent transversal mode numbers and vibra-
tion frequencies. For low transversal mode numbers (k1, k2 < 10)
adjacent parents (k2 − k1 = 1) produced 15-20 dB higher longi-
tudinal motion compared to other combinations of k1 + k2 = m.

Those sum terms which do not form a phantom partial (k2 −

k1 � 1), together with the difference components, form a dense,
noise-like excitation spectrum with thousands of partials. These
are measured in the sound spectrum as broadband noise. However,
when a frequency of a term is close to that of a longitudinal mode,
it can excite that mode effectively. As the excitation force spec-
trum is dense, it is very probable that the longitudinal modes of
the string will be excited throughout the vibration. Note that for a

perfectly harmonic instrument the excitation force spectrum would
contain some distinct peaks, exciting the longitudinal modes only
in special constellations of the longitudinal and transversal funda-
mental partial frequencies.

5. TRANSIENT RESPONSE

Up to know, only the phenomenon of phantom partials has been
considered, which is the forced motion of the longitudinal modes.
However, as the excitation in a real piano is not steady-state, the
free vibration of the longitudinal modes will also appear.

A finite-difference string model has been realized for calcu-
lating the transversal vibration with hammer excitation. The pa-
rameters of the model were taken from [11]. The transversal dis-
placement produced by the model serve as an input for the finite-
difference longitudinal string model. The longitudinal string model
is based on Eq. (1), with losses added. Both in the transversal and
longitudinal string models 100 elements were used. A high sam-
pling frequency (fs = 441 kHz) was necessary to maintain the
numerical stability of the longitudinal string model.

The output of the model has shown that the longitudinal vibra-
tions excited by the hammer strike are the most significant compo-
nents of the longitudinal motion. Figure 2 displays the spectrum of
the force at the bridge in the direction of the strings for a C2 piano
string, with the parameters of [11]. The Young’s modulus E and
the cross section area of the string S were set according to values
found in real pianos. The impact velocity of the hammer was set
to 5 m/s.
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Figure 2: Force spectrum of the longitudinal vibration of a C2

note. The longitudinal modal frequencies are marked by circles.

The components of the free longitudinal vibration are marked
by circles in Fig. 2. It can also be seen that around these frequen-
cies the phantom partials are emphasized, producing beating with
the longitudinal modes. Note that in real pianos the longitudinal
modes are not in a perfect harmonic series, and simulating them in
this way produces poor sonic results. Further research is needed to
determine whether the “inharmonicity” of the longitudinal modes
are produced by the finite impedance or caused by the properties
of the string.
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6. THE ROLE OF FEEDBACK

In some cases the simulation produced unexpected results, where
the longitudinal vibration had very large amplitudes. This happens
when a phantom partial lies very close to a longitudinal mode, ex-
citing it with its eigenfrequency. This cannot occur in reality, since
the transversal modes loose energy when they excite the longitu-
dinal motion. When the effect of the longitudinal vibration on the
transversal one is also taken into account, the same longitudinal
modes behave as expected. The wave equation for the transversal
motion can be written by approximating the formulas of [9]:

µ
∂2y

∂t2
= T0

∂2y

∂x2
+ ES

∂
(

∂y

∂x

∂ξ

∂x

)
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It can be seen that the components coming from the longitudinal
motion are the sum and difference frequencies of one transver-
sal and one longitudinal mode. Let us assume that the transversal
modes k1 + k2 excite a longitudinal mode strongly with a fre-
quency fl,k = f0(k1 + k2). Now the difference frequencies be-
tween the longitudinal and transversal modes can react with the
other modes of the mode pair k1 and k2, since fl,k −f0k1 = f0k2

and fl,k −f0k2 = f0k1. Further investigations are required to un-
derstand how this feedback can diminish the energy of the modes
k1 and k2.

7. THE DIGITAL WAVEGUIDE MODEL

A finite-difference string model would require unacceptable com-
putational costs for real-time sound synthesis. A highly efficient
string modeling technique, the digital waveguide modeling [4] re-
duces this complexity by an order of 100. However, implementing
the interaction of the longitudinal and transversal polarizations is
not a straightforward task.

One option is calculating the transversal vibration by a digi-
tal waveguide model, and running a finite-difference longitudinal
string model in parallel with the excitation force calculated from
the transversal displacement. The required computational com-
plexity can be reduced by implementing only 5-10 string elements
in the longitudinal model, since the task is to simulate the first
few longitudinal modes. The longitudinal vibration must be made
slightly inharmonic by e.g., applying inhomogeneous string pa-
rameters. This model produces acceptable quality at a reasonable
computational cost, but in some cases the longitudinal vibration
can be unexpectedly large, similarly as described in Sec. 6. Feed-
back from the longitudinal vibration to the transversal one is not an
option here, since the stability of the system cannot be maintained
because of the large number of approximations.

A simpler, but less physical solution is implementing the phan-
tom partials and the free vibration of the longitudinal modes di-
rectly with two other string models. As we have seen in Sec. 4.2,
the phantom series has a similar inharmonicity curve as the nor-
mal partials, but with inharmonicity coefficient B/4. This can be
easily realized with a second digital waveguide in parallel. More-
over, informal listening tests show that this second waveguide can
be perfectly harmonic, so there is no need for a high-order dis-
persion filter. To render the nonlinear dependence of the ampli-
tudes of phantom partials on the strike velocity, the hammer force
calculated by the basic string model is squared before lead to the
phantom string model. The longitudinal vibrations are simulated
in a similar way, but in that case a perfectly harmonic waveguide
produces poor results. Therefore, either an allpass filter is needed

to alter the modal frequencies, or the small number of required
partials are modeled by a parallel resonator bank. The model pro-
duces good sound quality, although the longitudinal modes sound
to be separated from the main tone in some cases. This can be
overcome by increasing the number of partials to produce an in-
harmonic tone, thus, a less definite pitch.

8. CONCLUSIONS

We have described the phenomenon how the longitudinal vibration
of a string is excited by the transversal vibration with a simplified
mathematical model. The longitudinal motion of a string is made
up of the free vibration of the longitudinal modes and the forced vi-
bration coming from the transversal displacement with a quadratic
nonlinearity. The generation mechanism of phantom partials was
described in detail. The theoretical results were verified by com-
puter simulations with a finite-difference string model. For sound
synthesis purposes an efficient digital waveguide based solution
has been presented.
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