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In physics-based sound synthesis, it is in general possible to incorporate a mechanical or acoustical immittance

(admittance or impedance) in the form of a digital filter. Examples include modeling of the termination of a string
or a tube. However, when digital filters are fitted to measured immittance data, care has to be taken that the resulting

filter corresponds to a passive mechanical or acoustical system, otherwise the stability of the instrument model is
at risk. This paper presents a simple method for designing and realizing inherently passive immittances. The

immittance is composed as a linear combination of positive real (PR) functions, and the weights are determined by

a constrained least squares optimization. The resulting filter is a parallel set of second-order sections. For wave-
based modeling, such as digital waveguides (DWGs) or wave digital filters (WDFs), the immittance is converted

to a reflectance filter. The parallel filter structure is retained during conversion, resulting in a numerically robust

implementation. As an example, a guitar model based on the DWG approach is presented, using mechanical
admittance measurements of a guitar bridge behavior. The model is implemented as an efficient real-time sound

synthesis algorithm.

1 Introduction

In physics-based sound synthesis, the sound of an instru-

ment is generated by modeling the instrument behavior rather

than the sound itself, therefore the model blocks correspond
to the main parts of the instrument (for an overview, see

[1]). Depending on the modeling paradigm, these models
can be parameterized in many ways. Typically, finite dif-

ference or finite element instrument models are parameter-

ized by the geometry of the instrument (e.g., soundboard
shape, thickness, etc.) and material properties (such as

Young’s modulus). On the contrary, the parameters of dig-

ital waveguide based models are usually determined from
analyzing recorded sounds. Somewhere in-between, it is

possible to parameterize parts of the instrument model by
a measured mechanical or acoustical immittance. The ef-

fect of an immittance (e.g., the instrument bridge) connected

to a string is that it changes the modal frequencies and de-
cay times of the string compared to a rigid termination, and

thus taking this into account results in more accurate model-

ing. Note that we will restrict ourselves to mechanical admit-
tances, but the treatment is equally applicable to other pas-

sive (e.g., acoustical) systems and to impedances instead of
admittances. Throughout the paper, only scalar admittance

functions (point mobilities) will be considered.

The starting point of such a parameterization is a mechanical

admittance measurement of the given part of the instrument
(e.g., the bridge). Naturally, all parts of acoustical instru-

ments are passive, that is, they can only dissipate energy that
is introduced by the player. In theory, the measured admit-

tance could be directly represented as an FIR or an IIR filter1

fitted to the measured response. However, often the resulting
digital filter is not corresponding to a passive termination,

that is, at some frequencies it generates power instead of dis-

sipating it. This can have two reasons: the measured impulse
response itself may not be passive because of measurement

errors, or due to the fact that the admittance is only approxi-
mated by the FIR or IIR filter fitted to the response.

Therefore, instead of straightforward filter design, such a de-

sign technique should be used that results in inherently pas-

sive admittance filter. In [2], passive admittance filters are
constructed by manually tuning the modal frequencies and

decay times of second-order resonators to produce a func-
tion similar to the guitar admittance. In [3], the mechanical

admittance of a guitar up to 3 kHz is modeled by a set of

1It is important to keep in mind that immittance itself is generally not a
filter or transfer function but a constraint relation between quantities such
as force and velocity, while wave-based reflectance is a filter in the sense of
input-output relationship.

mass-spring-damper elements (second-order resonators), and
the matrix pencil method is used for parameter estimation. In

the frequency-domain guitar model of [4], a standard modal
analysis technique (circle fitting) is used up to 1.4 kHz, and

above that a random number generator is applied to produce

a statistically similar modal behavior as in the measured re-
sponse. This was necessary because standard modal analysis

techniques perform well only in the low frequency region

where the modes are separated (up to 1–2 kHz in the case
of the guitar), and they cannot easily capture the behavior at

high frequencies, where the modal overlap is high.

This paper proposes an admittance filter design method that
models the admittance accurately in the low frequency re-

gion (up to a few kHz), while at high frequencies, only the

general trend of the admittance is modeled. This is motivated
by the fact that in sound synthesis, low frequency admittance

modeling should be more accurate, since this is the region
that influences the decay times of the most important partials

of the tone. The nonuniform resolution is achieved by deter-

mining the poles of the admittance filter by frequency warped
filter design. Then, the transfer function is constructed as

a weighted sum of passive (positive real) transfer functions

with a relation to modal analysis, and the weights are found
by nonnegative least squares optimization. For wave-based

modeling, the paper presents a method for converting the ad-
mittance to a reflectance filter that retains the parallel struc-

ture of the admittance formulation.

2 Background

2.1 Passivity and positive realness

A system is passive if it cannot produce energy. For
continuous-time systems, wide literature is available about

the subject, as passivity is an important property in network

analysis and synthesis as well as in nonlinear control. For
passive systems, immittances are positive real (PR) [5].

For rational functions of s that do not have a pole on the

closed right-half plane (that is, for asymptotically stable sys-
tems), H(s) is PR if and only if

Re {H(jω)} =
1

2
(H(jω) + H�(jω)) ≥ 0 (1)

for all real ω [5]. Here � means complex conjugation. That
is, the for rational transfer functions (in this paper, we only

deal with immittances that can be written in rational form),

passivity of the system can be checked by looking at the fre-
quency response only. This is directly related to the physical

interpretation of passivity, meaning that the real part of the
power measured on the system should be positive if driven



by a sinusoidal source at any frequency. It also follows from

Eq. (1) that the phase of the immittance should be within

±π/2 for all frequencies.

The PR condition for a digital transfer function H(z) =
H(e−jϑ) in a rational form with poles in the open unit disk

(asymptotically stable systems) is similar to that for the con-
tinuous case [5]:

Re
{
H(e−jϑ)

}
=

1

2

(
H(e−jϑ) + H�(e−jϑ)

)
≥ 0. (2)

That is, it is enough to check positive realness on the unit cir-

cle, by looking at the frequency response. We only mention
two additional theorems here that will be useful later. First,

for all PR rational functions in z, the poles and zeros are in

the unit disk, that is, all PR functions are minimum-phase
(but not vice versa). Second, if a positive real function H(s)
is converted to a discrete time function H(z) by the bilinear

transform, it remains positive real [2, 6].

Fitting positive real functions to measurement data are fre-

quently used in modeling and verification of integrated cir-

cuits, therefore, a wide range of continuous-time methods are
available (see, e.g., [7, 8]). Most of these sophisticated algo-

rithms could be modified for discrete-time systems. How-

ever, they did not find their way to the musical acoustics and
sound synthesis community. This is probably due to their

complexity, and also because the modal framework (outlined
in Sec. 2.2) also provides passive models and it is better re-

lated to the physical structure of the instrument.

2.2 Modal framework

The quest for a PR transfer function can be simplified if some
assumptions are made on the structure. However, we have to

note that due to these underlying assumptions, the fit will be
less accurate than the general estimation methods mentioned

earlier.

In modal analysis, the general assumption is that the struc-
ture can be described as a set of masses which are connected

by linear springs and linear dampers [9]. Then, the vibra-

tion of the structure can be decomposed to a sum of normal
modes with different modal frequencies ωr, decay rates σr

and modal shapes Φr. If the damping is viscous and it is

distributed proportionally to the mass and stiffness elements
(referred as proportional damping in the literature), then the

modal shapes Φr are real, meaning that the different points
of the structure reach their maxima and minima at the same

time instant [9]. It has been shown that proportional damp-

ing is a reasonably good approximation for the violin [10]
and for the guitar [4], and most probably for other similar in-

struments. In this case, the mechanical admittance (mobility)

matrix of the system can be written as [10]

vi(jω)

Fk(jω)
= Yi,k(jω) = jω

R∑

r=1

Φr
i Φ

r
k

mr(ω2
r − ω2 + 2jσrωrω)

(3)

where Fk is a force acting on position k, vi is the velocity of
point i, mr is the effective mass of mode r, and Φr

i is the ith
element of the modal shape vector Φr (thus, the superscript
r does not refer to the rth power).

For our purposes, of particular interest is the case where i =
k, which is called point mobility. This is the case when the

velocity is measured at the same point and same direction as

the applied force. In this case, the transfer function becomes

vk(jω)

Fk(jω)
= Yk,k(jω) = jω

R∑

r=1

Ar
k,k

mr(ω2
r − ω2 + 2jσrωrω)

(4)

where Ar
k,k = Φr

kΦr
k ≥ 0 since Φr

k is real. This corresponds
to an impulse response composed of exponentially damping

cosine functions. It is easy to see that such a function is PR

since it is composed of PR functions; the phase of the second-
order terms span from 0 to −π, which is rotated back by π/2
by the leading term jω.

Therefore, if the continuous-time modal data is available, it
can be converted to a passive discrete-time filter by the bilin-

ear transform or other similar methods that preserve the PR

property. However, since the measured data is available in
discrete time, it seems more reasonable to design a discrete-

time admittance filter directly, and this also avoids the errors

introduced by the continuous-to-discrete-time filter transfor-
mation.

3 The passive parallel filter

The basic idea of the admittance formulation proposed here

is the decomposition of the transfer function to a set of sim-
ple PR functions (damped cosines), which correspond to the

discrete-time versions of Eq. (4). After bilinear transform the

general form becomes

v(z)

F (z)
= Y (z) = b0 +

R∑

r=1

br(1 − z−2)

(1 − prz−1)(1 − p�
rz
−1)

(5)

which is PR if |pr| ≤ 1 (system is asymptotically stable) and
br ≥ 0. The second-order functions have been extended by a

real constant term b0 ≥ 0, which is useful for modeling the
constant envelope of the modal response at high frequencies

(see Fig. 1 in the range of 10 kHz). Note that the bilinear

transform is used here only to construct the general form of
the second-order prototype. Therefore, correcting the fre-

quency warping inherent in the bilinear transform is not nec-

essary, contrary to transforming an analog filter to a digital
one.

3.1 Parameter estimation

The parameter estimation proposed here is similar to the
fixed-pole design of the parallel second-order filter [11], with

an additional constraint on the filter weights br. The steps are

the following:

1. Preprocessing: The measured admittance response is

made minumum-phase and this will be the target yt(n)
for the design. This is motivated by the fact that all PR

functions are minimum-phase (i.e., it is a necessary con-

dition).

2. Pole positioning: The goal is to model the admittance

more precisely at low frequencies compared to high fre-

quencies. This has to be reflected by the pole positioning,
since the poles determine the frequency resolution of the

design, similarly to Kautz [12] and parallel filters [11].

Here we propose to fit a warped IIR (WIIR) filter [13] to



the measured admittance, then the poles p̃k of this WIIR

filter are “dewarped” by the expression

pr =
p̃r + λ

1 + p̃r

(6)

where λ is the warping parameter, with which the WIIR

filter was designed. If unstable poles pr are found, they
can be replaced by 1/pr.

Note that the nonuniform frequency resolution can also

be achieved in other ways, such as estimating the poles in
subbands, but frequency warping is probably the simplest

method for this purpose.

3. Weight estimation: The final step is to estimate a model
of Eq. (5) with br ≥ 0, which is a linear-in-parameter

problem with nonnegativity constraints. Here we esti-

mate the parameters in the time domain, but it could also
be done in the frequency domain in a similar way. The

impulse response y(n) of the admittance is

y(n) =
R∑

r=0

brur(n) (7)

where u0(n) = δ(n) is the unit impulse, and ur(n) for
r = 1, . . . , R is the impulse response of the function (1−
z−2)/[(1−prz

−1)(1−p�
rz
−1)]. Writing this in a matrix

form yields

y = Mb. (8)

where the rows of the modeling matrix M contain the
modeling signals ur(n), the parameter vector b is com-

posed of the br parameters, and y is the vector of the re-
sulting impulse response y(n). If the error between the

filter and target is minimized in the mean squares sense,

the formulation becomes

||Mb− yt||2 = (Mb− yt)
T (Mb − yt) → min

b ≥ 0 (9)

where yt is a vector constructed from the target admit-

tance response yt(n). Equation pair (9) is a standard non-
negative least-squares optimization problem.

3.2 Example: guitar admittance modeling

Figure 1(a) shows the guitar bridge admittance function mea-

sured on an acoustic guitar (Gibson, from 1960’s) by exciting
the bridge with wire breaking technique [4] and measuring

the movement by a miniature accelerometer. Figure 1(b) is
a 40th order warped IIR filter fitted to measured response

with warping parameter λ = 0.85, which follows the target

response quite well but is not guaranteed to be passive.

On the other hand, the passive parallel filter estimated from
the same poles (Fig. 1(b)) is inherently passive. The opti-

mization of the br parameters was done by the lsqnonneg
function in MATLAB. This resulted in 14 nonzero br para-

meters, corresponding to a constant term b0 and 13 second-

order filters in parallel (a filter order of 26). The passive fil-
ter is slightly inferior compared to the unconstrained filter

design, but this is mostly due to the lower filter order. This

is illustrated by Fig. 1(d), which is a 40th order passive par-
allel filter estimated from the poles of a 58th order warped

IIR filter (not shown). This filter has the same computational
complexity as a “dewarped” version of the warped filter of
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Figure 1: Modeling of guitar bridge admittance: (a)

measured admittance response, (b) 40th-order warped IIR

filter, (c) 26th-order passive parallel filter estimated by using
the poles of (b). A 40th-order passive parallel filter (d) is

presented for performance comparison with the 40th-order
WIIR filter (b), while (e) shows a 360th-order design. For

clarity, the curves (b)–(e) are offset by multiples of -20 dB.

Fig. 1(b). Figure 1(e) displays the response of a 360th-order

passive parallel filter to show the robustness of the design.
Note that this accuracy is usually not required for sound syn-

thesis applications.

4 Wave-based modeling

A passive admittance function gives the relation between

force and velocity for a mechanical system. It seems that it
could therefore be directly applied as a termination of a finite

difference string model, where the force acting on the termi-
nation is computed by the string, then this force is filtered by

the admittance form as a filter giving the velocity of the ter-

mination, which is used in string model for the next iteration.
However, interconnecting passive elements in such a way of-

ten results in unstable systems, unless special measures are

taken to ensure numerical energy conservation [14].

This problem is automatically avoided in wave-based mod-

eling [14], when the admittance is formulated as a function

of wave variables instead of the Kirchhoff variables. In this
case, it will be a reflectance filter producing a reflected wave

to an incident wave (see the footnote in Introduction).

4.1 Digital waveguide termination

Digital waveguide modeling is the most efficient paradigm

for modeling the 1-D wave equation. It is based on spatial

and temporal discretization of the travelling wave solution
for the wave equation [2].

Here we derive a reflectance filter for the case where a sin-

gle string with a characteristic admittance Y0 is connected to
a termination having an admittance Y (z). The reflectance

transfer function for velocity waves can be written as [2]

Hv(z) =
v−

v+
=

Z0 − Z(z)

Z0 + Z(z)
=

Y (z) − Y0

Y (z) + Y0

(10)
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Figure 2: Reflectance filter connected to a digital waveguide

string model.

where v+ is the incident wave and v− is the wave reflected

from the termination. The string is characterized by the char-
acteristic impedance Z0 or admittance Y0 = 1/Z0. Similarly,

the termination is described by the frequency dependent im-
pedance Z(z) or admittance Y (z) = 1/Z(z). In theory, the

parameters of Hv(z) could be computed by inserting Eq. (5)

into Eq. (10) and rearranging it to a rational form, but in that
case the numerically robust parallel structure is lost. More-

over, the conversion cannot be performed in practice for filter

orders above 10–20, because the resulting filter becomes un-
stable due to the numerical inaccuracies during conversion.

Indeed, the 26th order admittance formulation of Fig. 1(b) re-
sults in an unstable reflectance filter after conversion in MAT-

LAB. This is because the pole density at low frequencies is

high due to the warped pole positioning (the problem is sim-
ilar to “dewarping” the warped FIR or IIR filters to direct

form filters).

Therefore, we suggest constructing the reflectance filter in
such a way that preserves the parallel structure of the admit-

tance formulation. First, the admittance form is decomposed

to the immediate response Yi (which equals to y(0), the first
sample of the admittance impulse response) and to the re-

sponse which depends only on past inputs z−1Yp(z) (where

Yp(z) is the z transform of y(n − 1) with n ≥ 1), giving

Y (z) = Yi + z−1Yp(z). (11)

The decomposition can be done for the second-order terms
in Eq. (5) separately [15]:

br(1 − z−2)

1 + ar,1z−1 + ar,2z−2
= br + z−1 br,1 + br,2z

−1

1 + ar,1z−1 + ar,2z−2

(12)

with br,1 = −brar,1 and br,2 = −br − brar,2 for r =
1, . . . , R. Thus, the two parts of the admittance filter become

Yp(z) =
R∑

r=1

br,1 + br,2z
−1

1 + ar,1z−1 + ar,2z−2
(13)

Yi = b0 +

R∑

r=1

br. (14)

In Eq. (14), b0 is written separately from the sum only to

emphasize that it equals to the constant part of Eq. (5), while
the other terms appear due to the decomposition from Y (z)
to Yi and Yp(z). Then, substituting Eq. (11) into Eq. (10)

iport YY =

1−z

1−

iY2

1
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+v

−v

1−z

−v

WDF bridge waveportDigital waveguides

1Y

P
ar

al
le

l 
ad

ap
to

r

NY

...

Figure 3: WDF reflectance filter connected through an
adaptor to several DWG string waveguides.

yields

v− =
1

Yi + Y0

[
z−1(v+ − v−)Yp(z) + v+(Yi − Y0)

]
.

(15)

This is illustrated in Fig. 2. The non-computable delay-
free loop is avoided because of the decomposition to Yi

and Yp(z), leading to the z−1 terms in Fig. 2. The digital

waveguide string model should also incorporate a loop filter
that models string losses and dispersion, and an allpass filter

for tuning [2]. These filters are not depicted in Fig. 2.

Besides numerical robustness, a further advantage of con-
structing the reflectance filter in the proposed way is that if

the modal parameters of the admittance are varied in real-

time, Yi and Yp(z) can be constructed from Y (z) by very
few operations, as opposed to computing a reflectance filter

Hv(z) by Eq. (10). For the conversion, two multiplications
and two additions are needed per second-order section.

Similar derivations can be performed for the case when more

strings are connected to the same termination. However, that

case is handled in a more flexible way by constructing a WDF
admittance element and connecting it to the waveguide string

models by a parallel adaptor as shown below.

4.2 Waveport in WDF modeling

While DWGs focus on wave propagation in digital wave-
guides and scattering (reflection in our guitar bridge case)

at waveguide junctions, wave digital filters are another para-

digm where modeling is based on waveport elements and
adaptors to connect them in parallel or series [1, 2]. WDF

elements have a properly specified port resistance that make
their wave ports reflection-free, i.e., their output values are

available before the input values are required. Without this

specific choice of port resistances, the WDF model would
contain non-computable delay-free loops.

In addition to basic WDF elements, such as resistances,

capacitances and inductances, or their mechanical/acustical
equivalents, so-called consolidated elements for arbitrary im-

mittances have been introduced in [15]. The principle is

very similar to the DWG reflectance realization above, except
that the WDF waveport is made free of immediate reflec-

tion and its formulation is independent of (waveguide) im-

pedance(s) connected to it through adaptors. This is achieved
by selecting port admittance (reciprocal of port impedance)

Yport = Yi = b0 +
∑R

r=1 br so that the immediate path in
Fig. 2 can be eliminated and the WDF bridge waveport be-



comes as shown on the right-hand side of Fig. 3. Now a par-

allel adaptor can connect this to any number of other wave-

ports (digital waveguide string models in Fig. 3).

4.3 Realtime implementation

The DWG and WDF realizations of the parallel filter bridge

admittance and a guitar string waveguide with first-order loss
filter were tested in BlockCompiler software2, which is a

real-time modeling tool for physics-based modeling. The

DWG model of Fig. 2 for the 26th-order bridge admittance
filter [corresponding to Fig. 1 (c)] takes 5.1% of CPU time

of a 1.67 GHz PowerPC processor (Macintosh G4) at sample
rate of 44100 kHz, while the extreme case of the 360th-order

bridge admittance filter [Fig. 1 (e)] takes 82% of CPU time.

The computational load is proportional to the order of the
bridge filter, which is common to all strings in the case of

Fig. 3, so that a 6-string guitar model takes only little more

CPU time than the single-string model.

5 Conclusion

This paper has presented a simple and robust method for
constructing passive admittances that can be used in real-

time sound synthesis. The model follows the target (mea-
sured) admittance curve more precisely where it is needed

(i.e., at low frequencies), while in the high frequency range

only the spectral envelope of the modes is followed. This is
accomplished by estimating the poles of the admittance fil-

ter through a warped IIR filter design. Then, the admittance

transfer function is composed as a weighted sum of positive
real transfer functions. The weights are found by nonnega-

tive least squares optimization. The admittance formulation
is converted to a reflectance filter in such a way that retains

the parallel filter structure. The parameters of the reflectance

filter are computed from the admittance form parameters by
only a few operations, which can be utilized if the admittance

parameters are required to vary in real-time. The reflectance

filter can be used both in digital waveguide and wave digi-
tal filter modeling paradigms. Due to its robustness, the pro-

posed method can be used for the design and implementation
of high-order admittance models (filter orders up to 360 were

tested).

This work has considered scalar admittances only. A nat-

ural extension of the research is the modeling of passive ad-
mittance matrices, such as the bridge of the guitar with six

strings and two transversal polarizations, resulting in a 12 by
12 admittance matrix. The parameter estimation algorithm

could be improved by optimizing the poles in parallel with

estimating the zeros, at the expense of added complexity.
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U. K. Laine, and J. Huopaniemi, “Frequency-warped

signal processing for audio applications,” J. Audio Eng.
Soc., vol. 48, pp. 1011–1031, Nov. 2000.

[14] S. Bilbao, “Some comments on computational is-

sues in modularized physical modeling sound synthe-

sis,” in Proc. Int. Congr. on Acoust., (Madrid, Spain),
pp. MUS–05–002–IP, Sep. 2007.

[15] M. Karjalainen, “Efficient realization of wave digi-

tal components for physical modeling and sound syn-
thesis,” IEEE Trans. Audio, Speech, and Lang. Proc.,
2008. Accepted for publication.


