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ABSTRACT

Different nonlinear models are exploited to model real-world devices. Among them, an effective technique
is based on the combination of orthogonal nonlinear functions and frequency-domain adaptive filtering al-
gorithm for nonlinear system identification. In this paper, first the independence of the model from the
orthogonal basis is demonstrated by complementing the previously obtained results. Then, a highly efficient
model implementation is presented by taking advantage of fixed pole parallel filters for the linear filtering
part. The efficiency comes both from using common-pole modeling and from applying a warped filter design
that takes into account the frequency resolution of human hearing. Experimental results prove the effec-
tiveness of the proposed approach showing its suitability in real-time digital simulation of nonlinear audio
devices.

1. INTRODUCTION

System identification plays an important role in the
field of digital audio systems. While linear systems
can be fully characterized by their impulse responses
(IRs) in the time domain and their transfer functions
in the frequency domain, nonlinear models have to
be introduced for modeling many real-world devices

[1, 2, 3]. Considering this scenario, several efforts
have been made in order to emulate the acoustic be-
haviour of nonlinear electroacoustic devices employ-
ing digital signal processing techniques. In the liter-
ature, a well-known technique is the dynamic convo-
lution based on the application of signals with differ-
ent levels to a device under test in order to derive the
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resulting IRs for each level [4, 5]. A low-cost imple-
mentation of dynamic convolution is discussed in [6]
exploiting principal component analysis. A differ-
ent approach is based on the diagonal Volterra ker-
nels and it is typically used for weak nonlinearities
with memory: the nonlinear system is described in
terms of a simplified form of their Volterra series ex-
pansion discarding all multiplications with delayed
samples [7]. A novel approach for the estimation
of nonlinear systems has been proposed in [1] based
on the introduction of suitable orthogonal nonlinear
functions and frequency-domain adaptive FIR filter-
ing algorithm. This is a black-box modeling where
no a priori knowledge about the physical system is
needed.

In this paper, first the approach based on suitable or-
thogonal nonlinear functions and frequency-domain
adaptive FIR filtering algorithm is reviewed and
its independence from the orthogonal basis is un-
derlined by complementing the previous results ob-
tained using the Legendre polynomials with novel
results obtained using the Chebyshev polynomials.
Then, an efficient implementation of the model is
discussed based on common-pole parallel filters for
the linear filtering part. Various specialized filter de-
sign methods have been developed for audio appli-
cations fitting the logarithmic frequency resolution
of the human auditory system, including warped [8],
Kautz [9], and parallel filters [10]. In this paper,
parallel filters are utilized, increasing the efficiency
significantly compared to FIR filters. Moreover, a
further improvement derives from the common-pole
model structure as previously discussed in [11]. In-
deed, the choice of the same frequency resolution on
each branch makes the pole positions the same for
all parallel filters.

The paper is organized as follows. The proposed
technique is described in Section 2 providing both
the nonlinear system identification in Section 2.1 and
the efficient model implementation in Section 2.2.
Then, Section 3 depicts the tests carried out to il-
lustrate the performance of the approach. Finally,
concluding remarks are summarized in Section 4.

2. PROPOSED APPROACH

An efficient implementation of the nonlinear model
proposed in [1] is described in this section exploiting
common-pole parallel filters for the linear filtering

Fig. 1: Proposed system identification.

part. Therefore, the proposed approach can be sum-
marized as follows. First, nonlinear system identifi-
cation is performed using a model based on a poly-
nomial structure. Then, its efficient implementation
is obtained deriving the common-pole parallel fil-
ters. In the following, after a review of the nonlinear
system identification technique, the model structure
and the parameter estimation for the parallel filters
are discussed in detail.

2.1. Nonlinear system identification

The nonlinear model previously proposed in [1]
is based on a polynomial structure. More specifi-
cally, system identification is performed by means
of suitable orthogonal nonlinear functions that al-
low to split the input signal into different branches
and to perform a sort of linearization of the prob-
lem. In this way, linear system identification can be
applied for each known nonlinearity. A schematic
diagram of the proposed approach for system iden-
tification is reported in Fig. 1: the set of functions
f0(x), . . . , fM (x) is a basis of orthogonal nonlinear
functions applied to the input signal x(n), where M
is the highest order polynomial taken into consider-
ation, while the set of FIR filters Hi(z, n) is used
to estimate the response to each known nonlinear-
ity. The approach is independent from the basis of
orthogonal nonlinear functions as it will be demon-
strated in the following considering both the Legen-
dre polynomials and the Chebyshev polynomials [2].
Regarding the Legendre polynomials, each polyno-
mial is obtained by the following recursive equation:

Li+1(x) =
2i+ 1

i+ 1
xLi(x)−

i

i+ 1
Li−1(x), (1)

with L0(x) = 1 and L1(x) = x, whereas for the
Chebyshev polynomials, each polynomial is com-
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puted as follows:

Ci+1(x) = 2xCi(x)− Ci−1(x), (2)

with C0(x) = 1 and C1(x) = x. Regarding the FIR
filters, it is well known that they are characterized
by the following transfer function

Hi(z, n) =
N
∑

m=0

him(n)z−i, (3)

where him(n) for m = 0, . . . , N are the filter coeffi-
cients at time n.

Applying white noise to the unknown nonlinear sys-
tem and to the set of orthogonal nonlinear functions,
the estimated signal y(n) is computed as the sum of
the outputs of each branch

y(n) =

M
∑

i=0

yi(n) (4)

and the residual error e(n) is obtained from the
knowledge of the real output signal d(n), i.e., the
signal processed by the nonlinear system to be iden-
tified, as follows

e(n) = d(n)− y(n). (5)

Finally, the adaptation of the filter coefficients is
performed using a multichannel frequency-domain
adaptive filtering algorithm as described in [12],
where the orthogonality among channels is ensured
by the introduction of the orthogonal functions.

2.2. Efficient model implementation

Once the set of FIR filters Hi(z) has been obtained
through the aforementioned nonlinear system iden-
tification technique, an efficient model implementa-
tion is obtained using a common-pole parallel filter
structure [11] as displayed in Fig. 2.

The parallel filter introduced in this paper is de-
scribed by the following transfer function:

Ĥi(z) =

K
∑

k=1

Bk,i(z)

Ak(z)

=

K
∑

k=1

bk,i0 + bk,i1z
−1

1 + ak,1z−1 + ak,2z−2
, (6)

Fig. 2: Proposed efficient model implementation
based on common-pole parallel filters.

being K the number of second-order sections. The
frequency resolution is controlled by the pole fre-
quencies. Therefore, parallel filters are well suited
for audio application since frequency resolution can
fit the resolution of human hearing. A further
improvement derives from the common-pole model
structure as previously discussed in [11]. Indeed,
the choice of the same frequency resolution on each
branch makes the pole positions the same for all
the parallel filters. In this way, different first-order
FIR filters Bk,i(z) are used for each nonlinearity but
common second-order allpole filters Ak(z) are intro-
duced and the contributions of these second-order
sections are summed together to provide the signal
y(n). This structure is summarized in Fig. 2.

The first step of filter design is the determination of
the common poles. Since the goal is that of consid-
ering the resolution of the human auditory system,
the pole frequencies are computed in the warped do-
main based on the estimated responses Hi(z, n) with
i = 1, . . . ,M using a common-pole autoregressive fil-
ter. The regression error for the i-th warped impulse
responses h̃i(n) is given by the following equation:

Ei =

N
∑

n=L

(

h̃i(n) +

L
∑

l=1

amh̃i(n− l)

)2

, (7)

being L the denominator order and N the warped
impulse response length. Then, the common set of
denominator coefficients am is derived minimizing
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Fig. 3: Measurement setup used for the identifica-
tion of the loudspeaker model.

the total error

e =

M
∑

i=1

WiEi, (8)

where Wi is the weight given to the separate impulse
responses. This is a linear least-squares (LS) prob-
lem solved by the normal equations in a closed form
[11]. Finally, the roots p̃k of the denominator are
found and dewarped using the following equation:

pk =
p̃k + λ

1 + λp̃k
. (9)

Once the common poles are obtained, the numera-
tor coefficients bm are derived by solving the normal
equations in a closed form [11].

When using normal parallel filters, i.e., not common-
pole implementation, and assuming a model with M
branches (Fig. 2) and N -th order parallel filters, the
total required filter order is MN . The common-pole
structure further decreases the computational com-
plexity to (M/2 + 0.5)N , i.e., the computational
complexity is roughly halved with respect to the
straightforward implementation.

3. EXPERIMENTAL RESULTS

The presented method is suitable for performing
real-time digital simulation of nonlinear audio de-
vices due to its high computational efficiency. As an
example, its effectiveness in estimating the distor-
tion produced by a real loudspeaker has been eval-
uated. First, the nonlinear model is obtained using
the system identification method discussed in Sec-
tion 2.1. Then, the common-pole set is obtained by
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Fig. 4: MSE resulting from the loudspeaker model
estimation using both the Legendre and the Cheby-
shev polynomials as orthogonal functions. (a) RMS
input voltage 3 V. (b) RMS input voltage 5 V. (c)
RMS input voltage 7 V.

the warped common-pole autoregressive method as
previously presented in Section 2.2. The results are
shown in terms of mean square error (MSE) and ac-
curacy of the response of the loudspeaker model to a
sinusoidal input signal with respect to the recorded
output of the loudspeaker. Moreover, for the sake
of completeness, the estimated and modeled magni-
tude frequency responses are reported, considering
a 1024 tap FIR and 40th order IIR, to prove the
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Fig. 5: Spectrum of the measured output signal
(i), of the output signal estimated using Legendre
polynomials and 1024 tap FIR filters (ii), and of the
output signal modeled using Legendre polynomials
and 40th order parallel filters (iii) obtained applying
to the loudspeaker a two-tone input signal with f1 =
300 Hz and f2 = 500 Hz. (a) RMS input voltage 3 V.
(b) RMS input voltage 5 V. (c) RMS input voltage
7 V.

effectiveness of the efficient model implementation.

The identified loudspeaker is a 5′′ driver character-
ized by a nominal impedance of 4 Ω and an AES
power handling of 80 W, driven by a professional
power amplifier (Alesis RA-100). On-axis responses
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Fig. 6: Spectrum of the measured output signal
(i), of the output signal estimated using Chebyshev
polynomials and 1024 tap FIR filters (ii), and of the
output signal modeled using Chebyshev polynomials
and 40th order parallel filters (iii) obtained applying
to the loudspeaker a two-tone input signal with f1 =
300 Hz and f2 = 500 Hz. (a) RMS input voltage 3 V.
(b) RMS input voltage 5 V. (c) RMS input voltage
7 V.

have been recorded with an AKG condenser micro-
phone (C-480B) at a distance of 10 cm and sampled
with a professional MOTU sound card, using the
test setup scheme shown in Fig. 3. Three different
setups have been evaluated with the speaker driven
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with RMS input voltage 3, 5, and 7 V to vary the
strength of the nonlinearity introduced by the loud-
speaker. Considering a nominal impedance of 4 Ω,
these voltages correspond to a power of 2.25, 6.25,
and 12.25 W.

Regarding nonlinear system identification, white
noise sampled at fs = 48 kHz has been used as input
signal and the maximum polynomial order has been
set to 4. The frequency-domain adaptive filtering
algorithm [12] has been applied, using a forgetting
factor for the step-size normalization equal to 0.1, a
fixed convergence speed µ = 0.01 for the linear poly-
nomial with an exponential decay for higher orders
polynomials, a regularization constant ǫ = 10−5, and
adaptive filters of length 1024 samples. Fig. 4 shows
the MSE resulting from the loudspeaker model esti-
mation considering the three different RMS input
voltages, i.e., 3 V as reported in Fig. 4(a), 5 V
as reported in Fig. 4(b), and 7 V as reported in
Fig. 4(c). The nonlinear model identification has
been performed using both the Legendre polynomi-
als Li(x) and the Chebyshev polynomials Ci(x) as
orthogonal nonlinear functions fi(x). The obtained
results show that, as expected, only negligible differ-
ences can be observed since the method is conceived
to work with any orthogonal nonlinear functions.

Then, the common-pole set is obtained by the
warped common-pole autoregressive method dis-
cussed in Section 2.2. with λ = 0.95 and filter order
40. The common poles are used as the denomina-
tors of the parallel filters. The numerator coefficients
are obtained by minimizing the MSE between the
impulse responses of the parallel filters and the re-
sponses estimated by the method of Section 2.1. The
accuracy of the technique has been evaluated consid-
ering the response of the loudspeaker to a two-tone
input signal with f1 = 300 Hz and f2 = 500 Hz with
RMS input voltage equal to 3, 5, and 7 V. In par-

Table 1: Total required filter order considering the
FIR filters, the straightforward parallel filters and
the common-pole parallel filters.

Filter structure Filter order

FIR filters 1023
straightforward parallel filters 160
common-pole parallel filters 100

ticular, the measured output spectrum of the loud-
speaker is displayed in curve (i), the estimated out-
put spectrum using the Legendre polynomials and
1024 tap FIR filters is displayed in curve (ii), and
the output spectrum modeled using the Legendre
polynomials and 40th order IIR filters is displayed
in curve (iii) of Fig. 5. Analogous curves are re-
ported in Fig. 6 but using the Chebyshev polynomi-
als for the estimation. As expected, the results are
consistent with those obtained in Fig. 4 in terms of
MSE. Indeed, the estimated impulse responses pro-
vide an adequate model of the real loudspeaker as it
can be observed by comparing curves (i) and (ii) in
Fig. 6. Moreover, no evident differences can be noted
by comparing curves (ii) and (iii), proving that the
common-pole filters provide a satisfying model of the
estimated impulse responses.

For the sake of completeness, the magnitude fre-
quency responses of the estimated filters Hi(z) and
the parallel filters Ĥi(z) are reported in Fig. 7 us-
ing the Legendre polynomials and in Fig. 8 using
the Chebyshev polynomials. It results that the 40th
order common-pole filters model the estimated re-
sponses quite precisely. The figures are arranged as
follows: the figures on the same row are related to
the same polynomial order while the figures on the
same column are related to the same input voltage.
These results are consistent with those reported in
Figs. 5 and 6 confirming that the efficient model im-
plementation provides an acceptable model of real-
world devices.

Finally, Table 1 summarizes the computational sav-
ing obtained using the common-pole implementation
for the scenario assumed in the simulation. It results
that the common-pole structure provides the reduc-
tion of the computational almost of a factor 2 with
respect to the straightforward parallel filters imple-
mentation. Moreover, it is worth noting that the
FIR filter length was set to 1024 in [1], thus proving
the efficiency of the common-pole structure.

4. CONCLUSION

In this paper, the approach based on suitable or-
thogonal nonlinear functions and frequency-domain
adaptive FIR filtering algorithm has been reviewed
showing its independence from the orthogonal basis.
In particular, the previous results obtained using the
Legendre polynomials have been complemented with
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Fig. 7: Estimated (i) and modeled (ii) magnitude frequency responses using 40th order common-pole parallel
filters. (a)-(c) Legendre polynomial L1(x) for RMS input voltage 3, 5, and 7 V. (d)-(f) Legendre polynomial
L2(x) for RMS input voltage 3, 5, and 7 V. (g)-(i) Legendre polynomial L3(x) for RMS input voltage 3, 5,
and 7 V. (j)-(l) Legendre polynomial L4(x) for RMS input voltage 3, 5, and 7 V. Note different scales on the
y axis.

AES 136th Convention, Berlin, Germany, 2014 April 26–29

Page 7 of 9



Romoli et al. Common-pole parallel filters for nonlinear models

10
2

10
3

10
4

−100

−80

−60

−40

−20

0

Frequency (Hz)

M
ag

n
it

u
d

e 
(d

B
)

 

 

(i)

(ii)

(a)

10
2

10
3

10
4

−150

−100

−50

0

Frequency (Hz)
M

ag
n

it
u

d
e 

(d
B

)

 

 

(i)

(ii)

(b)

10
2

10
3

10
4

−100

−80

−60

−40

−20

0

Frequency (Hz)

M
ag

n
it

u
d

e 
(d

B
)

 

 

(i)

(ii)

(c)

10
2

10
3

10
4

−120

−100

−80

−60

−40

Frequency (Hz)

M
ag

n
it

u
d

e 
(d

B
)

 

 

(i)

(ii)

(d)

10
2

10
3

10
4

−120

−100

−80

−60

−40

Frequency (Hz)

M
ag

n
it

u
d

e 
(d

B
)

 

 

(i)

(ii)

(e)

10
2

10
3

10
4

−140

−120

−100

−80

−60

−40

−20

Frequency (Hz)

M
ag

n
it

u
d

e 
(d

B
)

 

 

(i)

(ii)

(f)

10
2

10
3

10
4

−140

−120

−100

−80

−60

−40

Frequency (Hz)

M
ag

n
it

u
d

e 
(d

B
)

 

 

(i)

(ii)

(g)

10
2

10
3

10
4

−120

−100

−80

−60

−40

−20

Frequency (Hz)

M
ag

n
it

u
d

e 
(d

B
)

 

 

(i)

(ii)

(h)

10
2

10
3

10
4

−120

−100

−80

−60

−40

−20

Frequency (Hz)

M
ag

n
it

u
d

e 
(d

B
)

 

 

(i)

(ii)

(i)

10
2

10
3

10
4

−140

−120

−100

−80

−60

−40

Frequency (Hz)

M
ag

n
it

u
d

e 
(d

B
)

 

 

(i)

(ii)

(j)

10
2

10
3

10
4

−140

−120

−100

−80

−60

−40

Frequency (Hz)

M
ag

n
it

u
d

e 
(d

B
)

 

 

(i)

(ii)

(k)

10
2

10
3

10
4

−140

−120

−100

−80

−60

−40

Frequency (Hz)

M
ag

n
it

u
d

e 
(d

B
)

 

 

(i)

(ii)

(l)

Fig. 8: Estimated (i) and modeled (ii) magnitude frequency responses using 40th order common-pole
parallel filters. (a)-(c) Chebyshev polynomial C1(x) for RMS input voltage 3, 5, and 7 V. (d)-(f) Chebyshev
polynomial C2(x) for RMS input voltage 3, 5, and 7 V. (g)-(i) Chebyshev polynomial C3(x) for RMS input
voltage 3, 5, and 7 V. (j)-(l) Chebyshev polynomial C4(x) for RMS input voltage 3, 5, and 7 V. Note different
scales on the y axis.
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novel results obtained using the Chebyshev poly-
nomials. Then, an efficient implementation of the
technique has been derived exploiting a parallel fil-
ters structure. The efficiency comes from the intro-
duction of parallel filters and a further improvement
has been obtained using a common-pole model struc-
ture. Experimental results have proved the effective-
ness of the approach in terms of MSE and accuracy
of a real loudspeaker response to a two-tone sinu-
soidal input signal. Future work could be oriented
towards a level independent nonlinear model deriva-
tion in order to obtain a technique working for any
level of the input signal.
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