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ABSTRACT

Fixed-pole second-order parallel filters provide an efficient way of implementing IIR filters with a logarithmic
frequency resolution. However, the fine frequency resolution needed at low frequencies can only be achieved
by poles near the unit circle. This may lead to large roundoff noise at low frequencies when the filters
are implemented using bit-depths of 24 bits or lower in fixed-point arithmetic. This paper investigates the
performance improvement when the parallel second-order sections are implemented as warped IIR filters. In
addition, an analytical expression is given for computing the warping parameter as a function of the pole
location of the original second-order section so that the quantization noise power is minimized.

1. INTRODUCTION

Fixed-pole parallel filters provide an efficient way of im-

plementing IIR filters with a flexible allocation of fre-

quency resolution [1]. The basic idea of parallel filters is

that the transfer function is composed of a parallel set of

second-order IIR filters having two poles and one zero,

and an optional FIR path, given as

H(z) =

K
∑

k=1

dk,0 + dk,1z
−1

1 + ak,1z−1 + ak,2z−2
+

M
∑

m=0

bmz−m

(1)

where K is the number of second order sections.

Traditionally, parallel second-order filters are obtained

from high-order IIR filters by partial fraction expansion

[2]. However, in the methodology of designing parallel

filters directly, it is important that the poles are prede-

termined. Fixing the poles leads to a linear-in-parameter

problem since only the numerator coefficients need to be

optimized in Eq. (1), which can be obtained by a least

squares fit in closed form [1]. An advantage of fixing the

poles is that this way we obtain a direct control over the

frequency resolution of the filter design; setting the pole

frequencies according to a logarithmic scale results in a

logarithmic frequency resolution, but of course applying
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Fig. 1: Loudspeaker-room response equalization: (a) un-

equalized loudspeaker–room response, and (b) equalized

by a parallel filter having 25 second-order IIR sections.

The thick lines show the third-octave smoothed versions

of the transfer functions, and the target specification is

displayed by dashed lines. The transfer function of the

equalizer is displayed in (c) by a thick line, while the

magnitude responses of the second-order sections are

shown by thin lines. The pole frequencies are displayed

with crosses. The curves are offset for clarity.

different resolution in various regions of the frequency

range is also possible.

For example, in loudspeaker-room equalization we may

wish to equalize the low-frequency room modes at a finer

detail compared to the high-frequency response of the

system. This is displayed in Fig. 1 where we have higher

pole density in the problematic region of room modes

(below 500 Hz) compared to mid and high frequencies,

as shown by the crosses indicating the pole frequencies

of the second-order sections. It can be seen in Fig. 1

(c) that the parallel equalizer provides a smooth over-

all response, without attempting to counteract the sharp

notches of the transfer function.

Note that besides using a predetermined pole set it is also

possible to allocate the poles by automatic procedures,

see [3] for the comparison of available methods.

2. QUANTIZATION NOISE PERFORMANCE

Independently of the pole positioning method, the fine
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Fig. 2: Quantization noise levels in third-octave bands

for the transfer functions of Fig. 1 (c) implemented us-

ing DF1 structure in 24 bit fixed-point arithmetic. Thin

lines show the noise levels Pk(fn) of the second-order

sections, while the total noise power P (fn) in the third-

octave bands is displayed by a thick line as a function of

band frequency fn.

frequency resolution needed at low frequencies for a log-

arithmic scale can only be achieved by poles near the unit

circle. If the second-order sections are implemented as

traditional direct form filters, this means that their quan-

tization noise will be boosted by either the all-pole part

or the complete transfer function, depending on the type

of implementation [2].

Figure 2 shows the quantization noise levels in third-

octave bands for the above equalizer as a function of

the center frequency of the third-octave bands for Direct

Form 1 (DF1) implementation using 24 bit fixed-point

(fractional) arithmetic.

The noise levels are computed analytically by assuming

a typical DSP architecture (quantization at the accumu-

lator), and modeling the quantization effects as uncor-

related additive white noise having the standard devia-

tion σn = 2−b+1/
√
12, where b is the number of bits

[2]. In DF1 implementation there is only one summa-

tion (and thus quantization) point, and the output noise

power spectral density Ek(ϑ) of the sections is simply

the quantization noise power spectral density multiplied

by the square of the all-pole transfer functions, as shown
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Bank AND Horváth Optimizing quantization noise of warped parallel filters

in Eq. (2):

Ek(f) =

∣

∣

∣

∣

1

1 + ak,1e−jϑ + ak,2z−j2ϑ

∣

∣

∣

∣

2
σ2
n

fs/2
, (2)

where ϑ is the angular frequency ϑ = 2πf/fs, with fs
being the sampling rate.

Power spectral densities are not easy to interpret; on the

contrary, third-octave noise analysis is common in as-

sessing the performance of audio systems. The noise

power in third-octave bands is obtained by (numerically)

integrating the power spectral densities as

Pk(fn) =

∫ fnc

fn/c

Ek(f)df, (3)

where c = 21/6 corresponds to a sixth-octave distance

from the band center fn. The total noise power P (fn) in

the third-octave band centered at fn is simply the sum of

Pk(fn) for all K , displayed by thick line in Fig. 2.

As a reference, a full-scale sine wave has the power of

−3 dB, and the total noise power summed for all the

third-octave bands is −70.7 dB, leading to an SNR =
67.7 dB. This is on the edge of being audible, since a

large part of the noise power is coming from low frequen-

cies, where the audibility threshold is higher. Of course

it is practical to have some headroom so typical program

material will have less power than −3 dB, decreasing

the signal-to-noise ratio. Also, with lower bit-depths, the

corresponding curves of Fig. 2 are shifted: a 20 bit im-

plementation would mean all noise levels moved up by

24 dB.

On the other hand, when using 32 bit arithmetic, the

noise levels are moved by −48 dB, so it is unlikely that

quantization noise will cause any performance degrada-

tion.

3. WARPED IMPLEMENTATION

A common solution to fight against quantization noise is

to implement the second-order sections by special filter

structures (e.g., Kingsbury or Zölzer) instead of the usual

direct or transposed forms [4]. Of course this leads to an

increase of computational complexity; therefore it is sug-

gested to implement only the problematic low frequency

sections in a special form.

This paper investigates the performance improvement

when the problematic second-order sections are imple-

mented as warped IIR filters. In warped IIR filters, the

Fig. 3: Second-order warped IIR structure based on [5].

The ei(n) are the independent noise sources modeling

quantization noise, and si(n) are the impulse responses

that are used for computing the necessary scaling 1/S.

unit delays of traditional IIR filters are replaced by the

all-pass filter

D(z) =
z−1 − λ

1− λz−1
(4)

where the warping parameter λ allows the distortion of

the frequency axis [5]. Because of these additional all-

pass filters, warped IIR implementations require special

structures and thus around two times more computational

resources compared to direct from IIR filters [5]. There-

fore, warped IIR filters are often converted to direct-form

filters [5], or to series or parallel second-order sections

[6]. Here we make the opposite: we convert the direct

form second-order sections to warped implementations

using the equations of [6] with a negative warping pa-

rameter −λ. Now the question arises how this influences

the quantization noise performance.

Figure 4 shows the third-octave-band noise levels when

the second-order sections are implemented by warped

IIR structures displayed in Fig. 3 with λ = 0.9. The

noise levels were computed similarly to the DF1 case

with the difference that now an input scaling 1/S is ap-

plied so that none of the summation points si(n) of the

warped IIR structure go to overload. This is because in
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Fig. 4: Quantization noise levels in third-octave bands

for the transfer functions of Fig. 1 (c) implemented using

second-order warped IIR sections in 24 bit fixed-point

arithmetic with λ = 0.9. Thin lines show the noise levels

Pk(fn) of the second-order sections, while the total noise

power P (fn) in the third-octave bands is displayed by a

thick line as a function of band frequency fn.

WIIR structures internal overflow can happen even if the

total transfer function of the section is below 0 dB at all

frequencies. In addition, since there are more quantiza-

tion points, the output noise powers of the sections are

computed as a sum of independent noise sources ei(n)
all filtered by the square of the respective transfer func-

tions. The noise transfer functions are computed numer-

ically by taking the Fourier-transform of the impulse re-

sponses from the quantization noise source ei(n) to the

output.

It can be seen in Fig. 4 that for λ = 0.9 noise per-

formance improves radically at low frequencies, while

worsens in the high frequency range. The total noise

power is −91.7 dB, leading to a 20 dB improvement

compared to the DF1 case.

4. OPTIMIZING NOISE PERFORMANCE

There is no practical constraint forcing the λ values being

the same for all sections: next we investigate the effect

of having individual λk values. For this, an optimiza-

tion routine has been developed that searches for the λk

parameter for each second-order section so that the total
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Fig. 5: Quantization noise levels in third-octave bands

for the transfer functions of Fig. 1 (c) implemented by

second-order warped IIR sections in 24 bit fixed-point

arithmetic using optimized λk for all sections. Thin lines

show the noise levels Pk(fn) of the second-order sec-

tions, while the total noise power P (fn) in the bands is

displayed by a thick line as a function of band frequency

fn. The dashed line shows the total noise power when

the analytical λ̃k parameters obtained from Eq. (5) are

used instead of the numerically optimized λk values.

noise power (sum of all third-octave bands) is minimized

for that section. The obtained noise performance for the

same room equalizer is displayed in Fig. 5.

It can be observed that the noise levels are decreased rad-

ically due to the optimization, the total noise power be-

ing −113.5 dB. This means that even implementing the

equalizer using 20 bit arithmetic (curves shifted up by 24

dB) would give acceptable noise levels.

The λ values found by the optimizer are displayed in

Fig. 6 solid line. The question arises whether there is any

underlying reason that explains why a particular lambda

value produces the lowest noise for a specific pole fre-

quency. By observing the poles after frequency warping,

it turns out that the warped pole angle is almost 90 de-

grees for all cases. It can be shown that the warped pole

p̃k has exactly 90 degrees angle (zero real part) when the

following quadratic equation is satisfied:

λ̃2
kRe{pk}+ λ̃k(−1− |pk|2) + Re{pk} = 0. (5)
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Fig. 6: Optimized λk values used for computing the

noise powers of Fig. 5 as a function of the analog pole

frequencies of the second-order sections. Solid line: nu-

merically optimized values, dashed line: analytic λ̃k pa-

rameters computed using Eq. (5).

From the resulting two roots, the one with |λ̃k| ≤ 1 has

to be chosen. Figure 6 dashed line displays the analytical

λ̃k values computed by solving Eq. (5), showing a good

match.

Even more convincing is the total noise level computed

using the analytical λ̃k values, shown by dashed line in

Fig. 6, being almost indistinguishable from the numeri-

cally optimized noise performance (solid line). Similarly

accurate match has been observed for other design exam-

ples, justifying the use of Eq. (5) for computing the opti-

mal warping parameter of second-order sections instead

of a more complex noise optimization routine.

5. CONCULSION

This paper has shown that a significant improvement in

quantization noise performance of second-order IIR fil-

ters can be achieved when implementing them as warped

IIR structures. For the example showed in this paper,

more than 40 dB improvement has been achieved, and

similar improvements have been observed for other de-

sign cases. This comes at a price of larger computational

complexity, however, this might be outweighed by the

fact that the need for larger bit-depth is eliminated. In

addition, it is suggested that only the problematic sec-

tions are implemented as warped IIR filters. In Fig. 2 the

crossover frequency would be at around 200-300 Hz.

In addition to showing the roundoff noise benefits using

warped implementations, an analytical formula for com-

puting the optimal lambda parameter as a function of the

original pole location has been given, showing negligible

performance loss compared to the numerically optimized

value.

We note that warped implementations can improve the

noise performance of parallel and series IIR filters in the

same way when they are computed by factoring high-

order transfer functions, not only for the fixed-pole de-

sign used as an example in this paper.

Future research includes performing the optimization by

using ITU-R 468 and A noise weighting that would bet-

ter reflect the audibility of quantization noise.
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