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t design of �xed-pole parallel se
ond-order �lters is a very e�e
tive way of obtaining equalizershaving the desirable logarithmi
 frequen
y resolution for audio appli
ations. The frequen
y resolution ofthe parallel �lter design is 
ontrolled dire
tly by the 
hoi
e of pole frequen
ies, similarly to Kautz �lters.This paper reviews and 
ompares di�erent pole positioning strategies, su
h as using a predetermined poleset, warped IIR �lter based pole positioning, multi-band warping, and 
ustom warping. In addition, a newte
hnique based on the ripple density of the transfer fun
tion is proposed. The methods are tested onloudspeaker and room response equalization appli
ations. It is shown that a predetermined logarithmi
 poleset gives a

eptable equalization despite its simpli
ity, while the most a

urate results for a given �lter orderare obtained by multi-band and 
ustom warping. The ripple-density based pole positioning presents a useful
ompromise between a

ura
y and design 
omplexity.
1. INTRODUCTION

Equalizing the transfer function of loudspeakers and
rooms via digital signal processing is subject of research
for more than three decades. In its simplest form, only
the anechoic response of the loudspeaker is equalized
[1, 2, 3, 4], but some of the negative effects of room re-
sponse can also be compensated [5, 6, 7, 8, 9, 10]. In
most cases only the magnitude response of the room is
compensated by minimum-phase filtering, thus avoiding
the problem coming from inverting non-minimumphase
zeros. Some examples include excess-phase compensa-
tion as well [9].

It was soon recognized that equalization with a logarith-
mic frequency resolution is desirable because of two rea-
sons [5, 11]. First, the final judge of quality is the hu-
man auditory system, and an equalizer having a resolu-
tion similar to the hearing allows a more efficient alloca-
tion of computational resources, that is, better quality at
the same filter order. Second, due to the wavelength of
sound being inversely proportional to its frequency, loud-
speaker and room responses measured at different posi-
tions in space show more similarity at low frequencies
compared to high ones. Therefore, usually a fractional-
octave (e.g., third or sixth-octave) smoothing is applied

to the measured magnitude response before inverse filter
design.

Another important factor in room and loudspeaker equal-
ization that while peaks of the transfer function should be
compensated, the narrow dips should not be inverted. In
general, the effects of peaks are strongly audible, while
notches are usually unnoticeable. Moreover, dips are
strongly position-dependent, and thus the peaks of the
equalizer designed to counteract them would actually
worsen the response at other points in space [5, 11, 12].
While smoothing itself helps in lessening the problems
coming from the inversion of narrow dips of the transfer
function, many methods do an explicit dip removal step
prior to smoothing [3, 5, 7].

So the first step of loudspeaker and room response equal-
ization is preprocessing the measured response (or, a
joint response computed from many measurements) by
the removal of dips and applying smoothing. Then
the equalizer design is based on this psychoacoustically
processed response. The focus of this paper is on the
equalizer design, and it is assumed that the measured re-
sponse(s) are preprocessed with a suitable method.

While the equalizer might be implemented in the fre-
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quency domain via fast convolution using FFT, a time-
domain implementation is more common due to smaller
latency and lower memory need. This is usually realized
by FIR [9] or multi-rate FIR filters [5]. Another alterna-
tive is the use of special IIR filters with logarithmic-like
frequency resolution, such as warped [2], Kautz [13], or
parametric second-order filters [3].

It was shown that fixed-pole parallel filters provide a
highly efficient way of implementing IIR filters with the
desired frequency resolution, resulting in better equal-
ization compared to warped or Kautz filters at a given
computational cost [14, 15, 16]. A key point to the accu-
racy of the parallel filter is the suitable choice of pole fre-
quencies. This paper compares different pole positioning
strategies with the application to loudspeaker and room
response equalization.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews the structure of the parallel filter and the
algorithm for obtaining the filter weights. This is fol-
lowed by the overview of the various pole positioning
strategies in Sec. 3, based on a loudspeaker–room re-
sponse equalization example. Then two additional ane-
choic loudspeaker equalization examples are provided in
Sec. 4, and the lessons learned are discussed in Sec. 5.
Finally, Sec. 6 concludes the paper.

2. THE PARALLEL FILTER

The general form of the parallel filter consists of a paral-
lel set of second-order sections and an optional FIR filter
path [15]:

H(z−1) =
K

∑
k=1

dk,0 + dk,1z−1

1+ ak,1z−1 + ak,2z−2 +
M

∑
m=0

bmz−n, (1)

whereK is the number of second order sections. The
filter structure is depicted in Fig. 1.

2.1. Filter design

Let us first assume that the poles of the parallel filterpk

are known. Then the denominator coefficients are de-
termined by the poles (ak,1 = pk + pk andak,2 = |pk|

2),
and the filter design problem becomes linear in its free
parameters (weights)dk,0, dk,1 andbm.

Using the substitutionz−1 = e− jϑn in Eq. (1) and writing
it in matrix form for a finite set ofϑn angular frequencies
yields

h = Mp, (2)
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Fig. 1: Structure of the parallel second-order filter.

wherep = [d1,0,d1,1, . . .dK,0,dK,1, b0 . . .bM]T is a col-
umn vector composed of the free parameters. The rows
of the modeling matrixM contain the transfer func-
tions of the second-order sections 1/(1 + ak,1e− jϑn +
ak,2e− j2ϑn) and their delayed versionse− jϑn/(1 +
ak,1e− jϑn + ak,2e− j2ϑn) for the ϑn angular frequen-
cies. The last rows ofM are the transfer functions of
the FIR parte− jmϑn for m = [0. . .M]. Finally, h =
[H(ϑ1) . . .H(ϑN)]T is a column vector composed of the
resulting frequency response.

Now the task is to find the optimal parameterspopt such
thath = Mpopt is closest to the target frequency response
ht = [H(ϑ1)t . . .H(ϑN)t]

T . If the error is evaluated in the
mean squares sense

eLS =
N

∑
n=1

|H(ϑn)−H(ϑn)t|
2 = (h−ht)

H(h−ht), (3)

the minimum of Eq. (3) is found by the well-known least-
squares (LS) solution

popt = (MHM)−1MHht, (4)

whereMH is the conjugate transpose ofM.

Note that Eq. (4) assumes a filter specificationHt(ϑn)
given for the full frequency rangeϑn ∈ [−π ,π ]. In most
of the cases we are interested in filters with real coef-
ficients: in this case either the user has to ensure that
Ht(−ϑn) = H t(ϑn), whereH t is the complex conjugate
of Ht, or, in the case of one sided (ϑn ∈ [0,π ]) specifi-
cations, the following formula has to be used instead of
Eq. (4):

popt = (Re
{

MHM
}

)−1Re
{

MH ht
}

, (5)
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where Re{A} corresponds to taking the real part ofA.

2.2. Direct equalizer design

Equalizing a system by the parallel filter can be done by
dividing the desired target responseHt(ϑn) by the sys-
tem responseHs(ϑn) and designing a parallel filter for
this Ht(ϑn)/Hs(ϑn) specification according to Sec. 2.1.
However, the mathematically correct way of designing
an equalizer is to minimize the error between the final,
equalized responseHeqd(ϑn) and the target frequency re-
sponseHt(ϑn) [15]. This is basically a system identifica-
tion problem with output error minimization: the input of
the parallel filter is the system responseHs(ϑn) and we
should estimate the filter parameters such that its output
Heqd(ϑn) best matches the target responseHt(ϑn).

Accordingly, the equalized response is given by

Heqd(z
−1) = H(z−1)Hs(z

−1) =

K

∑
k=1

dk,0 + dk,1z−1

1+ ak,1z−1 + ak,2z−2 Hs(z
−1)+

M

∑
m=0

bmz−nHs(z
−1).

(6)

Writing this in a matrix form for a finite set ofϑn angular
frequencies yields

heqd= Meqpeq, (7)

wherepeq = [d1,0,d1,1, . . .dK,0,dK,1, b0 . . .bM]T is a col-
umn vector composed of the free parameters of the par-
allel equalizer. The equalizer modeling matrixMeq is
obtained from the modeling matrixM of Sec. 2.1 by mul-
tiplying all rows ofM by the system frequency response
Hs(ϑn). Finally,heqd= [Heqd(ϑ1) . . .Heqd(ϑN)]T is a col-
umn vector composed of the resulting final frequency re-
sponse. Since Eq. (7) has the same structure as Eq. (2),
the optimal set of parameters are obtained in the same
way as in Sec. 2.1 by Eqs. (4) or (5).

3. POLE POSITIONING COMPARISON

A loudspeaker-room response equalization example will
be used for comparing the different pole positioning
approaches. The original (unsmoothed) response is
displayed in Fig. 2 (a), together with its one-octave
smoothed version with dashed line. The one-octave
smoothed version is used for limiting the dips in the
transfer function: everything below 6dB of this smoothed

10
2

10
3

10
4

−50

−40

−30

−20

−10

0

10

Frequency [Hz]

M
ag

ni
tu

de
 [d

B
]

(a)

(b)

(c)

Fig. 2: The loudspeaker–room response used in the com-
parison: (a) the measured response together with its one-
octave smoothed version with dashed line, (b) the mea-
sured response limited by the smoothed response de-
creased by 6dB (limit shown by dashed line), and (c) the
limited response smoothed at sixth- and third-octave res-
olution below and above 500 Hz, respectively.

response is substituted by the smoothed response itself.
This is shown in Fig. 2 (b), where the limit is displayed
by dashed line, and a limited transfer function by solid
line. Finally, this limited response is smoothed with a
sixth-octave resolution below 500 Hz and a third-octave
resolution above, shown in Fig. 2 (c). The target response
is displayed in Fig. 2 (c) dashed line. The target is cho-
sen to be a simple high-pass filter for easier visualization
of the equalization results. Note that in practice this does
not lead to optimal sound, and typically we would desire
a target with a downward slope [7]. Also, more sophisti-
cated methods are available for removing the sharp dips
of the response, which can take into account multiple
measurements, see, e.g., [7]. As this paper focuses on the
filter design problem, it is suffifient to have a processed
room response that is similar in structure to what would
have been obtained by the state-of-the-art room response
correction methods.

In all cases the equalizers are designed by the direct
equalizer design method of Sec. 2.2, and the only dif-
ference is in how the pole positions are obtained.

3.1. Pole positioning with a predetermined
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pole set

The simplest way of choosing the poles is setting them
according to the required resolution. For obtaining a 1/β
octave resolution,β/2 poles are inserted in each octave
[17]. Then, the poles of the parallel filter,pk, are com-
puted using the following formulas [17]:

θk =
2π fk

fs
(8a)

pk = e−
∆θk

2 e± jθk , (8b)

whereθk are the pole frequencies in radians given by the
predetermined analog frequency seriesfk and the sam-
pling frequencyfs. The bandwidth of thekth second-
order section∆θk is computed from the neighboring pole
frequencies

∆θk =
θk+1−θk−1

2 for k = [2, ..,K −1]

∆θ1 = θ2−θ1

∆θK = θK −θK−1. (9)

Equation (8b) sets the pole radii|pk| in such a way that
the transfer functions of the parallel sections cross ap-
proximately at their -3dB points.

Since the target has sixth-octave resolution below 500
Hz, we place 3 poles per octave in the low frequency re-
gion, while 1.5 poles per octave above, where the target
was smoothed to third-octave. This leads to a total num-
ber of 20 pole pairs, that is, 20 second-order sections (the
filter order is 40).

The result of the equalization is displayed in Fig. 3 (b),
showing an acceptable performance since the ripples of
the equalized transfer function are within±1 dB around
the target response. Note that now the parallel filter was
designed using the smoothed response for making the
comparison with other pole positioning approaches eas-
ier. However, the greatest advantage of using a prede-
termined pole set besides its simplicity is that it does
not require the smoothing of the measured transfer func-
tion. This is because the parallel filter design performs
smoothing “automatically” based on its pole density, as
was demonstrated in [17].1

1For all the other pole positioning strategies this is not thecase.
While the weights of the parallel filter could be estimated from the un-
smoothed response directly in all cases, the following polepositioning
methods all require a smoothed response to work properly. And once
we had to smooth the response anyway, it is practical to estimate the

10
2

10
3

10
4

−60

−50

−40

−30

−20

−10

0

10

Frequency [Hz]

M
ag

ni
tu

de
 [d

B
]

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 3: Comparison of different pole positioning tech-
niques for loudspeaker–room response equalization. The
processed room response is displayed in (a). The pole
positioning techniques used are (b) predetermined pole
set, pole positioning based on (c) ripple density, (d) stan-
dard warped IIR filter design, (e) multi-band warping,
and (f) custom warping. The target response is shown
by dashed lines. The pole frequencies are displayed by
crosses. The number of pole-pairs (or, second-order sec-
tions) is 20 in all cases, giving a total filter order 40.

3.2. Ripple-density based pole positioning

A drawback of using a predetermined pole set is that the
user has to choose how many poles he/she would like
to use in a certain region of the transfer function. Here a
new method is proposed which chooses the pole frequen-
cies based on the processed system response, without any
prior knowledge on the type of smoothing applied.

The basic idea of the method is that in those regions
where there are more ripples in the transfer function,
more poles are needed. The steps of the algorithm are
explained using Fig. 4. The smoothed transfer function

weights from the smoothed response instead of the original one. The
benefit of doing so is that smaller number of specification points are
sufficient, thus, the computational complexity of the LS weight estima-
tion is decreased.
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is shown in Fig. 4 (a). The first step of the algorithm
is computing the absolute difference of the adjacent fre-
quency response points in dB scale. The level of this
function will be proportional to the raggedness of the
transfer function, so it is called ripple density. It is dis-
played in Fig. 4 (b). The goal is now to divide this ripple
density function in as many equal areas as many poles
we would like to use, and the borders of these areas will
be chosen as pole frequencies. This is in practice done
by integrating (in practice cumulating) the density func-
tion giving the ripple distribution function. Then this is
scaled so that it goes from zero to the number of pole
frequencies minus one, displayed in Fig. 4 (c). Finally,
whenever this distribution function is integer (crosses a
horizontal line in Fig. 4 (c)) a pole frequency is obtained,
displayed by crosses. The same pole frequencies are also
displayed in Fig. 4 (a), showing that indeed more poles
are placed in those regions where the response is more
ragged. Note that this simple procedure gives the pole
frequencies only: the pole radii (or Q factors) are deter-
mined by Eqs. (8) and (9) as before, and not based on the
actual Q factors of the resonances of the system.

The equalization using a ripple-density based pole set is
shown in Fig. 3 (c), leading to a similar performance to
the predetermined pole set in this case.

3.3. Pole positioning based on a standard
warped IIR design

Compared to the simple techniques presented above, bet-
ter equalization can be achieved if the pole positions
are obtained using an IIR filter design. Since we are
designing filters with a logarithmic resolution, the use
of frequency warping [18, 19] is mandatory. The most
straightforward way is to design a single warped IIR filter
using the smoothed response, find the poles and dewarp
them [20].

In the example of Fig. 3 (d), a 40th order IIR fil-
ter is identified by the frequency-domain Steiglitz-
McBride method [21] based on the warped version of
the smoothed response as the input and the warped ver-
sion of the target as the output. The frequency axis is
transformed by

ϑ̃ = ν(ϑ) = arctan
(1−λ 2)sin(ϑ)

(1+ λ 2)cos(ϑ)−2λ
, (10)

whereϑ is the original andϑ̃ is the warped angular fre-
quency in radians [19]. In our example, a warping pa-
rameterλ = 0.95 is used, and the responses are made
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Fig. 4: Steps of ripple-density based pole position-
ing: (a) the smoothed system response, (b) the ripple
density (the difference between the adjacent points of
the smoothed response), and (c) the ripple distribution
(scaled cumulative sum of ripple density). In (c) hori-
zontal lines show the pole indices. The pole frequencies
are displayed by crosses in (a) and (c).

minimum-phase prior to using the frequency-domain
Steiglitz-McBride algorithm [21]. Then, the poles ˜pk of
the identified IIR filter are obtained, and dewarped by the
following expression [19]:

pk =
p̃k + λ

1+ λ p̃k
. (11)

It can be seen in Fig. 3 (d) that the warping based pole
positioning provides more accurate equalization com-
pared to the first two methods, and its only shortcom-
ing that the accuracy is concentrated in the middle fre-
quency range. By increasingλ , it is possible to decrease
the the low-frequency errors, at the price of increasing
the high-frequency ones, but there is actually no suchλ
value which would lead to an even distribution of the fre-
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quency resolution on the logarithmic scale. This problem
is addressed by multi-band warping.

3.4. Pole positioning based on multi-band
warping

In multi-band warping the transfer function is divided
into separate frequency bands, and different warping pa-
rameters are used in each band so that the warping effect
is maximized in each region. Then, separate warped IIR
filters are designed for the different regions, their poles
are dewarped, and finally the pole sets are united [16].

In the example of Fig. 3 (e), dual-band warping is ap-
plied. The split frequency is 500 Hz, which is the same
frequency where the smoothing resolution changes from
sixth- to third-octave. The out-of-band parts of the re-
sponses are made flat prior to filter design to assure
that the IIR designs produce poles only in their respec-
tive frequency bands [16]. For the low-frequency region
λLF = 0.986 is used, while for the high-frequency region,
the warping parameter is set toλHF = 0.65. These values
maximize the warping effect in the middle of their bands
[16], but of course it is possible to adjust them for tailor-
ing the performance of the filters. The filter orders are
26 and 14 in the low and high bands, respectively. Once
the two warped IIR filters are designed in a similar way
as discussed in Sec. 3.3, their poles are dewarped using
the correspondingλLF andλHF values in Eq. (11) and the
two pole sets are united, giving a total filter order of 40.

Figure 3 (e) shows that the frequency resolution is now
spread much more evenly on the logarithmic scale and
thus an excellent equalization performance is achieved
for the same filter order as in the previous methods. The
only ripples that can be seen are in the transition region of
the two bands, but their amplitude is±0.5 dB around the
target, so they can be considered negligible. The price
to pay compared to the simple warping of Sec. 3.3 is the
additional complexity of separating the response to dif-
ferent regions and the need of designing multiple filters.
However, the total order of filters remains the same, so
the design complexity is not increased significantly. A
small shortcoming is that the user has to balance between
the number of poles used in the two frequency bands.

3.5. Pole positioning based on custom warp-
ing

Unlike in traditional warping, where the frequency map-
ping is determined by a single parameterλ according

to Eq. (10), in custom warping arbitrary mappingsϑ̃ =
ν(ϑ) can be used [22]. As the goal is to obtain logarith-
mic frequency resolution, it is logical to use a logarithmic
mapping. Here we use the warping function proposed in
[23] which is linear below a frequency limitϑc and log-
arithmic above. The linear function is chosen so that the
derivative does not jump atϑc:

ϑ̃ = ν(ϑ) =

{

aϑ if 0 ≤ ϑ < ϑc

π ln(bϑ )
ln(bπ)

if ϑc ≤ ϑ < π ,(12a)

a =
π

ϑc(1+ ln(π/ϑc))
, (12b)

b =
e

ϑc
, (12c)

wheree = e1 = exp(1). Let us also define the inverse
mappingν−1(ϑ̃) so thatϑ = ν−1(ν(ϑ)).

Once the smoothed system response and the target re-
sponse are warped according to the frequency transform
of Eq. (12), an IIR filter is identified again using the
frequency-domainSteiglitz-McBride algorithm [21], and
its poles ˜pk are found.

However, becuase of the nonstandard warping profile,
the poles cannot be dewarped with Eq. (11). For com-
plex poles, we first compute the pole frequenciesϑ̃p,k =
ϕ{ p̃k} and radii ˜rp,k = |p̃k|. Then, the dewarped polespk

arise as

ϑp,k = ν−1(ϑ̃p,k), (13a)

rp,k = r̃
ν−1′ (ϑ̃p,k)

p,k , (13b)

pk = rp,ke jϑp,k , (13c)

that is, the pole frequencies are mapped according to the
inverse mapping functionν−1(ϑ̃) and the radii are raised
to the power according to the derivative of the inverse
mapping functionν−1′(ϑ̃). For real poles we compute
their frequencies (the -3dB point of their transfer func-
tions) and remap them byν−1(ϑ̃) [22].

The equalization using poles obtained by custom warp-
ing is displayed in Fig. 3 (f). The performance is very
similar to the multi-band warping case, only that the rip-
ply region is now at lower frequencies. The ripples are
still within ±0.5 dB around the target, so they can be
considered inaudible. The computational complexity of
the design is similar to the other two warped designs. A
benefit compared to the multi-band warping is that only
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Fig. 5: Comparison of different pole positioning tech-
niques for a floorstanding loudspeaker response equal-
ization. The 12th-octave smoothed anechoic loudspeaker
response is displayed in (a). The pole positioning tech-
niques used are (b) predetermined pole set, pole posi-
tioning based on (c) ripple density, (d) standard warped
IIR filter design, (e) multi-band warping, and (f) custom
warping. The target response is shown by dashed lines.
The pole frequencies are displayed by crosses. The num-
ber of pole-pairs (or, second-order sections) is 20 in all
cases, giving a total filter order 40.

the total filter order has to be given by the user, and not
the orders in the different bands as in Sec. 3.4.

4. ADDITIONAL EXAMPLES

Here additional equalization examples are presented to
give a broader view on the behavior of the different meth-
ods. First the anechoic response of the same two-way
floorstanding loudspeaker is equalized which was used
in a room in the previous example. Now the measured
anechoic frequency response is smoothed at 12th-octave
resolution and no dip removal is applied. This is shown
in Fig. 5 (a).

For the predetermined pole set, while 12th-octave resolu-
tion would require higher pole density to perfectly equal-

ize the response (six pole pairs per octave actually leads
to 51 pole pairs), we use 20 pole pairs between 50 Hz
and 20 kHz, since for the more sophisticated methods
this filter order is sufficient to obtain practically perfect
equalization, as we shall see later. The results are ac-
ceptable, the ripples are within±1 dB, as can be seen in
Fig. 5 (b). Since now there are some regions which are
more ragged than others, the ripple-density based pole
positioning leads to slightly improved results, because it
is able to concentrate the frequency resolution to more
problematic regions (see Fig. 5 (c)).

For this exampleλ = 0.85 gives the best results for
warping-based pole positioning, shown in Fig. 5 (d).
Similarly to Fig. 3 (d), the accuracy is concentrated to
the middle range, while the band edges are less accu-
rately equalized. This is again overcome by the multi-
band (Fig. 5 (e)) and custom warping (Fig. 5 (f)).

The next example is a two-way bookshelf speaker hav-
ing some distinct spikes in its frequency response. The
response is smoothed with a 12th-octave resolution prior
to equalizer design, displayed in Fig. 6 (a).

First, a predetermined pole set is used with 20 pole pairs
logarithmically distributed between 70 Hz and 20 kHz.
The equalizer has a poor performance as seen in Fig. 5
(b), because the pole density is too low in the problematic
regions. On the other hand, the ripple-density based pole
positioning can show its power: equalization improves
significantly, since now the poles are concentrated in the
ragged parts of the frequency response (see Fig. 5 (c)).

In this caseλ = 0.8 is used for warping-based pole posi-
tioning in Fig. 5 (d). On the contrary to the previous ex-
amples, even simple warping can provide perfect equal-
ization. This is because the design bandwidth is smaller,
thus, we do not face with the problems we had in the
band edges for Fig. 3 (d) and Fig. 5 (d). Thus, the multi-
band (Fig. 6 (e)) and custom warping (Fig. 6 (f)) do not
provide any additional benefit in this case. Actually, their
performance is less preferable.

5. DISCUSSION

Now that we have reviewed the different pole positioning
strategies for parallel filter design and have seen a couple
of examples, some conclusions can be drawn about the
benefits of the various methods.

Predetermined pole set: This is the simplest method,
which works relatively well for loudspeaker–room re-
sponses, since room responses have so many resonances
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Fig. 6: Comparison of different pole positioning tech-
niques for a bookshelf loudspeaker response equaliza-
tion. The 12th-octave smoothed anechoic loudspeaker
response is displayed in (a). The pole positioning tech-
niques used are (b) predetermined pole set, pole posi-
tioning based on (c) ripple density, (d) standard warped
IIR filter design, (e) multi-band warping, and (f) custom
warping. The target response is shown by dashed lines.
The pole frequencies are displayed by crosses. The num-
ber of pole-pairs (or, second-order sections) is 20 in all
cases, giving a total filter order 40.

that the ripplyness of smoothed response is determined
by the smoothing itself. However, when the raggedness
is unevenly distributed in the response, such as in Fig. 6,
a logarithmic pole positioning is not adequate, and re-
gions with different pole density should be selected man-
ually, which is not practical. The main advantage of the
method is that there is actually no need for transfer func-
tion smoothing prior to equalizer design, so the equalizer
can be obtained from the measured response directly.

Ripple-density based pole positioning: This method,
while simple enough, works robustly in all cases since
it allocates the frequency resolution in accordance with
the raggedness of the response. It shows its main ben-
efits compared to the predetermined pole set when the
response has some specific problematic regions.

Warping based pole positioning: Since this method is
based on a warped IIR filter design, it is able to actu-
ally take into account both the frequencies and Q fac-
tors of the peaks and valleys of the response. When the
system is not using the full audio bandwidth (such as in
small bookshelf or multimedia speakers) it provides per-
fect equalization. Systems having full audio bandwidth
will suffer from low- and high-frequency inaccuracies
when using this pole positioning method. We also note
here that the response of the parallel filter using a warp-
ing based pole set is practically the same as what would
have been obtained using a warped IIR filter of the same
order.

Pole positioning using multi-band warping: This
method overcomes the bandwidth limitation of straight-
forward warping, thus, it can be safely used for any
type of frequency responses with excellent results. The
only slight shortcoming is that the user has to adjust the
crossover frequency and the filter orders of the frequency
bands.

Pole positioning using custom warping: This method
provides a similar performance compared to multi-band
warping. A slight benefit is that only the total filter order
has to be given by the user and no additional interaction
is necessary.

6. CONCLUSION

This paper has compared various pole positioning strate-
gies used for fixed-pole parallel filter design with the ap-
plication to loudspeaker and room response equalization.
The simplest of all techniques is using a predetermined
pole set, where the pole frequencies are set according
to a predetermined (typically logarithmic) distribution.
This gives generally acceptable results when the ragged-
ness of the response is distributed relatively evenly as a
function of frequency, which is the case for smoothed
room responses, and also for well behaving loudspeaker
responses.

A new method, the ripple-density based pole positioning
was proposed which automatically determines the pole
density based on the raggedness of the response. This
is a useful alternative to the predetermined pole set, be-
cause while it is still simple, it is more robust against un-
even distribution of the resonances in the response, and
requires no interaction from the user.

The best equalization is obtained with a pole set deter-
mined by the methods based on warped IIR filter designs.
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For systems having smaller bandwidth (such as small
multimedia loudspeakers), straightforward warped IIR
design gives excellent results, while for systems having
wider bandwidth, multi-band or custom warping should
be used.

While in this paper only equalization examples were
presented, the conclusions drawn are perfectly valid for
loudspeaker and room response modeling, and to a major
extent also for modeling and equalization of other sys-
tems.

MATLAB code for designing fixed-pole parallel filters
can be downloaded fromhttp://www.mit.bme.hu/∼bank/parfilt
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