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ABSTRACT

This paper presents a sustain-pedal effect simulation algorithm
for piano synthesis, by using parallel second-order filters. A ro-
bust two-step filter design procedure, based on frequency-zooming
ARMA modeling and least squares fit, is applied to calibrate the
algorithm from impulse responses of the soundboard and the string
register. The model takes into account the differences in coupling
between the various strings. The algorithm can be applied to both
sample-based and physics-based piano synthesizers.

1. INTRODUCTION

The sustain pedal is an essential feature of the piano. When the
sustain pedal is pressed down, the dampers lying on the strings
are lifted in order to let the string register vibrate freely. Recently,
Lehtonen et al. [1] showed that the sustain pedal affects the tone by
increasing the decay rates of the partials, especially in the middle
range of the piano. In addition, the amplitude beating characteris-
tics are changed and the energy of the residual signal is increased
compared to the tones that are played without the sustain pedal.
Sympathetic string resonance has been studied from a theoretical
point of view by Le Carrou et al. [2], who have constructed an
analytical model of a generic string instrument.

The effect of the sustain pedal needs to be taken into account
in high-quality sound synthesis. Different methods for modeling
the sustain-pedal effect can be found in the literature. De Poli et
al. [3] presented a sustain-pedal synthesis algorithm that is based
on the simulation of 18 lowest strings of the piano plus 10 strings
of variable-length, which together simulate the resonating string
register. Recently, Lehtonen et al. [1] presented a model, which
basically is a reverberation algorithm that consists of 12 simplified
string models corresponding to the lowest tones of the piano. For
physics-based piano synthesizers, a common approach [4, 5, 6, 7]
is to use a separate set of string models to simulate sympathetic res-
onances. Borin et al. [8] suggested a physics-based method where
the different string models are coupled to a common bridge ad-
mittance filter. Van Duyne and Smith [9] proposed that the effect
of the sustain pedal can be taken into account by using commuted

synthesis; the impulse response of the system consisting of the
soundboard and open strings is commuted to the excitation point.
The drawback of this method is that it cannot be applied to other
synthesis paradigms.

This paper presents a model for simulating the sustain-pedal
effect with a set of resonators, which can be considered as string
models that are used for creating sympathetic resonance. The ad-
vantage over previous methods is found in the parameterization
procedure that allows the direct calibration starting from measured
impulse responses. On the other hand, the computational cost is
higher compared to the other methods. Nevertheless, a real-time
implementation is affordable using current entry-level computer
hardware.

The paper is organized as follows: First, in Sec. 2 the model
structure is presented. Section 3 discusses the model calibration
based on the soundboard and string register impulse response mea-
surements. Section 4 discusses some extensions of the model and
Sec. 5 presents results obtained with the proposed algorithm. Fi-
nally, Sec. 6 concludes the paper.
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Figure 1: Block diagram for sustain pedal simulation through a
parallel filter bank Hped, here inserted in a typical scheme for
physics-based piano synthesis.

DAFX-1

 http://www.di.univr.it
mailto:stefano.zambon@univr.it
 http://www.acoustics.hut.fi/dafx08/
mailto:heidi-maria.lehtonen@tkk.fi
 http://www.di.univr.it
mailto:bank@mit.bme.hu


Proc. of the 11th Int. Conference on Digital Audio Effects (DAFx-08), Espoo, Finland, September 1-4, 2008

2. SYNTHESIS MODEL

The architecture of the proposed synthesis algorithm is depicted in
Fig. 1, when sustain pedal simulation is added to a typical scheme
for physics-based piano sound synthesis [10, 11]. The modeling
blocks resemble the functional parts of a real piano. The signal
coming from the hammer simulation block is the excitation for
the string resonator, which is a linear filter with a set of quasi-
harmonic resonances. The output of the string model is the transver-
sal force at the bridge Fb. This is fed into the sympathetic string
register Hped and, through a separate parallel path, to the sound-
board radiation filter Hsb. It has to be noticed that, in the real
piano, all the strings and the instrument body are coupled together,
so the bidirectional coupling between the different modeling blocks
should be considered in a proper physical model. However, the
main effects of the body termination can be taken in account by
changing the partial frequencies and decay times of the string model [10],
thus permitting a feed-forward model for the instrument body and
the sympathetic string register.

Due to the linear and time invariant nature of the sympathetic
string register block Hped(z) and the soundboard filter Hsb(z),
the proposed algorithm can be applied also to other synthesis paradigms,
such as commuted synthesis [9] or sampling synthesis. In these
cases, the pedal is implemented as a post-processing stage: the
“dry” piano sound is filtered by Hped(z) and the processed signal
is added to the original, corresponding to a filtering withHped(z)+
1.

From the signal processing point of view, the transfer function
of the block for the sustain pedal simulation is a parallel connec-
tion of K second-order resonators,

Hped(z) =

KX
k=1

Hk(z), (1)

where each one of the transfer functions Hk(z) can be described
as two parallel complex resonators,

Hk =
ck

1− pkz−1
+

c∗k
1− p∗kz−1

=

bk,0 + bk,1z
−1

1 + ak,1z−1 + ak,2z−2
. (2)

In Eq. (2), pk, p∗k are the conjugate poles, ck, c∗k are the com-
plex amplitudes of the resonators and bk, ak are the numerator and
denominator coefficients of the real valued second-order section.

The physical justification behind Eq. (1) comes from the fact
that the sympathetic string register presents a linear behaviour [1]
and its motion can therefore be decomposed into a set of nor-
mal modes which are simulated by the discrete resonators Hk(z).
However, implementing all the modes interacting in the real sym-
pathetic register would be prohibitive even with currently available
hardware. It is thus necessary to choose a subset of significant
modes which are perceptually relevant for sustain pedal simula-
tion.

3. MODEL CALIBRATION

Here, we address the problem of calibrating the parallel second-
order filter bank in order to approximate the measured impulse
response. The target system shows a complex behaviour due to the
high number of modes and the coupling with the soundboard. For
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Figure 2: Example magnitude transfer function of (a) the sound-
board plus the string register ‖H̃ped(z)‖ and (b) the soundboard
alone ‖Hsb(z)‖. The sharp peaks corresponding to string reso-
nances can easily be noticed in (a), especially in the low frequency
range. The curves are offset for clarity.

this reason, a robust two-step procedure is used. First, the poles of
the system are found using a spectral zooming technique [12, 13].
The pole set found in this way is reduced with simple heuristics.
Then, a least-square fit [14, 15] is used to find the complex ampli-
tudes of the resonators (i.e., the zeros of the system).

The impulse response of the soundboard hsb can be obtained
by hitting the bridge with an impact hammer, measuring simulta-
neously the hammer force and the sound pressure in a given po-
sition. Then, the impulse response is computed by deconvolution
of the two signals. The impulse response with the freely vibrat-
ing strings h̃ped is obtained in an analogous way. Fig. 2 illustrates
some examples of the transfer functions obtained with this proce-
dure.

As can be seen in the block diagram of Fig. 1, the relation be-
tween the measured transfer function H̃ped and the transfer func-
tion of the parallel bank Hped can be expressed as

H̃ped = Hsb +Hsb ·Hped. (3)

Accordingly, the system identification problem can be formulated

Hped (z)
hped

~
 − h sbhsb

Figure 3: Identification of the target system Hped(z) using the
measured impulse responses as input and output.

as estimating the system which produces the output h̃ped − hsb

when the signal hsb is given as an input, as it is shown in Fig. 3.
The required target output response of the model is ht = h̃ped −
hsb.
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Figure 4: Examples of system identification with FZ-ARMA mod-
eling for some subbands. In the pictures, the target decimated
signal (solid line) is plotted over the response of the modeled sys-
tem (dashed line). Nm stands for the number of poles used for the
estimation. The curves are offset for clarity.

3.1. Pole estimation

The first step in the estimation procedure is finding the promi-
nent poles of the target system. This task is solved by the means
of frequency-zooming ARMA (FZ-ARMA) analysis, a spectral
zooming technique that has been shown to work well for resolv-
ing very closely positioned modes and high-density modal clus-
ters [12, 13]. The basic idea of FZ-ARMA method is to divide
the frequency spectrum in subbands and apply standard ARMA
modeling techniques to estimate the poles and the zeros in each
subband. The method is well suited for the analysis of the string
register, because to a good approximation the frequencies of the
modes are close to the frequency distribution given by the equal
temperament. In other words, since we know a theoretical distri-
bution for the frequencies of the signal, we can use these as center
frequencies for our analysis procedure. As an example, around
523.251 Hz, corresponding to the note C5, we should expect to
find all the modes relative to the fundamental of C5, the ones
relative to the second partial of C4 (which has the fundamental
at 523.251/2=261.626 Hz), the third partial of F3 (fundamental
523.25/3=174.614Hz) and so on.

We thus divide the spectrum inNb non-overlapping subbands,
having center frequencies at

fm = 440 · 2(m−49)/12 (4)

and bandwidths

BWm = 2
“√

21/12 − 1
”
fm, 1 ≤ m ≤ Nb. (5)

The integer indexm corresponds, for the first 88 values, to the key
index on the piano keyboard (the 49th piano key is A4 at 440Hz).
Nb = 104 bands were used, corresponding to a highest frequency
analysis of 10548 Hz. For each subband m the following steps are
executed:

1. The target response ht(n) = h̃ped(n) − hsb(n) is modu-
lated to DC by multiplication with the complex signal
ej2πfm/fS , where fS is the original sampling frequency.

2. Lowpass filtering and decimating up to fS,m is applied to
the resulting signal. The new sampling frequency fS,m
equals the current bandwidthBWm as computed from Eq. (5).

3. Steiglitz-McBride iteration is used to find the zeros and
poles of the decimated signal. The numberNm of the poles
depends on the subbdand, and it is set to Nm = 2 for the
lowest bands and linearly increases up to Nm = 32 for the
45th band. This is because the modal density increases with
the frequency but, at the same time, we should also impose
an upper limit for the filter order motivated by implementa-
tion constraints and by the logarithmic frequency resolution
of the hearing. The number of zeros in each subband is set
to Nm/2. Note that the zeros are not used in the later steps
of the calibration.

4. The poles from ARMA analysis are mapped to the full sam-
ple rate by counter-rotating the phase of a factor 2πfm/fS
and by scaling their radii to compensate the decimation pro-
cess.
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Figure 5: Modal distribution obtained with FZ-ARMA analysis
and heuristic limits to remove noisy or fast decaying modes.

The accuracy of the results with FZ-ARMA analysis depends
on the right choice of parameters in relation to the target signal.
Better estimates are achieved by taking different portions of the
original signal depending on the band. In this way the ratio be-
tween free parameters and available data (i.e., the length of the
subsampled signal) does not vary much between different bands.
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Skipping the first part of the subsampled signal also helped the es-
timate in the mid-high frequency range, where the procedure tends
to overdamp the system poles. This also facilitates to minimize
the influence of the transients coming from the interpolation filters
used for decimation. Fig. 4 presents some examples of modeling
with this technique.

The outcome of the FZ-ARMA analysis procedure consists in
a large set of poles (around 2500 in our case). This set is processed
with simple heuristics in order to discard estimation errors (such as
unstable poles) and, possibly, reduce it to a subset of perceptually
relevant poles. In our case, for example, we discarded the poles
which were close to their band’s boundaries and those which have
very short or too long decay times. Fast decaying modes are elimi-
nated because their decay times are in the same magnitude order of
those of the soundboard, and their perceptual effect is masked by
modes with longer decay times. However, modes with too long a
decay time probably correspond to modeling measurement noise.
Fig. 5 shows the distribution of decay times versus frequency and
the limits imposed with the heuristics. These limits are defined on
an empirical base and try to follow the main trend of modes dis-
tribution. In particular, the sloped lines correspond to imposing a
1/f limit on the decay times τk:

Tmin
fk
≤ τk ≤

Tmax
fk

. (6)

Finally, the denominator coefficients ak,1 and ak,2 of 2 are directly
determined by the poles pk. As a further optimization, the number
of second-order sections applied in the model can be reduced by
taking into account the masking effect of neighbouring resonances.

3.2. Least squares fit to measured response

Now the feedforward coefficients bk,0 and bk,1 have to be esti-
mated. This is a linear-in-parameter system identification problem
and the estimation is done similarly as in [15].

Let us denote uk the impulse response of the system 1/(1 +
ak,1z

−1 +ak,2z
−2), which is the denominator part ofHk(z) as in

Eq. (2). Then, the output of the system can be written as follows:

h(n) = hped(n) ∗ hsb(n) =

KX
k=1

bk,0uk(n) ∗ hsb + bk,1uk(n− 1) ∗ hsb =

KX
k=1

bk,0sk(n) + bk,1sk(n− 1), (7)

where ∗ denotes convolution. The signal sk(n) = uk(n) ∗ hsb(k)
is the soundboard response hsb(n) filtered by 1/(1 + ak,1z

−1 +
ak,2z

−2). It can be seen that Eq. (7) is linear in its free parameters
bk,0 and bk,1. Writing Eq. (7) in matrix form yields

h = Mp, (8)

where p = [b1,0, b1,1, . . . bK,0, bK,1]
T is a column vector com-

posed of the free parameters. The rows of the modeling signal
matrix M contain the modeling signals, which are sk(n) and their
delayed counterparts sk(n− 1). Finally, h = [h(0) . . . h(N)]T is
a column vector composed of the resulting response.

The problem reduces to finding the optimal parameters popt

such that h = Mpopt is closest to the target response ht =

[ht(0) . . . ht(N)]T , where ht = h̃ped − hsb. If the error func-
tion is evaluated in the mean squares sense, the optimum is found
by the well known LS solution

popt = (MHM)−1MHht, (9)

where MH is the conjugate transpose of M.
It may be not practical to compute all the parameters at the

same time, because of the high order of the matrix M. However,
the different modeling signals are almost orthogonal because they
can be thought as slowly decaying sinusoids having different fre-
quencies. It is thus possible to solve Eq. (9) separately for each
subband, with significant savings in the overall computation time.

3.3. Physically informed model calibration

The calibration method proposed above can only be applied if the
appropriate impulse responses are available. Otherwise, a possible
alternative to obtain the poles and amplitudes of each resonator
comes from modal synthesis of the piano string [16], i.e., from the
discretization of the modal solution of the string equation. For
each key, a limited set of a few (4–32) resonators correspond-
ing to the first partials of the string is chosen. This choice leads
to a total number of 700–1200 resonators up to 10 kHz, which
should be enough in any case since the sustain-pedal effect is rel-
evant only in the low and middle frequency range [1]. This kind
of an approach is particularly convenient in the case of a physics-
based piano model where a secondary bank of resonators is already
present, for example when it is used for the simulation of beatings
and two-stage decay [10]. Similar techniques for sympathetic res-
onance simulation were already used in literature, e.g. [4, 5, 6].
The obvious drawback of this calibration method is that it is not
based on the measurement of real string resonance responses, and
it generally needs manual tuning to produce good results.

4. DISCUSSION

The synthesis method proposed, together with the calibration method,
is already sufficient to provide an accurate simulation of the sus-
tain pedal effect. Here, some issues regarding the inclusion of the
algorithm in a complete piano synthesizer are discussed. First, an
extension is provided to vary the effect for the different strings.
Then, an estimation of the overall computational cost is given.

High Strings

Low Strings

Fp,1

Fp,2

B

Fb,1

Fb,2

out

H sb, low (z)

H sb, high  (z)

H ped, low    (z)

Hped, high    (z)

Figure 6: Example of string subdivision in two different groups.
The gain matrix B controls the energy exchange between the string
groups.
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4.1. Variation of the effect for the different strings

In the synthesis structure of Fig. 1 the effect is the same for all the
piano keys. This is in contrast to what happens in the real piano,
where the string register is excited differently by various strings.
We propose to partially solve this issue by splitting the keyboard
in R different regions and using different pedal and soundboard
model for each region. A similar approach for applying different
soundboard filters has already been used in literature [17].

In Fig. 6 the situation is depicted for the case R = 2. The
relationship between the cumulated output of the string models
Fb = [Fb,0, . . . , Fb,R] and the inputs Fp = [Fp,0, . . . , Fp,R] of
the parallel banks is controlled by a R×R gain matrix B:

Fp = B Fb. (10)

By selectively damping a set of strings, one can obtain the im-
pulse responses needed to calibrate the separated resonator banks
of Fig. 6. This should also provide better estimates because the
number of modes is lower. It is an open question how to accurately
estimate the parameters of the matrix B. However, the parameters
are easily controllable and manual tuning is possible.

One further advantage of this approach is that different string
groups are filtered by different soundboard responses, which are
implemented as separate filters in the most straighforward way.
However, depending on the particular implementation of the sound-
board radiation filters, some optimizations can be used to reduce
the computational complexity, since the different soundboard mod-
els share a common set of resonances [14, 17].

4.2. Computational cost

A practical number for the order R of the matrix B is in the range
2—8. Consequently, the computational cost is dominated by the
update of the K resonators, which require 4 multiply-and-add op-
erations each if implemented with a one-zero, two-pole real valued
IIR filter. Since K is typically in the order of 1000, the cost is re-
markably higher if compared to the efficient reverb-based models
already presented in literature [1, 3]. However, the computational
complexity can be significantly reduced if the pedal model is im-
plemented as a multirate algorithm. The upsampling and down-
samplig filters can be of low order, since their passband errors can
be easily corrected by changing the amplitudes and phases of the
second-order resonators, similarly as done in [18] for modeling
beating and two-stage decay. Moreover, the structure is highly
vectorizable and thus it can exploit the SIMD constructs found in
modern DSPs and general purpose CPUs.

5. EXPERIMENTS

The proposed calibration algorithm has been tested on impulse re-
sponses taken from a Steinway grand piano Model C. The mea-
surements were done in a recording studio, placing the micro-
phones 2m away from the soundboard, and hitting the bridge by an
impulse hammer. The magnitudes of the measured transfer func-
tions can be observed in Fig. 2. A parallel bank of K = 1500
second-order sections has been designed by the FZ-ARMA and
least squares method proposed in Sec. 3. In order to validate the
analysis process, the recorded signal y(n) has been resynthesized
by convolving the recorded impulse hammer force with the im-

pulse response of the designed parallel bank1. The expression for
the resynthesized signal yr(n) is thus

yr(n) = Fh(n) ∗ (hped(n) ∗ hsb(n) + hsb(n)) (11)

where Fh(n) is the recorded hammer force. Fig. 7 compares the
time-frequency behaviour of the original and the resynthesized sig-
nals y(n), yr(n). Due to the intrinsic limits of the analysis proce-
dure, some differences can be noticed in the middle and high fre-
quency range. The source of these errors is found in the accuracy
of the FZ-ARMA analysis, which can be improved by tweaking
the parameters and heuristics used. However, the lack of some
particular resonances is not a problem, since the result still can be
recognized as the sustain pedal effect, and small differences are
masked.

Due to practical reasons during the measurement session, only
the response of the whole string register has been analyzed. The
authors plan to make another set of measurements to calibrate the
model for the different string groups.

The parallel bank has also been tested by applying the sustain
pedal effect to dry recorded piano samples. In addition, the algo-
rithm, including subdivision in R = 8 keyboard regions, has been
implemented as part of a real-time physics-based piano synthesizer
developed at the University of Verona.

6. CONCLUSIONS

A novel method for the simulation of the piano sustain-pedal effect
has been presented. Compared to previous works, our method al-
lows a precise calibration from measured impulse responses. This
is particularly useful when the purpose is to simulate the pedal ef-
fect of a given piano, which can be very advantageous when using
in combination with sampling synthesis. Nevertheless, the method
can be applied to other synthesis paradigms, such as physics-based
modeling. An extension to the basic model has also been pro-
posed that includes the differences in coupling of the various string
groups.

Possible future work includes perceptual studies to validate the
sound quality of the method and, eventually, to reduce the number
of second-order sections required for the simulation. Another open
issue is the modeling of other aspects of the sustain-pedal, such
as half-pedaling, which is important in jazz and pop music piano
playing, and the noise sounds generated by the pedal mechanism.
Inclusion of these aspects should lead to a higher fidelity in the
interaction with virtual piano instruments.
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1Sound examples are available for listening at:
http://www.acoustics.hut.fi/go/dafx08-pedal/
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Figure 7: Time-frequency plot of (a) the recorded soundboard and
string register response signal y(n) and (b) the resynthesized sig-
nal yr(n) using the designed parallel bank.
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