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ABSTRACT

In physics-based sound synthesis, it is generally possibia-
corporate a mechanical or acoustical immittance (adnuéasr
impedance) in the form of a digital filter. Examples includedn
eling of the termination of a string or a tube. However, whag d
ital filters are fitted to measured immittance data, care bd=et
taken that the resulting filter corresponds to a passive améch
cal or acoustical system, otherwise the stability of thérimaent
model is at risk. In previous work, we have presented a simple
method for designing and realizing inherently passiveascad-
mittances, by composing the admittance as a linear conmbimat
of positive real (PR) functions with nonnegative weights.this
paper the method is extended to multidimensional admigs (ed-
mittance matrices). The admittance matrix is synthesizeasum
of PR scalar transfer functions (second-order filters) ipligd by
positive semidefinite matrices. For wave-based modelinch as
digital waveguides (DWGSs) or wave digital filters (WDFs)gth
admittance matrix is converted to a reflectance filter. Therfil
structure is retained during conversion, resulting in a exically
robust implementation. As an example, a dual-polarizagjoiter

string model based on the DWG approach is connected to the r®4ard modal

flectance model parameterized from guitar bridge admitgtamea-
surements.

1. INTRODUCTION
In physics-based sound synthesis, the sound of an insttuisien
generated by modeling the instrument behavior rather thadein
ing the sound itself. Therefore the model blocks corresporite
main parts of the instrument (for an overview, <ée [1]). Dejieg
on the modeling paradigm, these models can be parametanized
many ways. For example, it is possible to parameterize pdirts
the instrument model by a measured mechanical or acoustieal
mittance (admittance or impedance). As an example, thetadfe
an immittance (e.g., the instrument bridge) connected toregds
that it changes the modal frequencies and decay times ofrthg s
compared to a rigid termination, and provides coupling leetwv
the horizontal, vertical, and longitudinal polarizatiaishe string.
Note that we will restrict ourselves to mechanical admites) but
the treatment is equally applicable to other passive (aapusti-
cal) systems and to impedances instead of admittances.

The starting point of such a parameterization is a mechhnica
admittance measurement of the given part of the instrungegt,
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the bridge). Naturally, all parts of acoustical instrunseate pas-
sive, that is, they can only dissipate energy that is intcediby the
player. In theory, the measured admittance could be djreep-
resented as an FIR or an IR fifléfitted to the measured response.
However, often the resulting digital filter does not cor@sghto a
passive termination, that is, at some frequencies it gégepower
instead of dissipating it. This can happen because of tweprea
the measured impulse response itself may not be passivedeeca
of measurement errors, or, due to the fact that the admétanc
only approximated by the FIR or IIR filter fitted to the respens

Therefore, instead of straightforward filter design, suctea
sign technique should be used that results in a passive tatiogt
filter. In [2], passive admittance filters are constructedrianually
tuning the modal frequencies and decay times of second-cede
onators to produce a function similar to the guitar admiégmand
a similarly simplified guitar bridge model is presented[ih (f®
connecting the passive admittance to a scattering junctiof#],
the 2D mechanical admittance of a guitar bridge up to 3 kHz is
modeled by a set of mass-spring-damper elements (secded-or
resonators), and the matrix pencil method is used for paerme
estimation. In the frequency-domain guitar model[af [5]tans
analysis technique (circle fitting) is used up4dHtz,
and above that a random number generator is applied to produc
a statistically similar modal behavior as in the measuregagse.
This was necessary because standard modal analysis teebniq
perform well only in the low frequency region where the modes
are separated (up to 1-2 kHz in the case of the guitar), ayd the
cannot easily capture the behavior at high frequenciesrentne
modal overlap is high.

In [6] we have proposed an admittance filter design method
that models the admittance accurately in the low frequemrey r
gion (up to a few kHz), while at high frequencies, only the -gen
eral trend of the admittance is modeled. This is motivatedhiey
fact that in sound synthesis, low frequency admittance timagle
should be more accurate, since this is the region that infegen
the decay times of the most important partials of the tonee Th
nonuniform resolution is achieved by determining the polehe
admittance filter by frequency warped filter design. Then,at-
mittance transfer function is constructed as a weightedafipas-
sive (positive real) second-order transfer functions.

This paper extends our previous wofk [6] to the modeling of
admittance matrices. The multidimensional admittanceois-c
posed as a linear combination of scalar positive real tearfafic-
tions with weighting matrices that are positive semidefiniThe

1t is important to keep in mind that immittance itself is geaily not a
filter or transfer function but a constraint relation betwegiantities such
as force and velocity, while wave-based reflectance is a filtthe sense
of input-output relationship.
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admittance matrix is converted to a reflectance matrix fiteit
retains the parallel second-order filter structure of thaittdnce
formulation.

The organization of this paper is as follows: first, $&c. 2giv
the necessary theoretical background. Then, Bec. 3 propose
admittance matrix design algorithm, SEL. 4 presents thécapp
tion of the admittance filter to wave-based modeling, and Bec
gives a guitar bridge modeling example. Finally, $éc. 6 hates
the paper and indicates the areas of future research.

2. BACKGROUND

2.1. Passivity and positive realness

A system is passive if it cannot produce energy. For contisto
time systems, wide literature is available about the stijgescpas-
sivity is an important property in network analysis and bgsis
as well as in nonlinear control. For passive systems, inamigs
are positive real (PRE[7].

For rational functions of that do not have a pole on the closed
right-half plane (that is, for asymptotically stable syst, the
transfer function matri¥(s) is PR if and only if

Re{H(jw)} = 3 (H(jw) + H'(w)) 20 ()
for all realw [[]. Here* means complex conjugation, aid > 0
means thai is positive semidefinite.

The PR condition for a digital transfer functidH(z)
H(e??) in a rational form with poles in the open unit disk (as-
ymptotically stable systems) is similar to that for the combus
casell8]:

Re {H(e ")} = % (HEe ) +H () 0. (2)

Thatis, itis enough to check positive realness on the urutegiby
looking at the frequency response. Functions satisfyingBare
called “circle positive real” in[[B]. However, we will use tgitive
real” both for discrete-time and continuous-time tranffiections
in this paper.

Fitting positive real functions to measurement data are fre
quently used in modeling and verification of integrated wis;
therefore, a wide range of continuous-time methods ardadlai
(see, e.g.[19..10]). Most probably these sophisticatedratgns
could be modified for discrete-time systems. However, thdy d
not find their way to the musical acoustics and sound syrghesi
community, probably due to their complexity. In additiohget
modal framework (outlined in Sc2.2) also provides passivod-
els and it is better related to the physical structure of tistri-
ment.

2.2. Modal framework

The quest for a PR transfer function can be simplified if some a
sumptions are made on the structure. First, let us definediiné-a
tance matrixY':
v=Yf 3)
wheref = [F1,..., Fk]7 is a column vector composed of the
forces exciting the structure at positions..., K, and v
[v1,...,vk]T is a column vector composed of the velocities of
pointsi, ..., K.
In modal analysis, the general assumption is that the sireict

can be described as a set of masses that are connected by linea

springs and linear dampeis]11]. Then, the vibration of thecs
ture can be decomposed to a sunRafiormal modes with different
modal frequencies., decay rates,- and modal shape®,.. It is

a common assumption in modal analysis that the damping is vis
cous and it is distributed proportionally to the mass anifihsts
elements, referred as proportional damping in the liteeatin this
case the modal shapds. are real and the mechanical admittance
(mobility) matrix of the system can be written &s1[12]

Jw
2 — w? 4 2jorwrw)

R
Y(w) =) 20 e @
r=1 T

wherem,. is the effective mass of mode and®’ &, is a rank

1 size K square matrix which is positive semidefinite, since the
elements of®, are real (not complex). The scalar transfer func-
tions in Eq. @) are PR because their phase span fromi2 to
m/2. Thus, the real part ok will be positive semidefinite for
all w frequencies, sinc is a linear combination of real positive
semidefinite matrice®” @, with positive real weights.

A straightforward approach for modeling a given (measured)
admittance is to use standard modal analysis tools to fit aamod
model of Eq.[[#) to the measured data, and implement a dizedet
version of Eq.[[l). However, there are two related problemishy
prevent us from doing so. First, standard modal analysis-tec
nigues work only in such regions of the transfer functionereh
the modal overlap is low (modes are well separated). Thexefo
accurate modal parameters could be obtained for the lowdrazy
region of instrument bridges only. In addition, in the caksound
synthesis applications, the model order is significantlgltencom-
pared to the order of the system, which means that the asgumspt
used to derive Eq[I4) are no longer true. For example, thespol
of the model do not necessarily correspond to the poles cfithe
tem, and the “modal shapes” of the model should approxinhege t
gross behavior of all the system modes having modal fredqegnc
near to the corresponding pole frequency of the model.

3. THE PASSIVE ADMITTANCE MODEL

Here we propose using a modification of the modal model by in-
terchanging theb” &, rank 1 matrices with general (full rank)
symmetricY, matrices, giving more degrees of freedom in mod-
eling. This actually corresponds to allowing maximuthmodal
shapes for each pole-pair of the model instead of a singleemod
As a result, the admittance is modeled as

R
> Y, H,(2) (5)
r=1
1—272
(1 =prz=1)(1 = pz—1)’

whereH.,.(z) are the bilinearly transformed discrete-time versions
of the second-order functions of EQI (4). If a positive regldtion

H (s) is converted to a discrete-time functidf(z) by the bilinear
transform, it remains positive redll[2.]13]. Therefofé,(z) are
PR. A sufficient condition for the admittance mod€él =) to be
PR is that all théY',. matrices are positive semidefinite, because in
this case we have

(5b)

Re{Y(2)} =Re{) Y.H.(2)} = > Y,Re{H,(2)} >0,
- ©®)

r=1
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since the linear combination of positive semidefinite ncasiy .

with nonnegative scalar weighits:{ H,-(z) } is also positive semi-

definite.

3.1. Parameter estimation

The parameters of the admittance model Ely. (5) are obtained f

a measured admittance mati¥x., (z) as follows:

1. Pole positioning The measured admittancé,,(z) con-

tains K2 transfer functions (or, impulse responses, if the

data is available in the time domain), of whidti(K +

2. Weight matrix estimation: The final step is to estimate the

weight matricesY ., which is a linear-in-parameter prob-
lem with the positive-semidefiniteness constrai¥its > 0.

The time-domain error for one matrix element is
N
2
Eij =Y (Yiheln] = Yijm[n]) (10)
n=0

whereY;’ is theij element ofY,. (thus, the superscript
r is not a power but an index), arid-[n] is the inversez
transform ofH..(z).

The optimal set of parametels, are obtained by solving

1)/2 are independent, due to symmetry. The task is to K i
find a common-denominator model that best describes all minimize € = Z Z El; (11a)
the K (K + 1)/2 transfer functions, since the poles are the ==

same for each transfer function in the model of EL. (5). This

can be done by various common-denominator algorithms
used in modal analysis. Here we are using a common-
denominator version of autoregressive modeling (or, equiv

alently, linear prediction) in the time domain, that resurt
an all-pole model. As a notation, let us defikign] as the
element-wise inverse transform ofY (z), which is actu-

ally the impulse response of the admittance matrix. Accord-
ingly, Y [n] is the measured admittance impulse response.
Then, the regression error for th&; m[n] element of the

matrix Y [n] can be written as

N L 2
Ey=> (mj,mm + Y amYigmln — l]) . @
n=L =1

wherelL is the order of the denominator, andis the length

of the measured admittance impulse respdnse [n]. Note
that the denominator coefficients, are the same for all the
ij elements in Eq{7) and the task is to find this common

set ofa,, coefficients such that the total error

K i
e:ZZEij (8)

subject to Y, > 0. (11b)

We propose a relatively simple (although probably subop-
timal) solution to Eq.[(M1). First, we find th¥€,. matrices
without the constraint of EqC{ILb). Since now the elements
of Y,. become independent, the total error is minimal if all
Egj are minimal. Thus, the problem reduces to minimiz-
ing Eq. [ID) for allE}; independently, which are separate
linear least-squares problems with a closed-form solution
Then, the resulting’,- matrices are “converted” to positive
semidefinite matrices. This last step involves finding the
nearest positive semidefinite matrixYo., which is similar

to finding the nearest valid correlation matrix]17] without
the unit diagonal constraint. This is achieved by computing
the spectral decomposition &f ., discarding the negative
eigenvalues and their eigenvectors, and reconstructieg th
matrix from the remaining positive eigenvalues and corre-
sponding eigenvectors.

This basic procedure is slightly improved if the diagonal
elementsE;; in Eq. [I0) are minimized with the nonega-
tivity constraintsY;; > 0, which is a standard nonnegative
least squares problem. This improves the results because
the nonnegativity of the diagonal elements of a matrix is a
necessary condition for positive semidefiniteness.

i=1 j=1

is minimal. This is a linear least-squares problem that is 3.2. Implementation
solved by the normal equations in a closed form. Note that ) .
the indexj in the second sum of Eq(8) runsitinstead of The admittance model of Eq(5) corresponds #% aput K out-

K because it is sufficient to compute the error for the lower Put MIMO filter which can be straightforwardly implementeyl b
triangular partj < i of Y, only, sinceY,, is symmetric. K? independent transfer functions. However, by noting thet th
As already state_d in the Introduction, our goal is to model transfer functions have common poles, a more efficient imple
the admittance more precisely at low frequencies compared tation structure is obtained. Inserting EQ.I(5a) into E)gides

to the high ones. This has to be reflected by resolution of R R

pole positioning, since the poles determine the frequency v = [Z YrHr(Z):| £f=> Y, [H(2)f]. (12)
resolution of the design, similarly to Kauiz_]14] and paral- r=1 r=1

lel filters [13]. Therefore, the above common-denominator For each mode of the model, tté input signals (forces, act-
model is estimated in the warped domdin| [16]. For that, all ing on positions, . . ., K) are filtered by the second-order filter
the measured impulse responses are frequency warped withy, (), giving K intermediate signals. Then, the vector formed
parameten\, and the common-denominator autoregressive from these signals is multiplied by ., leading to the velocity

model is estimated based on this warped data. Then, thecontributionv, = [v7,...,v%] of moder. This is done for all
roots of the denominatgy, are found and “dewarped” by  the modesq, ..., R, and the results, . .. vz are summed to give
the expression _ the velocity vectow. This is shown in Fig[1 for a single mode
L= D +~/\ 9) implementing one teriY . [H.(2)f] of the sum of Eq.[(T2).
L+pr The computational complexity of the “admittance filtering”

The polesp, are used for constructing the second-order for a K by K admittance matrix withR modes is composed as
functionsH,.(z) according to Eq{3b). the following:
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Ii» H, (2
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Figure 1: Implementation of the admittance matrix: the block
scheme of one teri¥,.[H,-(z)f] of the sum of Eq[{12).

1. RK second-order filter6l —272) /[(1—prz~ 1) (1—piz~1))
leading to2 RK multiplications and3RK additions

2. R multiplications with matriced’,. requiring RK? multi-
plications andR(K — 1) K additions

3. summing the velocity contributions of tlié¢ modes mean-
ing (R — 1)K additions

Roughly, the required computational powerd# (K + 3) multi-
ply and accumulate instructions per sample.

4. CONVERSION TO A REFLECTANCE MATRIX

A passive admittance function gives the relation betweerefand
velocity for a mechanical system. It seems that it couldefwe
be directly applied as a termination of a finite-differenteng
model, where the force acting on the termination is compbied
the string, then this force is filtered by the admittance fasna
filter giving the velocity of the termination, which is used the
string model for the next iteration. However, interconimegpas-
sive elements in such a way often results in unstable systams
less special measures are taken to ensure numerical ergrsgre
vation [18].

This problem is automatically avoided in wave-based model-
ing [18], when the admittance is formulated as a function afev
variables instead of the Kirchhoff variables. In this casevill
be a reflectance filter producing a reflected wave to an intiden
wave (see the footnote in Introduction). The following dations
for converting the admittance formulation to a reflectarieerfare
similar to that for the scalar admittance céde [6].

4.1. Vector-waveguide termination

Digital waveguide modeling is the most efficient paradigmfod-
eling the 1-D wave equation. It is based on spatial and teahpor
discretization of the traveling wave solution for the wavpia-
tion [2]. In its basic form, the digital waveguide models thave
propagation in one polarization. However, the idea can be ex
tended to multivariable waveguides so that the elementién t
delay line are vectors instead of scaldrs| [19]. For exaniple,

a dual-polarization guitar string model, each delay eleéncen-
tains two variables, giving the string displacement pedimnar

and parallel to the guitar body. These multivariable waiceg
will be called vector-waveguides in the rest of the paper.

Here we derive areflectance filter for the case where a medtipl
polarization single string (implemented by a vector-wawdg)
with a characteristic admittance mati¥ is connected to a termi-
nation having an admittance matf&(z). Note that for the case
of a linear stringY is diagonal, since there is no internal coupling
between the polarizations.

Similarly to the one-dimensional case [2], the reflectedeel
ity wave vectorv ™~ is obtained from the incident wave vector
as

v =H,(2)vl = (Y(2) + Yo) " (Y(z) — Yo)vi (13)
whereH, (z) is the reflectance matrix for velocity waves.

In theory, the parameters #1, (z) could be computed by in-
serting Eq.[(b) into EqLT13) and rearranging the matrix elets
to a rational form, but this would be a very tedious and numeri
cally badly conditioned task. In addition, the physicallganing-
ful modal-like filter structure of Eq[]5) would be lost.

Therefore, we suggest constructing the reflectance filaréh
a way that preserves the parallel structure of the admittéme
mulation. First, the admittance form is decomposed to thmeém
diate respons&’; (which equals to the first sampl¥é|[0] of the
admittance impulse response) and to the response whicmdepe
only on past inputs ~' Y ,(z) (whereY,(z) is thez transform of
Y [n — 1] with n > 1), giving

Y(2) =Yi+ 2 "Y,(2). (14)
The decomposition can be done for the second-order filie(s)
of Eq. (8) separately [20]:

1—272
H,(2) = =
() 14+ ar127t + ar2272
— br 1 + br 2271 —1
-1 1 ) ) =1 H, 15
2 L+ araz ' + apoz2 +z pr(2)  (15)
with b, 1 = —a,1 andb, > = —1 —a, 2 forr =1,..., R. Thus,
the two parts of the admittance filter become
R
YP(Z) = ZYTHP,T(Z) (16a)
r=1
R
vi=Yv. (16b)
r=1

Note thatY,(z) has the same structure ¥4 2) of Eq. [Bd), the
only difference is that{, (=) are exchanged for the filtefg;, (z)
having different numerator coefficients. Therefore, theefihg
computation is done in the same way as explained in[Sdc. 3.2.

Then, substituting EqC{14) into E_{13) yields the formigia
computing the reflected velocity vector:

v =(Yi+ Yy ™" [z_lYp(z)(v+ —v )+ (Yi—Yo)v'].
17)

This is illustrated in Fig2. The non-computable delayefigop is

avoided because of the decompositionYpandY,(z), leading

to thez~" terms in Fig[R. Note also that instead of the inversion

of a frequency-dependent mati¥ (z) + Yo ) as in Eq.[IB) only

a matrix with constant elemen{&’; + Yy) has to be inverted.

The model of FiglR can be directly used to model the effece of
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Figure 2:The reflectance matrix filter.

multidimensional admittance by connecting the multivialeade-
lay lines of a vector-waveguide to its input™ and outputv .
In addition to the delay lines, the vector-waveguide strimgdel
should also incorporate loop filters that model string lesaed
dispersion, and fractional-delay filters for tuniig [2].

4.2. Wave-digital filter formulation

Similar, but more tedious derivations can be performedfercase
when more multiple polarization strings (more vector-wgavdes)

are connected to the same termination. However, that césmis
dled in a more flexible way by constructing a wave-digitalefilt
(WDF) [1,[Z] admittance element and connecting it to the mect
waveguide string models by parallel adaptors. For comjiittab

3
10° 10 10
T T
(b)
N A
iy i I
[ I M v ;N\
PURAVE
\ W RAC 19 ‘1/\ hed ol Ay o ’ \\"J
| 14/ A 2 [y :
! I
h AT f | I
3 4
10 10

_8() L L I
10° 10°

Frequency [Hz]

Figure 3: Modeling a measured guitar bridge admittance by the
proposed passive admittance model with 100 second-ordexrsfil
for the (a)yy, (b) yz, and (c)zz elements of the admittance matrix.
Dashed line: measured, solid line: modeled responses.

Sec[Z1l). This is most easily satisfied by using only oneefwo
responses (e.g., the less noisy one).
The parameters of the admittance model were estimated in

reasons, the WDF waveport has to be made free of immediate rethe time-domain by the parameter estimation procedurenedtl
flection. This can be easily done since the WDF formulation is in Sec.[3]l. The results of the parameter estimation for an ad

independent of (waveguide) impedance(s) connected tooitigfn
adaptors, thereforéy, can be chosen freely. The immediate re-
flection is avoided by settinyo = Y (see Fig[R).

5. GUITAR BRIDGE ADMITTANCE MODELING

We have measured the two-dimensional admittance of an tcous
guitar bridge (Gibson, from 1960's) near the lowest) (string.
The bridge was excited by the wire breaking techni@uie [5]tard

movement of the bridge was measured by a miniature accelerom

eter. The basic idea of the method is that a wire is threadnarou
the string near the bridge and pulled by hand with an incnggsi
force. When the wire breaks, the static force disappearseo
sponding to a step excitation plus a constant DC force (ttterla
has no effect if the system is linear). Since the wire-bregkech-
nigue gives the admittance step response if velocity is oreds
measuring the acceleration gives the admittance impusgonse
directly.

The bridge was excited with the wire breaking in the dirattio
perpendiculary direction) and parallel to the body @irection).
The acceleration was also measured in these two directidms.
gave a 2 by 2 admittance impulse response matrix

Yyy,m[n]
Yey,m([n]

Yyzmln]

Yun] = Y. mln]

(18)
where the “m” subscript indicates that these are measuledsja
which are then approximated by the admittance model impelse
sponseY [n]. Note that in theory,. wm[n] = Y., m[n], but there

mittance model having 100 second-order filtefs £ 100) are
shown in Fig[B. Naturally, the accuracy of the fit can be insezl

by using higher filter orders, but for sound synthesis, ew@ngu

R = 100 second-order sections is an overkill, and it is only shown
to demonstrate the accuracy of the design. The transfetifunsc

of a more practical admittance model with 30 second-order fil
ters are displayed in Fifll 4. We have found that filter orders i
this range provide a good compromise between sound quality a
computational efficiency.

Then, the admittance matrix formulation is converted to a 2D
reflectance filter as described in SEC] 4.1. A synthesizeohgbea
when a 2D vector-waveguide corresponding to the lowestgsbf
the guitar (o = 82 Hz) is connected to the 2D reflectance filter
with R = 30 is displayed in FidJ5. The vector-waveguide includes
one-pole lowpass filter§l[2] to model the losses of the strifige
string model is excited by a triangle-shaped initial disptaent in
the z direction, which approximates a pluck excitation paratitel
the guitar body. The output of the model is the bridge vejoicit
they direction (perpendicular to the body). Figlite 5 shows the am
plitude envelopes of the first six partials. It can be seenhgtiang
beating and two-stage decay appears for those partial$natredn
that frequency range where the elements of the admittantéxma
are large. For example, partial No. 3 wifh = 246 Hz is around
the main peak of the guitar admittance (See Hig. 4).

6. CONCLUSION

This paper has presented a methodology for constructingr-inh

are always some differences due to measurement errors. How-ently passive admittance matrix models from measured taimois.

ever, for model fitting, a symmetri¥ ., [n] matrix is assumed (see

The admittance matrix is synthesized as a sum of positivédetm
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Frequency [Hz]

Figure 4: Modeling a measured guitar bridge admittance by the
proposed passive admittance model with 30 second-ordersfilt
for the (a)yy, (b) yz, and (c)zz elements of the admittance matrix.
Dashed line: measured, solid line: modeled responses.

inite matricesY, multiplied by scalar positive-real transfer func-
tions H-(z). The H,(z) transfer functions are implemented by
second-order IIR filters. The poles of the transfer functiane
estimated in the frequency-warped domain, giving more emph
sis to the low frequency region of the measured admittance-fu
tions. For parameter estimation, a relatively simple methvas
presented that first obtains the element¥ofseparately by least
squares optimization and then adju%ts matrices so that they be-
come positive semidefinite.

For wave-based modeling (such as digital waveguides or wave

digital filters), the admittance matrix model is convertedatre-
flectance matrix in such a way that the parallel filter streectis
retained, resulting in a numerically robust implementatioAs

Ampl. [dB]

4

Partial No. Time [s]

Figure 5: Partial envelopes of a synthesized guitar sound gener-
ated by a 2D vector-waveguide connected to the reflectantéxma
with R = 30 second-order sections.
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