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ABSTRACT

In physics-based sound synthesis, it is generally possibleto in-
corporate a mechanical or acoustical immittance (admittance or
impedance) in the form of a digital filter. Examples include mod-
eling of the termination of a string or a tube. However, when dig-
ital filters are fitted to measured immittance data, care has to be
taken that the resulting filter corresponds to a passive mechani-
cal or acoustical system, otherwise the stability of the instrument
model is at risk. In previous work, we have presented a simple
method for designing and realizing inherently passive scalar ad-
mittances, by composing the admittance as a linear combination
of positive real (PR) functions with nonnegative weights. In this
paper the method is extended to multidimensional admittances (ad-
mittance matrices). The admittance matrix is synthesized as a sum
of PR scalar transfer functions (second-order filters) multiplied by
positive semidefinite matrices. For wave-based modeling, such as
digital waveguides (DWGs) or wave digital filters (WDFs), the
admittance matrix is converted to a reflectance filter. The filter
structure is retained during conversion, resulting in a numerically
robust implementation. As an example, a dual-polarizationguitar
string model based on the DWG approach is connected to the re-
flectance model parameterized from guitar bridge admittance mea-
surements.

1. INTRODUCTION

In physics-based sound synthesis, the sound of an instrument is
generated by modeling the instrument behavior rather than model-
ing the sound itself. Therefore the model blocks correspondto the
main parts of the instrument (for an overview, see [1]). Depending
on the modeling paradigm, these models can be parameterizedin
many ways. For example, it is possible to parameterize partsof
the instrument model by a measured mechanical or acousticalim-
mittance (admittance or impedance). As an example, the effect of
an immittance (e.g., the instrument bridge) connected to a string is
that it changes the modal frequencies and decay times of the string
compared to a rigid termination, and provides coupling between
the horizontal, vertical, and longitudinal polarizationsof the string.
Note that we will restrict ourselves to mechanical admittances, but
the treatment is equally applicable to other passive (e.g.,acousti-
cal) systems and to impedances instead of admittances.

The starting point of such a parameterization is a mechanical
admittance measurement of the given part of the instrument (e.g.,
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the bridge). Naturally, all parts of acoustical instruments are pas-
sive, that is, they can only dissipate energy that is introduced by the
player. In theory, the measured admittance could be directly rep-
resented as an FIR or an IIR filter1 fitted to the measured response.
However, often the resulting digital filter does not correspond to a
passive termination, that is, at some frequencies it generates power
instead of dissipating it. This can happen because of two reasons:
the measured impulse response itself may not be passive because
of measurement errors, or, due to the fact that the admittance is
only approximated by the FIR or IIR filter fitted to the response.

Therefore, instead of straightforward filter design, such ade-
sign technique should be used that results in a passive admittance
filter. In [2], passive admittance filters are constructed bymanually
tuning the modal frequencies and decay times of second-order res-
onators to produce a function similar to the guitar admittance, and
a similarly simplified guitar bridge model is presented in [3] by
connecting the passive admittance to a scattering junction. In [4],
the 2D mechanical admittance of a guitar bridge up to 3 kHz is
modeled by a set of mass-spring-damper elements (second-order
resonators), and the matrix pencil method is used for parameter
estimation. In the frequency-domain guitar model of [5], a stan-
dard modal analysis technique (circle fitting) is used up to 1.4 kHz,
and above that a random number generator is applied to produce
a statistically similar modal behavior as in the measured response.
This was necessary because standard modal analysis techniques
perform well only in the low frequency region where the modes
are separated (up to 1–2 kHz in the case of the guitar), and they
cannot easily capture the behavior at high frequencies, where the
modal overlap is high.

In [6] we have proposed an admittance filter design method
that models the admittance accurately in the low frequency re-
gion (up to a few kHz), while at high frequencies, only the gen-
eral trend of the admittance is modeled. This is motivated bythe
fact that in sound synthesis, low frequency admittance modeling
should be more accurate, since this is the region that influences
the decay times of the most important partials of the tone. The
nonuniform resolution is achieved by determining the polesof the
admittance filter by frequency warped filter design. Then, the ad-
mittance transfer function is constructed as a weighted sumof pas-
sive (positive real) second-order transfer functions.

This paper extends our previous work [6] to the modeling of
admittance matrices. The multidimensional admittance is com-
posed as a linear combination of scalar positive real transfer func-
tions with weighting matrices that are positive semidefinite. The

1It is important to keep in mind that immittance itself is generally not a
filter or transfer function but a constraint relation between quantities such
as force and velocity, while wave-based reflectance is a filter in the sense
of input-output relationship.
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admittance matrix is converted to a reflectance matrix filterthat
retains the parallel second-order filter structure of the admittance
formulation.

The organization of this paper is as follows: first, Sec. 2 gives
the necessary theoretical background. Then, Sec. 3 proposes the
admittance matrix design algorithm, Sec. 4 presents the applica-
tion of the admittance filter to wave-based modeling, and Sec. 5
gives a guitar bridge modeling example. Finally, Sec. 6 concludes
the paper and indicates the areas of future research.

2. BACKGROUND

2.1. Passivity and positive realness

A system is passive if it cannot produce energy. For continuous-
time systems, wide literature is available about the subject, as pas-
sivity is an important property in network analysis and synthesis
as well as in nonlinear control. For passive systems, immittances
are positive real (PR) [7].

For rational functions ofs that do not have a pole on the closed
right-half plane (that is, for asymptotically stable systems), the
transfer function matrixH(s) is PR if and only if

Re {H(jω)} =
1

2
(H(jω) + H

⋆(jω)) ≥ 0 (1)

for all realω [7]. Here⋆ means complex conjugation, andA ≥ 0
means thatA is positive semidefinite.

The PR condition for a digital transfer functionH(z) =
H(e−jϑ) in a rational form with poles in the open unit disk (as-
ymptotically stable systems) is similar to that for the continuous
case [8]:

Re
n
H(e−jϑ)

o
=

1

2

�
H(e−jϑ) + H

⋆(e−jϑ)
�
≥ 0. (2)

That is, it is enough to check positive realness on the unit circle, by
looking at the frequency response. Functions satisfying Eq. (2) are
called “circle positive real” in [8]. However, we will use “positive
real” both for discrete-time and continuous-time transferfunctions
in this paper.

Fitting positive real functions to measurement data are fre-
quently used in modeling and verification of integrated circuits,
therefore, a wide range of continuous-time methods are available
(see, e.g., [9, 10]). Most probably these sophisticated algorithms
could be modified for discrete-time systems. However, they did
not find their way to the musical acoustics and sound synthesis
community, probably due to their complexity. In addition, the
modal framework (outlined in Sec. 2.2) also provides passive mod-
els and it is better related to the physical structure of the instru-
ment.

2.2. Modal framework

The quest for a PR transfer function can be simplified if some as-
sumptions are made on the structure. First, let us define the admit-
tance matrixY:

v = Yf (3)

wheref = [F1, . . . , FK ]T is a column vector composed of the
forces exciting the structure at positions1, . . . , K, and v =
[v1, . . . , vK ]T is a column vector composed of the velocities of
points1, . . . , K.

In modal analysis, the general assumption is that the structure
can be described as a set of masses that are connected by linear

springs and linear dampers [11]. Then, the vibration of the struc-
ture can be decomposed to a sum ofR normal modes with different
modal frequenciesωr, decay ratesσr and modal shapesΦr. It is
a common assumption in modal analysis that the damping is vis-
cous and it is distributed proportionally to the mass and stiffness
elements, referred as proportional damping in the literature. In this
case the modal shapesΦr are real and the mechanical admittance
(mobility) matrix of the system can be written as [12]

Y(jω) =
RX

r=1

Φ
T
r Φr

jω

mr(ω2
r − ω2 + 2jσrωrω)

(4)

wheremr is the effective mass of moder, andΦ
T
r Φr is a rank

1 sizeK square matrix which is positive semidefinite, since the
elements ofΦr are real (not complex). The scalar transfer func-
tions in Eq. (4) are PR because their phase span from−π/2 to
π/2. Thus, the real part ofY will be positive semidefinite for
all ω frequencies, sinceY is a linear combination of real positive
semidefinite matricesΦT

r Φr with positive real weights.
A straightforward approach for modeling a given (measured)

admittance is to use standard modal analysis tools to fit a modal
model of Eq. (4) to the measured data, and implement a discretized
version of Eq. (4). However, there are two related problems which
prevent us from doing so. First, standard modal analysis tech-
niques work only in such regions of the transfer function, where
the modal overlap is low (modes are well separated). Therefore,
accurate modal parameters could be obtained for the low frequency
region of instrument bridges only. In addition, in the case of sound
synthesis applications, the model order is significantly smaller com-
pared to the order of the system, which means that the assumptions
used to derive Eq. (4) are no longer true. For example, the poles
of the model do not necessarily correspond to the poles of thesys-
tem, and the “modal shapes” of the model should approximate the
gross behavior of all the system modes having modal frequencies
near to the corresponding pole frequency of the model.

3. THE PASSIVE ADMITTANCE MODEL

Here we propose using a modification of the modal model by in-
terchanging theΦT

r Φr rank 1 matrices with general (full rank)
symmetricYr matrices, giving more degrees of freedom in mod-
eling. This actually corresponds to allowing maximumK modal
shapes for each pole-pair of the model instead of a single mode.
As a result, the admittance is modeled as

Y(z) =
RX

r=1

YrHr(z) (5a)

Hr(z) =
1 − z−2

(1 − prz−1)(1 − p⋆
rz−1)

, (5b)

whereHr(z) are the bilinearly transformed discrete-time versions
of the second-order functions of Eq. (4). If a positive real function
H(s) is converted to a discrete-time functionH(z) by the bilinear
transform, it remains positive real [2, 13]. Therefore,Hr(z) are
PR. A sufficient condition for the admittance modelY(z) to be
PR is that all theYr matrices are positive semidefinite, because in
this case we have

Re{Y(z)} = Re{

RX
r=1

YrHr(z)} =

RX
r=1

YrRe{Hr(z)} ≥ 0,

(6)
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since the linear combination of positive semidefinite matricesYr

with nonnegative scalar weightsRe{Hr(z)} is also positive semi-
definite.

3.1. Parameter estimation

The parameters of the admittance model Eq. (5) are obtained from
a measured admittance matrixYm(z) as follows:

1. Pole positioning: The measured admittanceYm(z) con-
tainsK2 transfer functions (or, impulse responses, if the
data is available in the time domain), of whichK(K +
1)/2 are independent, due to symmetry. The task is to
find a common-denominator model that best describes all
theK(K + 1)/2 transfer functions, since the poles are the
same for each transfer function in the model of Eq. (5). This
can be done by various common-denominator algorithms
used in modal analysis. Here we are using a common-
denominator version of autoregressive modeling (or, equiv-
alently, linear prediction) in the time domain, that results in
an all-pole model. As a notation, let us defineY[n] as the
element-wise inversez transform ofY(z), which is actu-
ally the impulse response of the admittance matrix. Accord-
ingly, Ym[n] is the measured admittance impulse response.
Then, the regression error for theYij,m[n] element of the
matrixYm[n] can be written as

Eij =

NX
n=L

 
Yij,m[n] +

LX
l=1

amYij,m[n − l]

!2

, (7)

whereL is the order of the denominator, andN is the length
of the measured admittance impulse responseYij,m[n]. Note
that the denominator coefficientsam are the same for all the
ij elements in Eq. (7) and the task is to find this common
set ofam coefficients such that the total error

e =
KX

i=1

iX
j=1

Eij (8)

is minimal. This is a linear least-squares problem that is
solved by the normal equations in a closed form. Note that
the indexj in the second sum of Eq. (8) runs toi instead of
K because it is sufficient to compute the error for the lower
triangular partj ≤ i of Ym only, sinceYm is symmetric.

As already stated in the Introduction, our goal is to model
the admittance more precisely at low frequencies compared
to the high ones. This has to be reflected by resolution of
pole positioning, since the poles determine the frequency
resolution of the design, similarly to Kautz [14] and paral-
lel filters [15]. Therefore, the above common-denominator
model is estimated in the warped domain [16]. For that, all
the measured impulse responses are frequency warped with
parameterλ, and the common-denominator autoregressive
model is estimated based on this warped data. Then, the
roots of the denominator̃pr are found and “dewarped” by
the expression

pr =
p̃r + λ

1 + p̃r

(9)

The polespr are used for constructing the second-order
functionsHr(z) according to Eq. (5b).

2. Weight matrix estimation: The final step is to estimate the
weight matricesYr, which is a linear-in-parameter prob-
lem with the positive-semidefiniteness constraintsYr ≥ 0.
The time-domain error for one matrix element is

E′
ij =

NX
n=0

�
Y r

ijhr[n] − Yij,m[n]
�2

(10)

whereY r
ij is the ij element ofYr (thus, the superscript

r is not a power but an index), andhr[n] is the inversez
transform ofHr(z).
The optimal set of parametersYr are obtained by solving

minimize e′ =

KX
i=1

iX
j=1

E′
ij (11a)

subject to Yr ≥ 0. (11b)

We propose a relatively simple (although probably subop-
timal) solution to Eq. (11). First, we find theYr matrices
without the constraint of Eq. (11b). Since now the elements
of Yr become independent, the total error is minimal if all
E′

ij are minimal. Thus, the problem reduces to minimiz-
ing Eq. (10) for allE′

ij independently, which are separate
linear least-squares problems with a closed-form solution.
Then, the resultingYr matrices are “converted” to positive
semidefinite matrices. This last step involves finding the
nearest positive semidefinite matrix toYr, which is similar
to finding the nearest valid correlation matrix [17] without
the unit diagonal constraint. This is achieved by computing
the spectral decomposition ofYr, discarding the negative
eigenvalues and their eigenvectors, and reconstructing the
matrix from the remaining positive eigenvalues and corre-
sponding eigenvectors.
This basic procedure is slightly improved if the diagonal
elementsE′

ii in Eq. (10) are minimized with the nonega-
tivity constraintsY r

ii ≥ 0, which is a standard nonnegative
least squares problem. This improves the results because
the nonnegativity of the diagonal elements of a matrix is a
necessary condition for positive semidefiniteness.

3.2. Implementation

The admittance model of Eq. (5) corresponds to aK input K out-
put MIMO filter which can be straightforwardly implemented by
K2 independent transfer functions. However, by noting that the
transfer functions have common poles, a more efficient implemen-
tation structure is obtained. Inserting Eq. (5a) into Eq. (3) gives

v =

"
RX

r=1

YrHr(z)

#
f =

RX
r=1

Yr [Hr(z)f ] . (12)

For each mode of the model, theK input signals (forcesFk act-
ing on positions1, . . . , K) are filtered by the second-order filter
Hr(z), giving K intermediate signals. Then, the vector formed
from these signals is multiplied byYr, leading to the velocity
contributionvr = [vr

1 , . . . , vr
K ] of moder. This is done for all

the modes1, . . . , R, and the resultsv1, . . .vR are summed to give
the velocity vectorv. This is shown in Fig. 1 for a single moder,
implementing one termYr[Hr(z)f ] of the sum of Eq. (12).

The computational complexity of the “admittance filtering”
for a K by K admittance matrix withR modes is composed as
the following:
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Figure 1: Implementation of the admittance matrix: the block
scheme of one termYr[Hr(z)f ] of the sum of Eq. (12).

1. RK second-order filters(1−z−2)/[(1−prz
−1)(1−p⋆

rz−1)]
leading to2RK multiplications and3RK additions

2. R multiplications with matricesYr requiringRK2 multi-
plications andR(K − 1)K additions

3. summing the velocity contributions of theR modes mean-
ing (R − 1)K additions

Roughly, the required computational power isRK(K + 3) multi-
ply and accumulate instructions per sample.

4. CONVERSION TO A REFLECTANCE MATRIX

A passive admittance function gives the relation between force and
velocity for a mechanical system. It seems that it could therefore
be directly applied as a termination of a finite-difference string
model, where the force acting on the termination is computedby
the string, then this force is filtered by the admittance formas a
filter giving the velocity of the termination, which is used in the
string model for the next iteration. However, interconnecting pas-
sive elements in such a way often results in unstable systems, un-
less special measures are taken to ensure numerical energy conser-
vation [18].

This problem is automatically avoided in wave-based model-
ing [18], when the admittance is formulated as a function of wave
variables instead of the Kirchhoff variables. In this case,it will
be a reflectance filter producing a reflected wave to an incident
wave (see the footnote in Introduction). The following derivations
for converting the admittance formulation to a reflectance filter are
similar to that for the scalar admittance case [6].

4.1. Vector-waveguide termination

Digital waveguide modeling is the most efficient paradigm for mod-
eling the 1-D wave equation. It is based on spatial and temporal
discretization of the traveling wave solution for the wave equa-
tion [2]. In its basic form, the digital waveguide models thewave
propagation in one polarization. However, the idea can be ex-
tended to multivariable waveguides so that the elements in the
delay line are vectors instead of scalars [19]. For example,for
a dual-polarization guitar string model, each delay element con-
tains two variables, giving the string displacement perpendicular

and parallel to the guitar body. These multivariable waveguides
will be called vector-waveguides in the rest of the paper.

Here we derive a reflectance filter for the case where a multiple-
polarization single string (implemented by a vector-waveguide)
with a characteristic admittance matrixY0 is connected to a termi-
nation having an admittance matrixY(z). Note that for the case
of a linear stringY0 is diagonal, since there is no internal coupling
between the polarizations.

Similarly to the one-dimensional case [2], the reflected veloc-
ity wave vectorv− is obtained from the incident wave vectorv

+

as

v
− = Hv(z)v+ = (Y(z) + Y0)

−1(Y(z) − Y0)v
+ (13)

whereHv(z) is the reflectance matrix for velocity waves.
In theory, the parameters ofHv(z) could be computed by in-

serting Eq. (5) into Eq. (13) and rearranging the matrix elements
to a rational form, but this would be a very tedious and numeri-
cally badly conditioned task. In addition, the physically meaning-
ful modal-like filter structure of Eq. (5) would be lost.

Therefore, we suggest constructing the reflectance filter insuch
a way that preserves the parallel structure of the admittance for-
mulation. First, the admittance form is decomposed to the imme-
diate responseYi (which equals to the first sampleY[0] of the
admittance impulse response) and to the response which depends
only on past inputsz−1

Yp(z) (whereYp(z) is thez transform of
Y[n − 1] with n ≥ 1), giving

Y(z) = Yi + z−1
Yp(z). (14)

The decomposition can be done for the second-order filtersHr(z)
of Eq. (5) separately [20]:

Hr(z) =
1 − z−2

1 + ar,1z−1 + ar,2z−2
=

= 1 + z−1 br,1 + br,2z
−1

1 + ar,1z−1 + ar,2z−2
= 1 + z−1Hp,r(z) (15)

with br,1 = −ar,1 andbr,2 = −1 − ar,2 for r = 1, . . . , R. Thus,
the two parts of the admittance filter become

Yp(z) =
RX

r=1

YrHp,r(z) (16a)

Yi =

RX
r=1

Yr. (16b)

Note thatYp(z) has the same structure asY(z) of Eq. (5a), the
only difference is thatHr(z) are exchanged for the filtersHp,r(z)
having different numerator coefficients. Therefore, the filtering
computation is done in the same way as explained in Sec. 3.2.

Then, substituting Eq. (14) into Eq. (13) yields the formulafor
computing the reflected velocity vector:

v
− = (Yi + Y0)

−1
�
z−1

Yp(z)(v+ − v
−) + (Yi − Y0)v

+
�
.

(17)
This is illustrated in Fig. 2. The non-computable delay-free loop is
avoided because of the decomposition toYi andYp(z), leading
to thez−1 terms in Fig. 2. Note also that instead of the inversion
of a frequency-dependent matrix(Y(z)+Y0) as in Eq. (13) only
a matrix with constant elements(Yi + Y0) has to be inverted.
The model of Fig. 2 can be directly used to model the effects ofa
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0i YY −

1−z

1−

( ) 1−+ 0i YY

)(zpY

+v

−v

1−z

−v

Figure 2:The reflectance matrix filter.

multidimensional admittance by connecting the multivariable de-
lay lines of a vector-waveguide to its inputv+ and outputv−.
In addition to the delay lines, the vector-waveguide stringmodel
should also incorporate loop filters that model string losses and
dispersion, and fractional-delay filters for tuning [2].

4.2. Wave-digital filter formulation

Similar, but more tedious derivations can be performed for the case
when more multiple polarization strings (more vector-waveguides)
are connected to the same termination. However, that case ishan-
dled in a more flexible way by constructing a wave-digital filter
(WDF) [1, 2] admittance element and connecting it to the vector-
waveguide string models by parallel adaptors. For computability
reasons, the WDF waveport has to be made free of immediate re-
flection. This can be easily done since the WDF formulation is
independent of (waveguide) impedance(s) connected to it through
adaptors, therefore,Y0 can be chosen freely. The immediate re-
flection is avoided by settingY0 = Yi (see Fig. 2).

5. GUITAR BRIDGE ADMITTANCE MODELING

We have measured the two-dimensional admittance of an acoustic
guitar bridge (Gibson, from 1960’s) near the lowest (E) string.
The bridge was excited by the wire breaking technique [5] andthe
movement of the bridge was measured by a miniature accelerom-
eter. The basic idea of the method is that a wire is thread around
the string near the bridge and pulled by hand with an increasing
force. When the wire breaks, the static force disappears, corre-
sponding to a step excitation plus a constant DC force (the latter
has no effect if the system is linear). Since the wire-breaking tech-
nique gives the admittance step response if velocity is measured,
measuring the acceleration gives the admittance impulse response
directly.

The bridge was excited with the wire breaking in the direction
perpendicular (y direction) and parallel to the body (z direction).
The acceleration was also measured in these two directions.This
gave a 2 by 2 admittance impulse response matrix

Ym[n] =

�
Yyy,m[n] Yyz,m[n]
Yzy,m[n] Yzz,m[n]

�
(18)

where the “m” subscript indicates that these are measured values,
which are then approximated by the admittance model impulsere-
sponseY[n]. Note that in theoryYyz,m[n] = Yzy,m[n], but there
are always some differences due to measurement errors. How-
ever, for model fitting, a symmetricYm[n] matrix is assumed (see
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Figure 3: Modeling a measured guitar bridge admittance by the
proposed passive admittance model with 100 second-order filters
for the (a)yy, (b)yz, and (c)zz elements of the admittance matrix.
Dashed line: measured, solid line: modeled responses.

Sec. 3.1). This is most easily satisfied by using only one of the two
responses (e.g., the less noisy one).

The parameters of the admittance model were estimated in
the time-domain by the parameter estimation procedure outlined
in Sec. 3.1. The results of the parameter estimation for an ad-
mittance model having 100 second-order filters (R = 100) are
shown in Fig. 3. Naturally, the accuracy of the fit can be increased
by using higher filter orders, but for sound synthesis, even using
R = 100 second-order sections is an overkill, and it is only shown
to demonstrate the accuracy of the design. The transfer functions
of a more practical admittance model with 30 second-order fil-
ters are displayed in Fig. 4. We have found that filter orders in
this range provide a good compromise between sound quality and
computational efficiency.

Then, the admittance matrix formulation is converted to a 2D
reflectance filter as described in Sec. 4.1. A synthesized example
when a 2D vector-waveguide corresponding to the lowest string of
the guitar (f0 = 82 Hz) is connected to the 2D reflectance filter
with R = 30 is displayed in Fig. 5. The vector-waveguide includes
one-pole lowpass filters [2] to model the losses of the string. The
string model is excited by a triangle-shaped initial displacement in
thez direction, which approximates a pluck excitation parallelto
the guitar body. The output of the model is the bridge velocity in
they direction (perpendicular to the body). Figure 5 shows the am-
plitude envelopes of the first six partials. It can be seen that strong
beating and two-stage decay appears for those partials which are in
that frequency range where the elements of the admittance matrix
are large. For example, partial No. 3 withf3 = 246 Hz is around
the main peak of the guitar admittance (See Fig. 4).

6. CONCLUSION

This paper has presented a methodology for constructing inher-
ently passive admittance matrix models from measured admittances.
The admittance matrix is synthesized as a sum of positive semidef-
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Figure 4: Modeling a measured guitar bridge admittance by the
proposed passive admittance model with 30 second-order filters
for the (a)yy, (b)yz, and (c)zz elements of the admittance matrix.
Dashed line: measured, solid line: modeled responses.

inite matricesYr multiplied by scalar positive-real transfer func-
tions Hr(z). The Hr(z) transfer functions are implemented by
second-order IIR filters. The poles of the transfer functions are
estimated in the frequency-warped domain, giving more empha-
sis to the low frequency region of the measured admittance func-
tions. For parameter estimation, a relatively simple method was
presented that first obtains the elements ofYr separately by least
squares optimization and then adjustsYr matrices so that they be-
come positive semidefinite.

For wave-based modeling (such as digital waveguides or wave
digital filters), the admittance matrix model is converted to a re-
flectance matrix in such a way that the parallel filter structure is
retained, resulting in a numerically robust implementation. As
an example, the paper presented a 2D admittance matrix model
based on guitar bridge measurements, and showed the resultswhen
the obtained reflectance matrix model is connected to a digital-
waveguide based dual-polarization string model. Note thatthe
synthesis model remains stable even if the admittance matrix is es-
timated from less-than-optimal (e.g., noisy or distorted)measure-
ments, since the passivity of the admittance model is guaranteed
by the proposed method.

Future research may include the development of improved pa-
rameter estimation techniques for the admittance model, and the
extension of the current dual-polarization single-stringguitar model
to a version where all the six strings are coupled at the termination.
Moreover, it is believed that the methodology could be applied in
other fields besides sound synthesis. For example, the jointvibra-
tion of two connected structures could be robustly simulated by de-
scribing the objects with their reflectance matrices (obtained from
their admittance models) and connecting them with wave digital
filter adaptors.

Sound examples are available at
http://www.mit.bme.hu/∼bank/publist/dafx10adm.
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Figure 5: Partial envelopes of a synthesized guitar sound gener-
ated by a 2D vector-waveguide connected to the reflectance matrix
with R = 30 second-order sections.
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