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A Modal-Based Real-Time Piano Synthesizer

Balazs Bank, Stefano Zambon, and Federico Fontana, MentHeE

Abstract—This paper presents a real-time piano synthesizer (such as the coupling of strings) is automatically modeled.
where both the transverse and longitudinal motion of the stng  Moreover, the user (player or sound designer) controls a
is modeled by modal synthesis, resulting in a coherent and 8hly o atively small set of meaningful parameters similar tosth

parallel model structure. The paper applies recent develoments f | bi like h hard tri stuni t
in piano modeling and focuses on the issues related to practil ot real pianos, like hammer hardness, string mistuning, eic

implementation (e.g., numerical stability, aliasing, ancefficiency). ~ The first step of physics-based sound synthesis is to un-
A strong emphasis is given to modeling nonlinear string vi- derstand how the instrument works, that is, the equations de
brations, and a new variation of earlier synthesis techniqes is scribing the main parts of the instrument have to be develope
proposed which is particularly well suited for modal synthesis. and the interactions of the different parts have to be reeal

For soundboard modeling, the possibilities of using FFT-bsed H th i tati | lexity of
fast convolution and parallel second-order filters are disassed. owever, the resulung computational complexity or numer-

Additionally, the paper describes the details of the softwee ically solving an instrument model that incorporates a# th
implementation and discusses the computational complexitof details we know about a specific instrument is usually tod hig

each model block. The piano model runs on current computer for real-time implementation. Therefore, some simplifimas

hardware with full polyphony in real time. have to be made. This is usually done by neglecting some
Index Terms—physics-based sound synthesis, modal synthesisperceptually less relevant phenomena in such a way that this
piano. should not lead to significant audible differences compared
to the full model. Next, efficient signal processing algumits
. INTRODUCTION are developed for computing the solution of this simplified

HE piano is a particularly important instrument for soun@hysical model.

T synthesis applications because of many reasons. First, thd he first physics-based instrument model was presented as
piano has a large prominence in western music, while it @&y as 1971 by Hiller and Ruiz [1], [2]. Interestingly, the
large, heavy and expensive. Thus, there is a great demandfi@t Piano model has followed 16 years later, which was the
an electronic substitute for home or stage use. Secondybecdligital waveguide-based piano of Garnett [3]. In 1995, 8mit
the piano is a keyboard instrument, its control interface f#d Van Duyne [4], [5] proposed a piano model based on
relatively simple, unlike that of the guitar or the violinh@ commuted synthesis. As part of a collaboration between the
is, there is no physical obstacle on the control side to fulfi/niversity of Padova and Generalmusic S.p.A., Beeinal.
this demand. [6] presented the first complete real-time piano model in7199

Most of the current digital pianos are based on sampRank [7] introduced a similar physical model in 2000, with
p|ayback_ Because of the Simp|e interface (the p|ayer O¢B1tr3|lghtly different implementation, and its real-time vierswas
the key velocity only), a high level of realism can be achieveimplemented in 2002. A concise overview of these two models
The variation of the sound as a function of key velocity can #d some additional results have been presented in [8]€ln th
taken into account by linear filtering or by crossfading besw recent years, several improvements were proposed by Bensa
samples recorded at different dynamic levels. However, tR8d coworkers, concentrating on the modeling of coupled
dynamic interactions of the different parts of the piankeli Piano strings and on a parametric excitation model [9], ,[10]
the restrike of the same string or the coupling between thEl]l. Bank has examined the generation of longitudinal oroti
strings, cannot be faithfully reproduced. in piano strings and proposed various modeling methods

The remedy of the problems of sampling synthesis is the ude?l, [13]. Rauhala and their colleagues have concentrated
of physical modeling, where, instead of reproducing thexsiou©n improved parameter estimation techniques and efficient,
of the instrument, the entire sound production mechanismRgrametric implementations [14], [15]. We have started the
modeled. That is, a complete virtual instrument is runnirfiPlementation of our real-time modal-based piano synthe-
on the computer or dedicated hardware. Because of the v&iger in 2007 as a part of collaboration between Viscount

nature of physical modeling, the interaction of differeatts International and Verona University, and this forms thei¢op
of the present paper.

Manuscript received April 01, 2009; revised December 0RR2CCurrent Although physics-based piano synthesis has a more than two

version published April 14, 2010. This work was supportedHzgyjoint project Lo . . . .o
of Viscount International SpA and Verona University. Thesasate editor decades tradition in academic research, it has been applied

coordinating the review of this manuscript and approvingpit publication ~commercial products only very recently, due to its reldyive
was Prof. Julius Smith. high computational cost. A software piano, Pianoteq, was

B. Bank was with the Department of Computer Science, Veromadusity, . . . .. .
37134 Verona, Italy. He is now with the Department of Meamemt and Introduced by Modartt in 2006 [16], and the first digital pgan

Information Systems, Budapest University of Technologyl &conomics, employing physical modeling was presented by Roland in

1117 Budapest, Hungary (e-mail: bank@mit.ome.hu). 2009 [17]. It is expected that physical modeling will be the
S. Zambon and F. Fontana are with the Department of Compuaten&, d in diital pi

Verona University, 37134 Verona, ltaly (e-mails: stefaambon@univrit; CUrreént trend in digital pianos. _ _

federico.fontana@univr.it). In this paper we describe a complete piano synthesizer
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Fig. 1. ~ General structures; (a) schematic representatidheoinstrument main transverse polarizatigr(z, t). The stiff and lossy string
with the coordinate system for string modeling; (b) basiadeicstructure.

equation is
based on modal synthesis. Concerning each model block, the %y . &%y . ,0% _ dy
chosen approach is briefly compared to other possibilities, ' 52 _Toa;c2 ESk ozt 2R ot Fdy(z ), (D)

and its advantages are discussed. A strong emphasis is gigfich is the ideal wave equation extended by terms desgibin
to the connection of the different blocks and on practicghe stiffness and losses of the string [18]. The tension ef th
issues related to numerical stability, aliasing, and effiti string is denoted’},, and is the mass per unit length. The
implementation. For modeling longitudinal vibrations, @\n  gtitfness of the string is characterized BS«2, where E is
variation of previous approaches is proposed which is @artihe voung's moduluss is the cross-section area of the string,
ularly well suited for modal synthesis. Finally, the reiahé 5,4 is the radius of gyration. The internal losses of the string
software implementation is discussed, and the compultioq the losses due to the impedance effect of the soundboard
complexity of the different blocks is estimated. are approximated by the frictional resistange Note that in
real instruments, losses are frequency dependent. Thasteff
Il. MODEL STRUCTURE will be taken into account later in (3). External driving ées
Since the physical modeling approach simulates the soua@ included in the excitation force density(z, t), which has
production of the instrument, the blocks in the piano modeie dimension of force per unit length.
resemble the parts of a real piano, as displayed in Fig. 1. Theequation (1) can be numerically solved in many ways; see
first model block is the excitation, the hammer strike ergti [19] for an overview of the methods used in sound synthesis
the string. The string determines the fundamental frequengpplications. We summarize only three commonly used ap-
of the tone and its quasi-periodic output signal is filteregroaches. The first is finite difference modeling, which isdzh
through a post-processing block, covering the radiatifeces on approximating the derivatives of the wave equation (1) by
of the soundboard. Figure 1(b) shows that the hammer—strigiigferences, leading to a difference equation that can Biyea
interaction is bi-directional, since the hammer force delse solved numerically. Finite difference piano models ineud
on the string displacement. The string—soundboard cogisin [20], [21], [22]. Finite-difference modeling is especiaiivell
also bidirectional in real instruments, because the soo@dh suited for modeling complex structures (such as the piano
besides radiating the sound, provides a terminating impe®la soundboard), where a closed-form solution cannot be dkrive
to the string. However, since the impedance of the soundboar However, for simple linear systems, such as the one-
is around a thousand times larger than that of the string, thgnensional wave equation (1), the closed-form solution is
only significant effect of the string—soundboard couplis@i known, and the computational complexity can be greatly
change in the modal frequencies and decay times of the strifgduced if the continuous-time solution is discretizedead
Therefore, it is customary to use a simplified modeling whegg the wave equation itself. Digital waveguide modeling,
the “impedance effects” of the coupling, i.e., the variatio introduced by Smith [23], [24], discretizes the travelingve
the modal frequencies and decay times of the string, ar@tak|ution of the ideal wave equation. The losses and dispersi
into account by changing the parameters of the string blogi, real strings are lumped to one specific filter in the model.
and only the “radiation properties” are modeled in the ratia Thus, the full string model reduces to a delay line and a
block. relatively low order IIR filter in a feedback loop. Most of
Figure 1 displays only the main parts of the instrument anfle piano models intended for sound synthesis applications
the corresponding synthesis model—the blocks for modeligj, [6], [7], [10], [15] are based on the digital waveguide
secondary effects are omitted for clarity. The full pianod®lo technique due to its efficiency.

is displayed in Fig. 2. The functions of the various block8 wi  |n modal synthesis, the modal solution of the wave equation

be explained later in the corresponding sections. is discretized [25], [26]. Thus, the string is modeled by & se
of second-order resonators, each implementing the respons
I1l. M AIN STRING MODEL of one particular mode. The modal approach has been already

In reality, the string vibrates in two transverse and ongsed for the simulation of nonlinear vibrations in pianangts
longitudinal directions. First we consider the vibrationtiee [12], [13]. This paper presents a complete piano model that i



PUBLISHED IN IEEE TRANS. ON AUDIO, SPEECH, AND LANGUAGE PRGESSING, VOL. 18, NO. 4, PP. 809-821, MAY 2010 3

based on modal synthesis. where

The choice of the modeling method for the string has been a1, = 2R (4a)
made after carefully considering the advantages and dickgba ’ 9 ) 4
of digital waveguides and modal synthesis. The main differ- a0 — Ty (k_W) n ESk <k_7r> (4b)
ence of our piano model from the previous ones presented in ’ p\L H L
the literature is the ability to model nonlinear string \@hons. b _ 2 (4c)
Thus, the usual choice of digital waveguide modeling had to 0k Ly
be revised. It has been shown in [13] that precise modeling L Lk
is not possible with digital waveguides in their efficientrfg Fyr) = l OSiH ( > dy(z, t)dz. (4d)

because the modal shapes of the string model become non- _ o .
orthogonal due to the lumped dispersion filter. Either th® (3). Fy.x(t) is the excitation force of modé, and it is
dispersion filter has to be distributed, increasing the rhode@@mputed as the scalar product of the excitation force densi
complexity significantly, or, some less physical “tricksave and the modal shape (see (4d)).

to be used [13]. On the other hand, modeling the nonlinearOnce the partial differential equation (1) is decoupled to

vibrations in piano strings is very straightforward with dad @ Set of ordinary differential equations (3), it is possibde
synthesis, as will be shown in Sec. V. modify each of the parameters of (3). We take advantage of

While the computational complexity of our modal pi_thls fact by usingR;, instead ofR in (4a) in order to model

frequency dependent losses, since reyvcan be different for

ano model is probably higher compared to earlier, digital . . . .
waveguide based piano models that neglect nonlinear Stﬁtﬁ&rvanous modes having different modal frequencies.

vibrations, it is still efficient enough to consume only one h.e. solu.tlon of (3) forEM(t) ~ 5@ W.'th Z€ro _|n|t|all
third of the resources of a today’s PC, which we find onditions is an exponentially decaying sine function give

acceptable compromise. This efficiency can be achieved N

spite c_)f the relatively high numbgr of requ_ired arithmetic ysr(t) = Ake_#sin(%fkt) (5a)
operations because modal synthesis results in a fully learal b 1
. . . . 0,k
structure and simple code that is easier to optimize (see Sec A, = ot~ mLpf (5b)
VIII for details). An additional advantage of modal syntisas 5 k . Kk
greater flexibility, since all the parameters of the pasten be T, = — = N (5¢)
aik k

set independently. This leads to simpler parameter estmat

and the possibility of modifying the parameters in realdim 1 a2
fo = =—\laok— % ~ fokv'1+ Bk2, (5d)

21w
where Ay, is the initial amplitude;;; is the decay time, and
A. Continuous-time equations fx is the frequency of modg. In (5d), f, is the fundamental

frequency of the string an@ is the inharmonicity coefficient.
The modal solution of the string equation can be found i€y aré computed as

various acoustics textbooks. Nevertheless, summarizimgre

S : ) , 1T, 1 L ES [m\2

is still instructive and helps understanding the differpatts fo= o\ o = apc and B=k T (f) ,  (6)
of the model. The following derivation is a slightly modified 2 K 2 0

and more concise version of Chap. 2 in [13]. wherec; is the transverse propagation speed.

If the string is rigidly terminated at = 0 andx = L A practical choice for the loss tert;, is the second-order
with hinged boundary conditions, as displayed in Fig. 1 (afjynction
the string shapeg(x,t) can be expressed by the Fourier-like Ry = 1 = by + bs27 f, (7)
series Tk
which implements the same type of frequency dependent
o0 p— losses as the finite-difference model of [20], [21], or theals
y(@,t) =Y yr(t)sin <T) z €0, L] (2) one-pole loss filter in digital waveguide modeling (see the
k=1 Appendix of [7]). Example values for thig andb; coefficients
can be found in [21]. Note that (7) is just the simplest chpice
whereyy(t) is the instantaneous amplitude of mokle since R, = 1/7;, can be chosen arbitrarily for the various
The solution of (1) can be separated for the different modB¥des, €.g., based on the analysis of real tones.
if (2) is substituted into (1), then multiplied by the modagpe ~ AS (5) computes the impulse response of the system char-
sin(krz/L) and integrated over from 0 to L. The resulting acterized by (3), the response to the excitation fafge (¢)
second-order differential equation governing the befragfo IS obtained by the time domain convolution

modek is yr(t) = ys.(t) * Fy r(t). (8)

2y dyi Now we can summarize the computation of the string shape
Tz Tk T aokye = boxy (), (3 y(z,t) as a response to an external force:
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1) Computation of the force, x(¢) acting on modek,
which is the scalar product of the excitation-force den-

—1
sity d,, (z, t) and the modal shapgn(knz/L), as in (4d) Hiesi(2) = 7 4 ?f FRp—— (11a)
2) Computation of the instantaneous amplituggt) of A L 2k
modek by the convolution of the mode excitation force be = “EIm{pi} (11b)
F, 1 (t) and the mode impulse respongg;(t), as in (8) s
3) Computation of the string shape by summing the modal arr = —2Re{pi} (11c)
shapessin(krz/L) multiplied by their instantaneous azk = |pil? (11d)
amplitudesy (¢), as in (2). e = ej27r%e—ﬁ. (1le)

Besides the string shape, we are also interested in the force | . _ ,
acting at the termination, because that will form the inplut Ir%at is, each mode is implemented by a two-pole filter and a

0 . . : . . .
. . delay in series, as displayed in the top of Fig. 3 (the detaile
the s_ouqdboard n_wodelmg block. The brld.ge fofgdt) at the description of the figure is left for Sec. IV).
terminationz = 0 is computed as follows:

0o IV. HAMMER MODELING

0 Torm
Fy(t) = Toa_z - % Z k oy (t), ©) Generally, two distinct approaches are used for modeliag th
#=0 k=1 excitation of piano strings. One commonly employed apgnoac
L . . . s to model the excitation using a signal model [11], [15],
which is a weighted sum of instantaneous modal amp“tUd\%ere the perceptual parameters of the resulting tone flessd
Yk (?)- of the partials) can be directly controlled. Another common
approach is physical modeling [20], [21], [6], [7], [22]. We
follow the physics-based approach in our work because we
B. Discretization believe that a fully physical excitation model is necesdary
provide the required responsiveness to the player. In iaddit
We have seen that either we are interested in the striitg parameters, like hammer mass and hardness, are close to
deflection or the force at the bridge, the computation has ttiese of a real piano, leading to an intuitive control for the
same structure: first projecting the external force to thmiin user.
forces of the modes, then filtering with the impulse respsnse Accordingly, the piano hammer is modeled by a small mass
of the modes, and finally projecting back to the variable @onnected to a nonlinear spring that contacts the string at
interest (force or displacement). Since these projectionsot a mathematical pointy, [28]. The equations describing the
depend on the time variable, they are implemented in discrétteraction are as follows:

time without any modifications from the continuous-timeeas Kn(Ay)P ifAy >0
The only task left is to discretize the impulse response ef th ~ Fu(t) = F(Ay) = { 0 Ay < 0 ,(12a)
modes (5). P (t) -

The discretization with respect to time can be done by vari- F,(t) = —mh%, (12b)

ous methods. We have chosen the impulse invariant transform
[27], because in this case the discrete-time impulse resspothereri (t) is the interaction forcedy = yn (t) —ys(t) is the

of each mode will have a leading zero which results in @mpression of the hammer fefi, (¢) is the position of the
one-sample delay. Therefore, we will avoid the problem dfammer, ands(¢) is the position of the string at the excitation
delay free loops in excitation modeling that can arise ireothPointzy (i.e., ys(t) = y(zn, t)). The hammer mass is denoted
discretizations, such as the bilinear transform (see Séc. T, Kn is the hammer stiffness coefficient, add is the

for details). This useful initial zero in each modal impulsétiffness exponent. Example values for hammer parameders c
response occurs because we are modeling string displatenfnhfound in [21].

in response to a force excitation. With the impulse invarian These equations can be easily discretized with respect to
transform, the discrete-time impulse response is obtabyed time. Equation (12a) is a static nonlinearity so it is imple-

simply sampling the continuous-time impulse response, (58)ented as is. Equation (12b) can be converted to a discrete-
yielding time system by the impulse invariant transform. Thus, the

discrete-time version of (12) is the following:

1 _tn
ys.k[n] = ysk(tn) = TAke e sin(27 fity ), (10) Fu[n] = F(Ay) = F(yu[n] — ys[n]) (13a)
: 1 /1 1 \?
_ . _ yn(z) = —Fu(z)— (—7_1) 271, (13b)
wheret, = nTs, T, = 1/fs being the sampling interval. my \ fs1—2

Equation (10) differs from (5a) by a scaling factor bffs.  which is displayed in the bottom of Fig. 3. The extra delay
This scaling is required because the discrete-time unseukerm >~! is inserted in (13b) to avoid the delay-free loop that
has an area of/ f;, while the continuous-time Dirac impulsewould arise because there is a mutual dependence between
has unity area. Fy[n] and yy[n]. That is, for the calculation of one of these
Taking thez transform ofys i [n], after some algebra, givesvariables, the other should be known. Inserting the delay
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to (4d) leads to the following input weights of the resonstor
. [ knx
Wi = sin < - h) . (14)

Not so surprisingly, computing the string displacemgnt=
y(xn, t,) at the hammer positiom;, by (2) leads to the same
weights as forwiy j:

. kman
Wout,k = sin ( L} ) . (15)
The third set of weightsu;, ;, are used to compute the bridge
force Fi,[n] which is the input of the soundboard model. From
(9), these weights become:

kT
W,k = I 0. (16)

Figure 3 shows the hammer-string model in a form that
corresponds to the above derivations, but some simplificati
are possible to decrease computational complexity. Becalus
linearity, we may lump the effects of coefficients, ., wout k.
wy,, and by, of Fig. 3, so finally only two of them have to
be implemented. It is beneficial to lump the coefficients in
such a way thatu, ;, = 1 meaning that the bridge force is
computed as a simple summation. The hammer model runs
during the hammer—string contact only (first few ms), theref
the remaining two scalings have to be computed for a limited
amount of time. Additionally, the ! terms coming after the
by, coefficient in Fig. 3 can be also lumped, therefore, only one
delay element has to be implemented for each string model.
We note that piano hammers are not fully characterized by
comes from the assumption that the hammer position changies model of (12), as the felt has a hysteretic behavior [28],
a little during one time steg[n] =~ yu[n — 1], which [30], and the vibration of the hammer shank can also have
is generally true becausg,[n] is computed as the doublesome influence on the hammer force [31]. We neglect these

Fig. 3. The string and hammer models, and their intercororect

integration of Fy, [n). secondary phenomena in our hammer model.
It is a bigger problem in general that there is no delay
between the input (the string positign[n]) and output (the V. LONGITUDINAL STRING VIBRATIONS

hammer forceFi,[n]) of the hammer block. This means that |, the piano string at fortissimo levels, because of the

for computing the hammer force, the string displacemepi|atively large amplitude of transverse vibration, thesten
should be known, which, in return, depends on the hammery ot anymore constant, resulting in a nonlinear excitado
force. This again leads to a delay-free loop which is usualfyngitydinal modes. The perceptual effect is most impdrian
resolved by assuming[n] ~ ys[n —1], implemented by using 6 10w note range where it greatly contributes to the mietall
ys[n — 1] instead ofy,[n] in (13a). However, this can lead tocpnaracter of the tone (the interested reader may listeneto th
numerical instabilities at high impact velocities [8], bese examples at the companion page of [12]). The importance of
the string signal can have large jumps violating the assiompt i, e spectral components has been recognized long ago by
ys[n] = ys[n —1]. piano builders [32]. In addition to the longitudinal moded£
Nevertheless, in our special case, because of the right€hdjuencies, a second series of partials with lower inharnitynic
of discretization of the string model in Sec. IlI-B, the dela coefficient has also been found in piano tones [33], which
free loop does not arise because the string model containgas named “phantom partials” later [34]. It has turned out
delay element in the signal flow (see (11a) and Fig. 3). Nofgat phantom partials are also generated by the longitudina
that in the case of different discretizations leading to yle motion of the string, as a response to the tension variation
free loop, special measures are needed to maintain numerigsning from the transverse string motion [12]. In other v&rd
stability [29], [8]. longitudinal modal peaks and phantom partials are the free
The only parameters in Fig. 3 that have not been describaad the forced response of the same system, respectively.
so far are the input and output weights of the string model. Therefore, a single model can describe both phenomenahwhic
we assume that the hammer contacts the string at an infinitelijl be outlined in this section. The related theory has been
small area at positiony,, the excitation density for the stringdeveloped in [12] and in [35] independently.
becomesd,(z,t,) = 6(z — xn)Fin[n]. Computing the scalar A very efficient way of modeling the perceptual effect of
product of the Dirac function and the modal shape accordipfpantom partials has been presented in [36], but it has a
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loose connection to physical reality. In [12] and in Chap. which is the scalar product of the excitation-force density
of [13] various, more physically meaningful techniques everd(z,¢) and the longitudinal modal shape. If the transverse
presented. We propose a new variation of these physicstbagibration is expressed in the modal form of (2), from (18) and
techniques, which provides greater accuracy at a neghgilfPOb) it turns out that a longitudinal mode with mode number
increase in computational complexity. k is excited by such transverse mode pairandn only, for
which either the sumn + n or the differencém — n| of their

A. Continuous-time equations mode numbers equal t [12]. o

Th tion for the lonaitudinal tion takes th The two cases can be computed separately by defining
foll c wa:cve eqlu;lon or the fongitudinal motion takes %&k(t) as a sum of two components, i.&, , (t) = F¢ . (t) T+
ollowing form [13]: Fe 1(t)~. The component originating from the transverse
P (%)2 modes that satisfyn +n = k is

¢ ¢ ¢ 1 (17)

where R, is the frictional resistance of the longitudinal polar-
ization (frequency dependency will be introduced laterd)(
by using differentR¢ for the various modes). Equation (17) isThe component coming frofm — n| = k becomes

a linear wave equation with a nonlinear forcing term depegdi 5 oo

on the transverse slope. By comparing (17) with (1) it can b - _ _ T

noticed that the two equations are of the same form, and thgg’k(t) ZESSLQk; nlb ) gn(Dukin(t). (220)
differ only in their parametersI} is substituted by~'S, and _ ) o o

the dispersion term (fourth order spatial derivative) issiig. That is, the various terms of the longitudinal excitationcto

3 k—1
Fep(t)t = —BSgr5k Y n(k—n) yn(tlys-n(t). (223)

n=1

The external force density, (z,t) is replaced by are the products of the instantaneo_us amplitudes of.twcsj{ran
) verse modesy,,(t) andy,(t), meaning that the longitudinal
L @ (%) modes will be excited at the sum and difference frequencies
de(z,t) = §ES e (18) of transverse modes.

The force exciting the first longitudinal modE; ; (¢) is
which represents the excitation from the transverse prari gisplayed in Fig. 4 (a) by a solid line, computed by the
tion. discrete-time implementation of the modal model descrliied

1) Longitudinal motion:The forma_l similarity to (1) means (22) and (20). The simulation example isG4 piano string.
that the results of Sec. Ill can be directly used. By assumighte that the excitation force has an odd-like partial serie
infinitely rigid terminations, the longitudinal displacemt can gnd 3 lower inharmonicity compared to the spectrum of the

be written in its modal form transverse bridge force [12], which is displayed by dots to
>0 [ krx show the transverse modal frequencies as a reference. The
(x,t) =Y &(t)sin (T) : (19)  dashed line indicates the Fourier transform of the impulse
k=1

response of the first longitudinal modg, (t), amplifying the
Accordingly, the instantaneous amplitugg(t) of the longi- frequencies around 690 Hz. Figure 4 (b) shows the excitation

tudinal modek is obtained as force spectrum of the second longitudinal mode for the same
example. It can be seen that here the excitation spectrum
&e(t) = Fer(t)* E&n(t), (202)  contains even partials only and that the peak of the longiaid
Ferlt) = /L de(z, 1) sin <k7r_x) dx, (20b) _modg (dashed Ii|_1e) is located at a higher freq_uen_cy (1380 Hz
0 in this case). It is also true for all other longitudinal mede
1 -t that odd modes are excited by an odd-like spectrum and even
So.k(t) TLifer ok sin (2mfert),  (20€) ongitudinal modes by an even-like. However, the frequesici

whereF¢ ;(t) is the excitation force acting on the longitudin
mode k. The time-domain impulse response of longitudin
modek is denoted by 1 (¢).

For small frictional resistance, the longitudinal modad-fr
guenciesf, , and decay timesg ;, are

ithin the odd and even modes, because of the inharmonicity

f the transverse vibration [12].

The longitudinal motion is the sum of the motion of
different modes. This means that spectra similar to Figs. 4
(a) and (b) should be superimposed with only slightly sHifte

excitation frequencies and very different longitudinal dab
k [ES 1
" and T = R (21)

i}f the excitation components will be slightly different eve

fer=Fkfeo= == frequencies. The result is similar to formants on a quasi-
2L .
harmonic spectrum but here the peaks are somewhat smeared

where feo = fe1 is the fundamental frequency of theas they are made up of many close frequencies [12].
longitudinal vibration. In practice, the fundamental fueqcy 2) Bridge force: If the instantaneous amplitudes (t) of
of the longitudinal vibration in piano strings is around 16 tthe transverse modes are known, the longitudinal displaném
20 times higher than that of the transverse vibration [32]. can be directly computed by the use of (22), (20) and (19).

The first step in calculating the longitudinal motion is thélowever, we still need to compute the forég ¢(¢) acting
computation of the excitation forcéy ;(t) by Eq. (20b), on the bridge in the longitudinal direction, since that id te
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_ 10 7 @ remain [12], [13]. This means that the tension is spatially
g " uniform along the string, and the bridge force becomes
o 80 At i
E A4 : ‘ 2 oo
£ o RN I . Fog(t) =T(t) = To + ”4525 > nyi(t),  (26)
: ANEEERSE
405 05 1 15 5 "5 which is a simple squared sum of the instantaneous modal
amplitudesy, (¢t) of the transverse polarization. Note that
10 \ this corresponds to the case when the first and second time
@ ! ®) | derivatives in (17) are zero (inertial and viscosity effeate
o 80 | 1 negligible), thus, the dynamics of the longitudinal modks/p
E VI no role [12]. As a result, the longitudinal motion simply
S 60 : e 1 follows the transverse one due to the fact that tension along
< LR [ ijhﬂ | the string tries to reach an equilibrium state. We may cédl th
a0 i I o s B Y B "% 1 as a “static motion” of longitudinal modes.
0 0.5 Frequeﬁcy [kHz] 15 2 Equation (25) holds for most of the longitudinal modes.
Nevertheless, it does not hold for the lowéstmodes, which
Fig. 4. The force spectrum exciting the first () and the sdc@) are also excited around or above their resonant frequency. F

longitudinal modes K¢ 1 (t) and F¢ o(t)) of a simulatedG; piano string

(solid line). The transverse bridge force (dotted line)igpthyed to show the
transverse modal frequencies. The dashed lines show theefney response
of the first (a) and the second (b) longitudinal modes. Thézbotal dash-

dotted lines are the low frequency approximations of theresponding

frequency responses. The relative levels of the signalswdniéary.

these modes a correction is made by subtracting their static
response (which is already included in the tension computed
by Eq. (26)) and adding their real, frequency dependent
response:

K
J— T ~
Fog(t) =T(x,0) =T(t) + ES= Yk &(t), (27
the input of the soundboard model. The bridge fofeg: (¢) ¢ L~

equals the tension at the termination [12]:

where &, (t) is the “dynamic response” of mode i.e., that
portion of the motion which is in addition to the static
stretching. It is computed as

43 Jy

1 2
Ox + 2ES (8:c x_()) G
Equation (23) shows that the fordg, . (¢) depends not only
on the longitudinal motion but on the transverse vibratisn a
well. Due to the second-order nonlinearity, the component B ~
coming from the transverse motion has the same sum- andte that the termg; »(t) — &5, (t) = &.x(t) correspond to
difference frequency terms as the component arising fromnresonant second-order high-pass filter, since they are the
the longitudinal motion, but their amplitudes and phases alifference of a low-pass and a constant response.
different. Despite the quite complicated math we had to go through,
It can be seen in Fig. 4 (dashed lines) that the longitudinak end up with a relatively simple series of steps for comput-
modes have a constant gain under their resonance frequemay.the longitudinal bridge force as a function of transeers
Therefore, let's assume for the moment that all the longitaid motion:
modes are excited below their resonance. The transferieumct
of longitudinal modek is the Laplace transform of Eq. (20c):

C{esn(t)) = = !

=7, 2 1 2
Lﬂ52+7_5—k5+p£7+4ﬁ2 &k

Foe(t)=To+ ES

=0

Eu(t) = Feu(t) * (E,1(t) — E5(1)). (28)

1) Computation of the excitation forcg (¢) acting on
longitudinal modek as pairwise products of transverse
mode amplitudes,,(¢t) andy,,(¢) by (22)

Computation of the spatially uniform part of the tension
T(t) by the squared sum af,(t) by (26)

Computation of the dynamic responggét) for the first

K longitudinal modes according to (28)

Correcting the spatially uniform tensiofi(t) by the
weighted sum of the dynamic responsggt) of the
first K longitudinal modes by (27)

CORS

from which the low frequency responégk (t) of the resonator ~ 3)
can be approximated as a constant gain by assuming0

andl/Tg_,k < fﬁ,k: 4)

2

Esp(t) = — LMT%CS(U- (25)

This tension correction has to be done only for those longi-
The transfer function corresponding to Eq. (25) (which is @dinal modes, which are excited above and under resonance.
constant gain) is displayed for longitudinal mode 1 and 2 ifhat is, the resonance frequency of each longitudinal mode
Fig. 4. If Eqg. (25) holds for all the longitudinal modes, tlgt should be compared with the bandwidthigf ., which is the

all the longitudinal modes are excited significantly beltwit double of that of the transverse vibration due to the second-
resonance frequency, most of the transverse and long#&hldiarder nonlinearity. This leads t& taking on values between
terms cancel out in (23) and only the double frequency terriso 10 in practice.
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B. Discretization It is worth noting that both in (26) and in (22b) the trans-
. _ verse terms appearing are always of the fergm (¢), which is
1) The precise model:The above steps can be easily,g jysiantaneous amplitude of the transverse mode niedtipl
discretized with respect to time. Again, the only part trégas 1\, jis mode number. The same multiplication is needed in
consideration is the dynamics of the longitudinal mode= Thg, yherefore, no additional multiplications are neededeh
impulse responsg; (1) of modef is discretized exactly in £ computing (22b) the transverse mode outputs are simply
the same way as that of the transverse modes, resulting ig o4 hefore the bridge summation point and those outputs

a filter of the form (11). Then, the dynamic response of thgo" ainyise multiplied which has a mode number difference
longitudinal modesg (¢) is calculated by subtracting the static,¢ k, and the products are summed. From a computational

response of the modes, which is computed by multiplyieg  \je\ynoint, since the transverse modal amplitudes are dtore
with the DC gain of the Iongﬂudmgl resonators. __in a vector, this means correlating the vector and its shifte
However, because the excitation signal of longitudingkrsion. For (26) the squared sum of the same vector is
modes is obtained by multiplying the instantaneous angisu computed.
of transverse modes according to (22), aliasing should beygte that in the sound synthesis model of [12] the transverse
cqns_ldered. It turns o_ut that _becau_se modal synthesis ‘S_Uﬁ?ontribution (last term of (23)) was simply neglected, whic
aliasing can be easily avoided (in contrast to, e.g., finifys led to the appearance of some unwanted low-frequency
difference string models). We just have to take care not gymponents that should otherwise cancel out, as described
implement any of the products in (22) and (26) where thg sec. \-A2. This is avoided in the proposed model, since
sum frequency would go beyond the Nyquist linfiy2. This o\ the effect of the transverse vibration on the longitatin
way we also throw away some difference-frequency teMgigge force is also included. This is accomplished by the
from (22) that would not be aliased, but this is of no concertygitional computation of the string tension (26), and by
because these low-frequency terms would be attenuated iigring the longitudinal excitation force by the dynamic
the h|gh.-pa§s filters |mplementlng_the dynamic response ;S’ért of the longitudinal responsg ,(t) (resonant high-pass
the Iongl_tudmal modes_a_nyway. Slnce_ the transverse mocﬁﬁbr) instead of the full responsg (¢) (resonant low-pass
frequencies are known, it is easy to decide which terms shogliery As a result, the new model is more precise, while the

be discarded from (22) and (26). However, it is a reasonallgmpytational cost is increased only slightly by the addi
simplification to limit the computation of (22) and (26) foriension computation of (26).

such transverse modes whose frequencies are below the half
of the Nyquist rate, that is, to compute (22) and (26) up to
transverse modé/’ for which fy < f,/4. VI. STRING COUPLING

2) Efficient modeling:Since typically onlyK < 10 longi- Coupling effects in transverse string vibrations occumatt t
tudinal resonances are within the audible range, the fileridifferent levels: first of all, even a single string vibratasth
needed to compute the dynamic response of the longitudinalthe horizontal and vertical plane, and these vibratioms a
modes &, (t) is negligible compared to that of transverseoupled through the bridge. The situation gets even more
vibration, where hundreds of modes are computed. The cooemplex for the piano because for most of the keys three
putational complexity lies in (22), where hundreds of paev slightly mistuned strings are sounded together. This tesul
products of transverse amplitudgs(¢) has to be calculated. in beating and two-stage decay [37], where the first is a low-
As an example, fol = 10 longitudinal andN = 100 trans- frequency amplitude modulation of partial envelopes, dred t
verse partials, this leads to 1000 multiplications and tmit8, second means that the partial decay is faster in the earty par
so we may seek at some more efficient implementations. than in the latter.

As noted earlier, odd longitudinal modes are excited by anAt a second level, and with lower efficiency, coupling
odd-like spectrum, while even ones with an even-like, amd thetween strings occurs not only for the two or three differen
odd and even spectra are similar (the frequencies are oatyings belonging to the same key, but also between the
slightly shifted due to the inharmonicity). Example spactrstrings of various keys. This effect (sometimes referredgo
can be found in Chap. 6 of [13]. Therefore, similarly to theympathetic resonances) is most prominent when the dampers
synthesis models of [12], we compute a single excitationdorof the strings are raised by the sustain pedal, leading to the
for the odd longitudinal modes and another one for the evenupling of all the strings of the piano. In fact, the bridge—
ones. For example, all the longitudinal modes with odd mogeundboard system connects the strings together and aats as
number k are excited by the same force as computed folistributed driving-point impedance for string termiwss.
mode 3 ¢ 1 (t) = Fe3(t) for odd k), and all the longitudinal ~ Both of these two phenomena are modeled by the “Sec-
modes with even mode numbér are excited by the sameondary resonators” in Fig. 2.
force as mode 4K ,(t) = Fea(t) for evenk). Naturally,
other excitation force pairs (such &$(t) and F¢ »(t)) can
also be chosen. Additionally, only the; ,(t)~ part of (22)
is computed, since théy ,(t)™ part contains low frequency The simplest way to model beating and two-stage decay is
components that are out of the passband of the high-pass fitteuse two string models in parallel for a single note. Vagyin
implementing the dynamic response of the longitudinal modbg the type of coupling used, many different solutions have
Es(t). been presented in the literature [38], [39], [10].

A. Beating and two-stage decay
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A computationally more efficient, perception-based ap- VII. SOUNDBOARD MODELING
proach is to model the beating and two-stage decay for those ) , .
partials only where the phenomenon is audibly prominene On AS already mentioned in Sec. II, only the radiation effects
way of achieving this is to implement a few (5-10) resonatof§ the soundboard are implemented here, while the impedance
in parallel, driven by the excitation signal [7], [8]. Anath Eff€cts are taken into account in the string model. _
option is the beating equalizer [15], where the partial spe 1€ computationally most efficient way of implementing
is modulated by a peak EQ tuned to the frequency of thae effect of the soundboard filtering is commuted synthesis
partial. [4], [5], where the order of the model blocks (hammer—

In this work, we are modeling beating and two-stage dec&}fing—soundboard) is commuted: the impulse response of
by adding a set of secondary resonators to the string modBg soundboard excites the strings and the effect of the
driven by the hammer force. This is displayed in Fig. Jammer is taken into account as a filtering operation. Thus,
Depending on the parameterization of the resonators, tH8¢ soundboard response is implemented as a wavetable,
can be seen as additional string models, or, they can be u&gHlting in a low computational complexity. However, the
for a perception-based efficient modeling, where only a femethod assumes linearity and time_—invariance, theret;mm,e
additional resonators are implemented. We have chosenifportant effects, such as the restrike of the same stririgeor
implement them as additional string models with a full set ¢fonlinear vibration of strings, cannot be precisely modele
modes (albeit with less modes than the main string), becausé\nother efficient way of implementing the effect of the
the same structure will be used to model the sustain peg@undboard is to apply a reverberation-like algorithm. Ex-
effect (see Sec. VI-B). The resonators are implemented Bipples include the coupled digital waveguides in [3], and
second-order IR filters, exactly as described in Sec. |ll-eedback delay networks in [6], [7]. A difficulty of these
resulting in a coherent model structure. The only diffeeendeverberator-based approaches is that only the statislisa
from the resonators of the main string models that the striigoution and the overall damping of the body modes can be
displacement does not have to be computed, thus, coeffciesftt by the available parameter estimation techniques.
woutx IN Fig. 3 are missing, and only the bridge force is In filter-based techniques, the measured force—pressure
computed byw, ... Accordingly, the effect ofw, x, b, and transfer function of a real piano soundboard is used as a

wp . can be lumped to a single coefficient. target specification for filter design. The most straightfard
approach is the use of a finite impulse response (FIR) filter
B. Sympathetic resonances obtained by windowing of the measured impulse response. The

It is relatively straightforward to model sympathetic resdrawback is that Iong filters are required: for a good topalit
onances in digital waveguides with bi-directional couglin1000-2000 tap FIR filters are needed fat= 44.1 kHz, and
between the strings, when all the strings are connectedeto fAr reproducing the characteristic knock sound of the n&dd|
same termination [3], [6]. Implementing numerically stabi- and high notes, ten thousands of taps are needed. Therafore,
directional coupling is more complicated in modal synthesid'reCt FIR implementation is not advantageous. Elt_her dimul
therefore, we are applying a simplification where the coupli Faté approach can be used [8], [13], or the FIR filter should
of the strings is uni-directional. This leads to a “struefly P€ implemented as a fast convolution algorithm. The later h
stable” solution, meaning that the coupled model is stapf¢€n implemented in our real-time piano model and will be
for any choice of the coupling parameters. For this, severitlined in Sec. VII-A.
different variations have been presented in the literafggg  Another option is the use of a specially designed infinite
[15]. impulse response (lIR) filter, where a quasi-logarithmis- fr

Our choice is similar to [38], where the outputs of the maifiuency resolution can lead to large computational savings
string models are summed and feed to the secondary ressnagempared to traditional FIR and IIR filter designs. The most
of all string models, as shown in Fig. 2. This way, energy &mmonly used technique is frequency warping, where the
flowing from the main string models to the secondary ones, ' elements of traditional filters are replaced by first-order
but not vice-versa. The simplest way of implementing this ®llpass filters [41]. Kautz filters [42] can be seen as the
to sum the outputs of all String models, mu|t|p|y them with generalization of Warped FIR filters with more flexibility
constant coefficient, and then distribute this signal tosat- in determining the frequency resolution. Fixed-pole detal
ondary resonator banks. However, it is also possible torobntfilters [43] produce the same results as the Kautz filters but
the strength of coupling between the strings, resulting inl@ad to a simpler filter structure. Soundboard modeling with
more realistic behavior. This can be achieved by subdigidifarallel filters is summarized in Sec. VII-B.
the strings intoR different regions [40], where the cumulated The impulse response of the soundboards varies as a func-
string outputs ard&, = [Fi, 0, - - -, F}, ] and the inputs of the tion of bridge excitation point. This can be simulated byihgv
secondary resonator groups d¢ = [F,o,...,F, g]. The different soundboard filters for the different regions oé th
coupling is controlled by & x R gain matrixB: bridge. In addition, for each region, two filter outputs are

F _BF (29) needed for stereo effect. This complexity can be reduced by
P b implementing only one high-order soundboard filter (or &filt
In our implementation, we have chosen a subdivisioRia 8 pair for stereo output) and additional low-order shapintgd
keyboard regions, requiring an additional 64 multiplioag for the different regions of the bridge, to account for theaio
and additions. differences between them [7].
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A. Partitioned convolution by FFT

A very efficient way to implement the convolution requirec
by soundboard filtering is adopting a partitioned FFT-bast |,
convolution, like theoverlap-and-addOLA) method, which
is well documented in standard digital signal processing te —| Trarirar
books [44]. . 2

Both the input signal (i.e., the total force at the bridge
and the soundboard impulse response are partitioned ik$lo
which areN samples long. In a typical software implements
tion, N can be taken equal to the internal buffer size of tr
soundcard, thus avoiding any additional latency in the cor
putation. For each output buffer, we need to tak&Na point
FFT of the input buffer, then multiply the result with every
block of the transfer function and finally compute the resu
by taking a2 N point IFFT. If we denote with\/ the length of
the impulse response, the total cost per buffa®{sV log N) Since we are aiming at a logarithmic frequency resolution,
for the Fourier transforms and(NV + 1)[M/N] = O(M) the poles are set to a logarithmic scale
for the multiplication in the frequency domain. Therefditee

1
1+ a,Z'+a,z?

1

Optional
FIR part

Fig. 5. Structure of the parallel second-order filter.

cost per input sample ®(log N + M/N), which is typically T— 27 (31)
dominated by the complex multiplication whe¥ is small, gs o
as it is the case when low-latency processing is needed. pr = RU/meiv (32)

an example, with a typical soundboard length of 20000 ta L . .
and block sizeN=128, the multiplication in the frequencyWhereﬂk are the pole frequencies in radians determined by the

domain requires 633 floating point operations at each tirlogarithmic frequency serieg;, and the sampling frequency

sample. This computational complexity could be decrea"sedfF' The pole radii form an exponentially damped sequence

necessary by combining the FFT-based convolution withimulfPProximating constar@ resolution. The pole radius gt /2

rate filtering, such as [8], [13], at the expense of somewh5tS€t by the damping parametgy similarly as proposed for

more complicated model structure and parameter estimatiohautz filters in [47]_‘ N .

It is possible to avoid the trade-off between computational !t €an be seen in (30) and in Fig. 5 that since the poles
load and processing delay by using a non-uniform partitigni etérmine the coefficients of the denominatogs and a2,
scheme [45], [46]. With these algorithms, the principaliss (30) becomes linear in its free parametéfs;, di,2, andby,
finding an optimal scheduling of the different computationd/ich can be calculated in a closed form by standard least-
tasks in order to get a constant load suitable for real—tin?f;ares equations from the measured soundboard response

implementations. _
Figure 6 (a) shows the frequency response of a parallel

) . second-order design with 100 logarithmically spaced poles

B. Fixed-pole parallel second-order filters with R = 0.98, giving a filter order of 200. The order of
Another option is to model the soundboard as a set §fe FIR partM was set to zero, resulting in a canonical

second-order parallel filters [43]. Implementing IR fikein  structure containing second-order IR sections only. Time+

the form of parallel second-order sections has been used §@main response of Fig. 6 shows that the parallel filter can

ditionally because it has good quantization noise perfaga fo|low the long-ringing modes due to its logarithmic freqoy
and the possibility of code parallelization. The paramsetdr (esolution.

the second-order sections are usually determined fronetdire A penefit of using the parallel filter instead of the FFT-

form IIR filters by partial fraction expansion [27]. Here th&ased convolution is that this results in a coherent model
poles are set to a predetermined (e.g., logarithmic) freaye strycture, a “fully modal” piano, since the structure of the
scale, leaving the zeros as free parameters for optimizatio soyndboard model is essentially the same as that of theystrin
the case of modeling a desired impulse response, the pargiigdel, the only difference is that now each second-order filt
fiIter_ uses the.outp.uts of the segond—order s_ections_ (eXPRs a zero as well. Although the pole frequencies of the
nentially decaying sinusoidal functions) as basis fumstiof  soyndhoard filter differ from the actual modal frequenciés o
a linear-in-parameter model. In addition to the secon@®ordne measured soundboard (the poles of the filter are set to a
sections, it is bene_figial to include a parallel FIR path foz t logarithmic scale by (31) and (32)), we may consider each
modeling of non-minimumphase responses. Thus, the tansfgcond-order section as implementing one normal mode of
function becomes the soundboard vibration. This analogy leads to intergstin
-1 M arameter modifications. The resonance frequencies of the
H(z"1) =Y 7 +dk’0 Jr_?k’lz — + > bmz™ (30) IEsJecond—order filters (pole angles) can be char?ged to sienulat
k127 + ag 22 . ) ;
k=1 ' ’ m=0 a bigger or smaller instrument body, and the decay times of
where K is the number of second order sections. The filtéghe body modes can be influenced by varying the pole radii.
structure is depicted in Fig. 5 Changing the overall magnitude response can be accomglishe
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0 @ i.e., at theaudio rate (sampling ratef;). Polyphony man-

agement, hammer initialization and all the other operation
that depend directly on player interaction are performed at
MIDI rate = f,/N., where N, is the audio buffer size.
Finally, run-time modifications of the synthesis paraneter
are handled at @alibration rate which is the slowest one,

0 usually between 20 and 50 Hz. Calibration parameters are
Frequency [Hz] received from an external program running a graphical user

Magnitude [dB]
|
a1
o

-10

0.08 interface, or alternatively with MIDI control change megssa.
o 00 The processing of these parameters may be computationally
S oo expensive, but it is performed asynchronously at a low rate,
= so real-time performance is not affected.
£ 0.0 .. . . .
< In order to plan efficient optimizations on the structure, it

is important to estimate the computational cost of each,note
- 1000 1500 2000 Which can vary significant!y from the bass to _the treble range
Time [samples] The cost of each synthesis block is summarized in Table I in
. _ _ terms of the number of the primary resonatdfs secondary
Fig. 6. Frequency (a) and time-domain (b) responses of an2@ider parallel resonatorsN, Iongitudinal resonatorsV; and the number

second-order filter design with logarithmic pole positiani In (a) and (b), . L
the top curve is the filter response, while the bottom is thgeta(the time- Nexc Of transverse modes used for computing the excitation

500

and frequency-domain filter responses are shifted fortgjari force for the longitudinal vibration. Figure 7 shows tydica
values for the number of resonators in a practical calibrati
[ Synthesis block T MPOS for a single note | Overall cost] Of the mOd?L_The number of resonators is deri\{?d by imposing
Transversal vibration 2 x N (free string) 20% an upper limit on their frequency and an additional absolute
Hammer update 2 X N + 3 (+static nonlinearity) 5% limit on the number of resonators.
Secondary resonators 3 x No 30% Basically, we need to perform 3 MPOS (multiplications
Longitudinal vibration 3 X Nexe +3 X N} 25% . . . .
per output sample) per resonating filter if there is a nom-zer
TABLE | input signal, and only 2 for the free evolution of the filter.

COMPUTATIONAL COST OF STRING AND HAMMER MODELING . . " .
Moreover, if the hammer is exciting the string, we also need

to consider the cost for updating the string position at acint

point (V- MPOS), plus the cost of updating Eq. (13). Finally,
by scaling the feedforward coefficients , anddy, ; of Fig. 5, longitudinal excitation force computation requires thk#e0S
without an additional filter. These modifications can beiearr for every transverse partial involved, one for the spatiall
out even in run-time for special effects. Multiple outputsy(, Constant tension term of Eq. (26), and two for the products of
for stereo effects) can be efficiently achieved by using émees EQ. (22b) since the excitation force is computed for one odd
set of poles for the different channels, thus, only the outp@nd one even longitudinal mode. The estimated relativeativer
coefficients of Fig. 5 have to be implemented for the channégst when all the notes are sounding is indicated in the third
separately [43]. column of Table I. The computation assumes that the hammer

According to preliminary comparisons, the computationd$ active only for a limited amount of time, as in normal

complexity seems to be larger compared to the partition8HYing conditions. Note that the number of multiplicaon
convolution for the same sound quality. On the other harel, tHO not precisely represent the resulting computationadl loa
parallel filter requires significantly smaller amount of megy N modern processors, since that will highly depend on the
has zero latency and results in a simpler code, which may §#ciency of memory access (cache), pipeline stalls, code a
beneficial in some DSP implementations. Although it is nat ygata parallelization, etc. However, they can still give deal
part of the current real-time piano implementation, we ha@bout the relative computational load of the various pafts o

good experience with offline simulations. the model. .
One nice feature of the modal based approach is that paral-

lelization is very straightforward for most of the compotsen
In our particular implementation, we have taken advantage
We have implemented our model in the form of a reabf the parallel capabilities of current x86 PCs, but similar
time software, written in C++ using thRtAudioand RtMidi approaches are applicable to most of shared-memory garalle
classes from the Synthesis Tool Kit (STK) [48]. The desigarchitectures, which also include custom DSP boards. The
of the software architecture was driven by the requiremehtsparallel bank of filters of Figure 3 can be easily implemented
flexibility in the control and efficiency for real-time use. in a SIMD (single instruction multiple data) fashion. We dse
Flexible control is achieved by imposing a strong modwaritintel’'s SSE instructions [49], which can produce a speed-up
on the system. The different tasks are separated into thfaetor of almost four times with single precision floatingnto
categories, depending on the rate at which they are executiah.
at run-time. Obviously, the arithmetic-intensive operas Soundboard filtering is implemented by a fast convolution
required for the synthesis are performed for each audio Eamgngine with uniform partition size, using the efficient FFTW

VIIl. SOFTWARE IMPLEMENTATION
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14 T

oo, o N bank of resonators, driven by the excitation force of the
120- “o * EZ | main string model. Sympathetic resonances are synthesized
"o, e by redistributing some parts of the outputs of the main
o 100r B, string models to the secondary resonators. The bridge force
'%f arising due to nonlinearly excited longitudinal vibratsors
o8 i computed by first assuming spatially uniform tension, then
& goreremmememamrsen, %o i correcting this with the dynamics of longitudinal modes.
§ cwomoooasoo  x o The proposed method provides greater accuracy compared to
40 w0 e T 1 earlier techniques, while does not increase the computio
oo T T complexity significantly. For soundboard modeling, the FFT
20r o o 1 based partitioned convolution and a filter structure simita
i S ; that of the string model was considered. The computational
0 10 20 30 40 S0 60 70 80 90 cost of the string parts was estimated based on the number

of resonators, and the details of the software implememntati
Fig. 7. Number of resonators for each nadé.refers to primary resonators, were also given.

N2 to the secondary ones); to the longitudinal modes andVexe IS |n the current piano model, dampers are implemented by
the number of transversal partials used for longitudinatitaion force . v d . he d . f th =
computation. simply decreasing the decay times of the resonators. For

future work, a physics-based damper model would increase
2the realism of the note off sounds significantly and would
allow the simulation of part pedaling. The soundboard medel
ased on fast convolution and parallel second-order filters
hould be evaluated from a perceptual point of view. That
the computational complexity of the two methods that

library [50]. By looking at the general diagram of Figure
it is easy to notice that the soundboard radiation filter ¢
be run in parallel with the rest of the model. In our imple-
mentation, we exploit the multicore capabilities of cutrer?
processors by performing soundboard filtering in a separéﬁe . . o .
thread, which communicates with the main synthesis thre drequweq for rea(.:hlng. the same .SUb]eCt'Ve quall_ty S.hOU|d
through a ring buffer. The drawback is that some addition F determined by listening tests._ Finally, the comblnatntb.n
latency is introduced, which can be avoided in hardwal © .tWO approaches could possibly lead to an even higher
with finer synchronization capabilities of DSP boards. The'ctency. del. all th | phvsical model
computational load of soundboard filtering varies depemdin In our piano model, a t. € pqrts are real physical mocels
on the number of convolutions, the length of each filter arfgeCcept the soundboard, which is implemented as a digitat filt

the implementation used. In our case, running four 20000 t ;Prd parameterized from measured transfer functions. In the

convolutions requires around one fourth of the resourced u future, it might be possible_tc_) incprporate a phy_sicsdnh
by string and hammer modeling at full polyphony. soundboard model based on finite difference or finite element

Our software is able to run at full polyphony, with a tota[nOde”ng' Alternatively, th? so.undboard impglse response
number of 10000 second-order resonators and four 20000 ?gbjl_d. be computed at _cahbratlop rate by finite d|ﬁ§rence
convolutions, at an approximate load of 30% on a Intetse or fln_lte elemen_t modeling, _a_md_lmplemented as a filtering
2 Duo@2.4 GHz laptop. The computational cost can be furth@lgor't_hm’ aIIow!ng the modification Of. the ge_tometncal and
reduced by applying some sort of polyphony managemem.ate”al properties of the soundboard in run time.

By knowing the approximate cost of each note, we have
implemented a polyphony queue where the limit is imposed ACKNOWLEDGEMENTS
on the total computational cost and not on the number of theT

notes, It is possible to furth_er extend _this_ approach ?n mal@'aramvblgyi, the Associate Editor Prof. Julius Smith, #mel
ways, for example by selectively deactivating the partidla anonymous reviewers for their helpful comments.
single note when they are not audible anymore. The only limit

coming from the architecture of the model is that the secnonda

he authors would like to thank Dr. Laszl6 Sujbert, Zsolt
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