HOW TO TEST
GRAPHICAL USER
INTERFACES

Developing a tester that simulates the
user and can be used to automatically
test GUIs in the MATLAB environment.

Tamas Dabadczi,
Istvan Kollar,
Gyula Simon, and
Tamas Megyeri

ost of today’s application software
provides some kind of graphical
user interface (GUI). A GUI should
be easy to use by following logical
and intuitive steps to reach the desired result. It

\
makes it easy to visualize the progress of data L_ P k /o\ \

processing and to give the necessary background /
information. The actions (if appropriately con-

‘ -—
structed) can be accessed by simple mouse clicks on /’
graphical objects. GUIs may also provide textual in- p
formation where necessary and give the possibility of \ | s

entering arbitrary alphanumerical values into edit

0’ T
boxes. Graphical visualization is not a constraint but —
rather an added benefit [1], [2].

Motivation: Improving the
Reliability of Software with GUIs

Application software with a GUI is usually a much more complex pro-

gram than conventional alphanumerical control. The possibility of unde-
tected mistakes in the program increases with the many parallel program

branches. Error messages should provide pathways to correct the error. Reliability
of the program is essential. There is an increasing demand for testing of a GUI and for

testing the whole system governed by a GUI to ensure reliability. ©2001 ARTVILLE LLC. AND COMSTOCK ING

September 2003 IEEE Instrumentation & Measurement Magazine
1094-6969/03/$17.00©2003|EEE

Currently, embedded systems
such as mobile phones and auto-
matic teller machines or mea-
surement instruments such as a
digital oscilloscopes and car di-
agnostic analyzers have GUIs
that play a crucial role in the sys-
tem. The performance of such a
system depends strongly on the
software running on the dedicated hardware. The quality of
service requirements cannot be met without ensuring a certain
level of software reliability. In the world of virtual instru-
ments, the role of testing the software is even more important,
because the application software is embedded in a large oper-
ating system [3]-[5]. The environment in which the application
software runs is often not well documented (think of a PC as-
sembled from components available from various vendors) or
is released in certain cases with bugs and awkward features.
Moreover, exhaustive testing is not a practical solution, since it
is very difficult, if not impossible, to produce and test all the
possible configurations and situations.

Itis also necessary to ensure that error messages are under-
standable to the GUI user. The GUI must perform graceful re-
covery from errors. The user should not be frightened away
by technical messages or by catastrophic errors (e.g., freezing);
instead, a short hint should appear, with the information
about what to do.

Syntactic Versus Semantic Errors

There is a difference between syntactic and semantic errors.
The IEEE Standard Glossary of Software Engineering Terminology
[6] defines these terms as follows:

» Syntax: The structural or grammatical rules that define
how the symbols in a language are to be combined to
form words, phrases, expressions, and other allowable
constructs.

D Semantics: The relationships of symbols or groups of
symbols to their meanings in a given language.

A syntactic error is a violation of the structural or grammatical
rules defined for a language, e.g., “for i=1 to 10” in C language
instead of “for (i=1; i<10; i++),” or a begin without the corre-
sponding end in Pascal. A syntactic error shows up usually at
compilation time. The syntax can also be checked without
running the program.

A semantic error results from misunderstanding the rela-
tionship between symbols or groups of symbols and their
meaning in a given language, e.g., calculation of sin(x) instead
of cos(x). There are certain expressions that may produce an
error depending on the current conditions; e.g., dividing a
number with a variable (usually) produces an error if the vari-
able is zero. Similarly, calculating the square root of a negative
number produces an error message if complex numbers are
not interpreted. Some other examples from this group include
indexing an array out of range and allocating a large block of
memory beyond the available limit.

28 IEEE Instrumentation & Measurement Magazine

A graphical user interface
should be easy to use by
following logical and
intuitive steps to reach
the desired resulit.

Itis important to mention that
not all semantic errors generate
error messages. Thus, it is possi-
ble to run a program without get-
ting error messages and yet
obtain a wrong result. Automatic
testing, to our knowledge, aims
to catch errors that produce an
error message. Catching seman-
tic errors without an error message is based mostly on human
interaction. For example, a specialist can see if the computed
results are incorrect by looking at some informative plots like
the pole/zero pattern or the transfer function, but the com-
puter cannot recognize such errors.

“Natural intelligence” sometimes outperforms the com-
puter. Therefore, having a good engineer before the screen,
which provides easy-to-capture information for the user, can
be more effective for GUI testing than any kind of automatic
testing. A method that tirelessly allows “nonsubjective” trials
in the software, combined with a human observer, is very ef-
fective. Testing for all types of semantic errors is expensive
and time consuming for people. Exhaustive test, however,
cannot be implemented in practice as there are too many pos-
sible combinations.

Testing Approaches

Random Human Testing

Some software companies tests GUIs by letting some users play
with the software for a couple of weeks, with the goal of catch-
ing errors. Although this approach might be useful, it is rather
arbitrary, time consuming, and expensive and does not provide
reliable coverage of the frequently occurring cases. People are
different; some try features that are never touched by others.
The repeatability of the testing is also hard to ensure.

Predefined Test Sequences

Another usual approach is to write a program that contains
calls to the GUI to be tested. Theoretically this might also work;
in many cases, however, such an approach is as arbitrary as the
random human testing; moreover, writing such a program is
cumbersome, and it is difficult to achieve good coverage of the
cases. An advantage is that repeatability is straightforward, if
the test is always started from the same initial state.

Formal Description of the System

Considering the possibilities of testing, the systematic one is
based on a formal description of the software system, which
allows automatic generation of a test program. This works
well in theory, but in practice, it is rare to have a good formal
description of the system. Therefore, this is a theoretical op-
tion rather than a practical one.

Simulation of the User

Why not let the computer act as an ordinary user would,
providing mouse clicks, entering numeric or alphanu-

September 2003

meric inputs, activating user
controls, and so on? By simu-
lating the user, we test the
software for errors that pro-
duce error messages.

Exhaustive testing of the ap-
plication software by a person is
usually not possible because the
number of possible inputs from
the user is virtually unlimited.
Random testing can find many
bugs. Completely random test-
ing is not always a good approach because it does not describe
reality well (i.e., the random inputs may be far from the actual
usage of the system). Thus, we have found a heuristic ap-
proach with guided randomness appropriate.

The Proposed Approach
for Random Testing

Our goal was to develop a tester that simulates the user and
can be used to automatically test GUIs in the MATLAB envi-
ronment [7]. The tester is a software program that provides
graphical interaction with the GUI in a heuristic way. We in-
tended to find software failures that would cause an abrupt
termination of the application software. This abrupt termina-
tion could be due to an unexpected input from the user, for
which the application software is not prepared. (Users are
very talented in this. They will enter the most extraordinary
strings and numeric values into textual edit boxes. So the ap-
plication software needs to be tested for a very wide set of
possible inputs.)

Although the automatic tester software was originally de-
veloped for improving the reliability of the “Frequency Do-
main System Identification Toolbox (FDIdent)” of MATLAB
(Editor’s note: see the previous article), the principles are very

Let the computer act as an
ordinary user would.

By simulating the user, we
test the software for errors
that are producing error
messages.

general and can be applied to
other MATLAB GUISs or to other
environments [8]. The GUI of
the tester software can be seen
in Figure 1. The GUI of the
tester can be easily adapted to
any application software.

Testing Procedure
The testing procedure takes the
following steps:
» 1) bring the software envi-
ronment into a defined initial state
D 2) select a GUI object
D 3) store the selection before execution
D 4) activate the GUI object
D 5) if error then stop, else repeat from step 2.

Initial State

To be able to repeat the sequence of testing actions, the soft-
ware environment needs to be brought into some predefined
state before starting the testing. This may be a clean or a
well-defined workspace. MATLAB provides both possibili-
ties, which we used for the tester software. After an error has
been caught, the environment needs to be brought into the
same condition as before the beginning of the test. The action
history can then be repeated step by step, and the workspace
can be investigated after every step.

MATLAB Graphical User Interface

MATLAB has many graphical objects, like figures, lines, texts,
surfaces, user interface controls, and menus. All of the graphi-
cal objects are uniquely identified with handles. The graphical
objects have different properties, depending on their type. The
most important properties are as follows:

Constraints Windows to Be Tested

iBl

Load probakitiy table from:

Number of No. of uicontrol actions in Window Test selected windows ~ Probabilities
X Exctation Signal Design e
. antrol Acpons e - Probabity ofactve window [e p
in Pri mary WINAOWS resarres domsiapsts 50 Factor of probabilty change of uicontrols e
Veriancetverage 30 Prohabilty distirbution [redetneaweigts <]
Estimate Plant Model Ed User Level
Computer Aided Model Scan 0 | —
of FDTool
e T User Level [cvarcea =] /
Starts FDTool by e - ¥ Emuists mouss motion i < Mouse
Loading Session Zanll & —— Emulation
or Session History s [sssin =] trom
Fie B Variable:
K ietses m history_data
Actions Are | o [me
Saved to: s ara
‘l\. Ciworktestertester_cmds mat istory_data Browse
Location of !

Probability Table\'\A

Loads the Setting
of Previous Run — 9 Loutpreveus setias

Status Bar ——»

Ciworktesteriprivatelguiprobab.bd

Browse

#‘7_ Starts Testing

Fig. 1. GUI of the tester.

September 2003

IEEE Instrumentation & Measurement Magazine 29

D action performed if the
graphical object is acti-
vated (e.g., click on a push
button with left, right, or
double mouse click)

D visibility of the object

» whether it is active or dis-
abled (grayed out).

Selecting a Graphical Object to Be Tested
There are many graphical objects in a GUI, but not all of them
are active at any one time. Some of them might be inactive,
disabled, or invisible. There might be several windows con-
taining different graphical objects. In MATLAB, a window can
be made invisible instead of deleting it, which allows it to be
available quickly if it’s required again (e.g., a help window).

There are two possibilities to select a visible and active
graphical object. The first approach is to collect the active ob-
jects from all visible windows and to select one from this set.
The second approach is to select first a window and to collect
the active objects only on that one. We chose this later ap-
proach because it describes better how a user interacts with
the GUI. Moreover, this approach is faster.

We operate on a selected window called “window in fo-
cus.” We associated a certain increased weight to the window
in focus and unity weight to all other windows. The window
in focus can be changed on a random basis, making use of the
weights. This emphasizes that users usually activate controls
on the foreground window.

The tester explores the visible and active graphical
objects in the selected window. Selecting callback func-

The basic operation for an
action recorder is the
mechanism to capture
and replay each action
performed by the GUI.

tion through the action recorder
activates one of the objects.

We also provided the ability
to test only a selected window
(the window in focus). This is
useful if the testing is done after
some software modifications that
affected just one particular win-
dow and the others don’t need to
be tested again.

Activating the Graphical Objects

Through the Action Recorder

We chose to interact with the graphical user interface through
a so-called action recorder, which will be described later. We
feed actions into the recorder as if the user actions had been re-
corded and replay them (Figure 2).

Catching Errors

The tester stores the initial condition of the software and the
actions on the hard drive before executing them. This ensures
that the history of actions and the last action causing the error
or an abrupt termination is saved, even if the application soft-
ware freezes or becomes unstable.

If an error is caught, the testing procedure stops. The whole
testing can be replayed step by step, starting from the same ini-
tial state as the tester did. The workspace can be investigated af-
ter every step.

There is also the possibility to continue the testing after an
error has been caught (certainly not from the erroneous state).
We can bring the system to a predefined initial state, and we
restart the heuristic random test. If another error is caught, the
action history is automatically stored on the hard drive with a
different name. This possibility

4 FDIdent GUI Yersion 3.2

File Userlevel Recorder Window Help
ent)

1 Evaluate
’_\ or Compare [

’—“Plan: Models

Estimate
Plant
Model
(—

is advantageous at the first
couple of test runs of a GUI test
because it collects many errors
without the need of user inter-
action. It might be useful also
after a major change in the GUI

SeiType [nomel ¥ Pause

software.
File Window Help
Magritude of
¥ .
ponei i - . Guided Random
o
Order of numerator 7 10 er
Order of denominator 7] S 0 o %}‘ Sear Ch
Delay l—_'e" = Vaue;l 0 s ELA 8 + Recorder for FDTool: rarmdemo.mat (history_data)
i |nx=“—_| e 8 ool Fle Edt Commentbox indow Help DEFINING PROBABILITIES
rorot ~
I~ Impraved numerical stabilty I Complex Coeffs - Inclex [22 u u | K TO UICONTRO le
(slower Rerstion) 40 T e |
I Transient elimination order: [maxorc1 -50 = | U I MEN US
o [omeman _ To speed up the testing proce-
e ol o = Fore o o, he punero s denomineor s of e o))
— e ettt | dure, it is worthwhile to influ-
pause '3har i Window [Estimate Plart Model pairs will be necessary. So, let us start with a system 4/4. th lecti £ th
Abort Finish T i el | start Press PLAY to cortinue... ence e selecuon o €
v . . .
. graphical objects to be acti-

vated. Some functions are

I~ Continuous [~ Emulste mouse motion [Fast mouse ~| I Discardpause [~ Lecture Mode

| e | ——
w| < | eav | sior | 5| »» | [Recorder stoppedbefore command #226143 | pecomp |

known to be critical, whereas

others do not perform compli-

Fig. 2. Storing a mouse click with the action recorder.

30

IEEE Instrumentation & Measurement Magazine

cated computations or do not
contain many branches. It is

September 2003

worth investigating the critical
parts more thoroughly. That is
why we introduced weights to
graphical objects. The larger
the weight, the greater is the
probability that the tester acti-
vates it. Assigning zero weight
excludes the object from test-
ing. The weights are stored in a
lookup table, which can be ed-
ited with a standard text pro-
cessor. This requires a unique identification of all graphical
objects. MATLAB assigns a unique handle to each of them;
however, this happens at runtime. Fortunately, it is possible
to assign a tag (i.e., a string) to every object statically. We as-
sign a unique tag to every object and identify them based on
this. If the programmer of the graphical user interface did not
pay attention to that or the identification is not unique, then
the program assigns weights. Selecting the object based on a
uniform distribution is still possible.

One graphical object can be activated several times. An-
other heuristic, which we introduced, is to decrease dynami-
cally the weight of the activated object. The factor for
decreasing the weight can be adjusted. Assigning a zero factor
gives the possibility to test an object only once.

DEFINING SETS OF POSSIBLE INPUTS
TO EDIT BOXES

A complicated question is what numeric or textual input
needs to be entered into the edit boxes. As the behavior of the
application software depends on the data to be entered, an ex-
haustive test theoretically is not possible.

We define a set of possible inputs to edit boxes. These sets
can be assigned either to one particular object or to a group of
objects. The sets can be conveniently edited with text proces-
sors and can be either additions to completely random inputs
or exclusive sets.

Defining the sets of possible inputs is a hard task. This is
the point where an expert on the application software needs to

Our goal was to develop a
tester that simulates the
user and can be used to

automatically test GUIs in

the MATLAB environment.

cooperate with somebody who
has never used the software be-
fore. An expert is bound to pro-
pose for the possible input set
data that might be valid or in
the range of the required input.
It is obvious that such data
should be used for the test.
there
greater chance that the soft-

However, is a much

ware to be tested is not pre-
pared for an unusual input; e.g., a negative number for
distance, a string for numeric input, or funny characters in
filenames, etc. These inputs also need to be introduced into
the possible set. A colleague who does not know much about
the software might be much more useful for proposing unex-
pected values. (A child can be also of great help to extend the
set of possible inputs.)

CAPTURING/REPLAYING ACTIONS:
THE ACTION RECORDER
Let us summarize again the features we would like for the tester:
» use the GUI like a user
D if an error occurs, store enough state to be able to repro-
duce the error.
Both requirements tell us that we want to act as the user would.
We need to produce and collect computer-simulated user ac-
tions and replay them when necessary. That is, we need some-
thing that records and replays actions. What is more intuitive
for a person than to have an action recorder, similar to tape re-
corders, dealing with actions instead of voice and sound? We
developed such an action recorder. The action recorder is not
only a handy tool for testing, but its capabilities go much fur-
ther. Before going into details, we need to consider the system
requirements for the action recorder. We need to be able to:
» bring the GUI into a well-defined initial state
» act on any controls (pushbuttons, edit boxes, menus,
etc.) as the user does; that is, we need to be able to emu-
late all user actions

) Recorder for FDTool: autodemo.mat (history_data) = |EI|5|
File Edit Commentbox Window Help
Incles |3
window [Feflert GLI
Cmél | Read Time Domain Data
Param I
SelType Ia't [~ Pause
W Cortinuous I- Emulate mouse mation IFaat moLse I [~ Discard pause [Lecture Mode
—
| | - | . | | | ‘ Command #3 of 11. | S— |

Fig. 3. Display of an action recorder.

September 2003

IEEE Instrumentation & Measurement Magazine 31

D record a sequence user ac-

tions

D replay the sequence.

For testing, it is enough to be able
to record programmed actions
only, but if properly programmed,
the action recorder can record both
programmed test actions and hu-
man actions. This allows additional
testing. The most typical user actions (typical according to the de-
signers) can be recorded and stored for later replay; this allows a
quick test of the most common actions when using that GUIL Such
a possibility can also be used to store demonstration sequences,
which can provide an introduction to the GUI, and at the same
time can be used as test sequences, assuring that all introductory
steps work indeed. The examination of the results of such se-
quences by the human tester enables an approximate check of the
semantics (proper calculations) of the software behind the GUL

The basic operation for an action recorder is the mecha-
nism to capture and replay each action performed by the GUI
There are two possibilities. One is when the operational sys-
tem or the application program under which the GUI is real-
ized can return the information of each action. In many cases,
however, this functionality is not provided. In such cases, we
are referred to the second one: the routines, called after each
user action (callbacks), contain a program sequence that stores
the corresponding action when executed.

Replaying previously recorded actions can also be done in
two ways. If the operational system or the application pro-
gram offers the possibility to program the mouse to move
above an object and perform the push or writing, the user ac-
tion can be precisely emulated. If this is not the case, the
callbacks need to be activated.

The MATLAB environment we used in this project allowed
the callback-based operation only, so we implemented the re-

Automatic testing, to our
knowledge, aims to catch
errors that produce an
error message.

corder in this way. The function-
ality of each control is imple-
mented also as a callable function;
therefore, the recorder actions can
also be programmed, allowing
the implementation of the ran-
dom tester (see below).

Functionalities of a Recorder

Figure 3 illustrates the graphical interface of the recorder.
Meanings of the controls of the recorder are as follows:

» The buttons « (PLAY STOP) » provide the usual event
recorder functionalities using a traditional tape-recorder
front-end: fast backward (home), one step backward,
play, stop, one step forward, fast forward (end).

The textbox on the right-bottom side is a message display;,
providing information about the state of the recorder.
RECORD is the start button for recording; this starts the
recording and steps forward after each recorded action.
The tickbox “Continuous” selects between nonstop or
step-by-step record and replay.

The tickbox “Emulate mouse motion” makes the re-
corder move the mouse cursor above the active control
during replay.

The tickbox “Pause” allows one to set a breakpoint: con-
tinuous replay can be stopped if this tickbox is on for an
action (this can be edited manually, after recording).
The tickbox “Discard Pause” allows continuous execu-
tion even if the Pause tickbox is set for certain actions, to
allow continuous execution of a demonstration that usu-
ally contains pauses.

The tickbox “Lecture mode” allows special stopping:
when the recorder stops, the active GUI window, not the

Edit

Index lg—

| ui_import_varlist_lo

File Commentbox Window Help

-

) Recorder for FDTool: autodemo.mat (history_data))

OK

=101 x|

- |

—

|

| guiimpy I

| tettool_impartfig

| import_varlist_l

Wincovw | Import variable window

Cnel | Select a variable

Param | robotarm_rawvdata

SelType I normal [~ Pause

¥ Cortinuous [~ Emulate mouse motion IFag{ mouse vI [~ Discard pause [Lecture Mode

—

||] o]]

Command #8 of 11.

‘ RECORD |

Fig. 4. Action recorder in development mode.

32

IEEE Instrumentation & Measurement Magazine

September 2003

recorder display, will appear in the foreground to allow
explanations during a lecture.

» The large text box on the right-center side is for longer ex-

planations for a user who is observing demonstrations.
There are additional controls in the recorder display; these are
usually filled in by the action-recording step, but they can also
be programmed. They are as follows:

» “Index”—serial number of the current action

» “Window”—name of the window where the action takes

place

» “Cmd”—name of the control to be activated

» “Param”—value of the action if necessary (tick/untick

in tickboxes, string in edit boxes, etc.)

» “SelType”’—selection type of the user action (e.g., single

or double mouse-click).
The recorder also contains menu items; these allow easy modi-
fication of action records: save to a file, load from a file,
clear/cut/paste action, and insert a MATLAB command (a
special possibility, e.g., to quickly set environment variables
by calling a MATLAB command).

The recorder also has built-in error handling and checking
capabilities. This feature allows the playback of actions that
normally would cause warnings or errors during execution;
thus, the error handling of the program under test can be com-
pared with the expected behavior. This is more than originally
expected; thus, we can test proper error handling. Many users
just stop experimenting with the program when an error they
cannot understand occurs. This situation is what a software
developer tries to avoid.

Effective use of the recorder for tests can be helped by
additional features not available in demonstration mode.
The controls not present in Figure 3 but visible in Figure 4
are available only in development mode for the advanced
users or programmers.

The recorder can be used with any MATLAB-based GUT; see [9].

Conclusions

An approach for testing GUIs has been proposed. We devel-
oped a software tool that tests GUIs by simulating the user
through an action recorder. We proposed a heuristic test proce-
dure: providing random input to GUI, but guiding the random-
ness with predefined weights assigned to the user controls. The
weights change during the testing process, as the controls are
activated. The errors are collected for later investigation.

Acknowledgments

This work was supported by the Hungarian Scientific Re-
search Fund (OTKA F034900) and the Research and Develop-
ment Fund for Higher Education (FKFP 0098/2001 and FKFP
0074/2001).

References

[1] IEEE Instrum. Meas. Mag. (Special Section on Virtual Systems), vol.
2, pp. 13-37, Sept. 1999.

September 2003

[2] User Interface Guidelines. Available: http:/ /www.dcc.unicamp.

br/~hans/mc750/ guidelines /newfrontmatter.html

[3] G Programming Reference Manual. National Instruments Corpora-
tion, Austin, TX, 1988, part no. 321296B-01. Available:
http:/ /www.ni.com/pdf/manuals/321296b.pdf

[4] E. Baroth, C. Hartsough, and G. Wells, “A review of HP VEE 4.0,”
Evaluation Eng., pp. 57-62, Oct. 1997.

[5] IVI Foundation Home Page. Available:

http:/ /www.ivifoundation.org/

[6] IEEE Standard Glossary of Software Engineering Terminology, IEEE
Standard 610.12, 1990.

[7] MATLAB home page. Available: http://www.mathworks.com/

[8] Frequency Domain System Identification Toolbox for MATLAB
home page. Available: http:/ /elecwww.vub.ac.be/fdident/

[9] Action Recorder for MATLAB home page. Available:

http://www.mit.bme.hu/services/recorder/

Tamds Dabdczi received the M.Sc. and Ph.D. degrees in elec-
trical engineering from the Budapest University of Technol-
ogy, Hungary, in 1990 and 1994, respectively. Currently, he is
an associate professor in the Department of Measurement and
Instrument Engineering, Budapest University of Technology
and Economics. His research area includes embedded systems
and digital signal processing, particularly inverse filtering.

Istvdn Kolldr received the M.S. degree in electrical engineer-
ing in 1977, the Ph.D. degree in 1985, and the D.Sc. degree in
1998, respectively. From 1989 to 1990, he was a visiting scien-
tist at the Vrije Universiteit Brussel, Belgium. From 1993 to
1995, he was a Fulbright scholar and visiting associate profes-
sor in the Department of Electrical Engineering, Stanford Uni-
versity, California. Currently, he is a professor of electrical
engineering at the Budapest University of Technology and
Economics, Hungary. His main interest is signal processing,
with emphasis on system identification, signal quantization,
and roundoff noise. He is a member of the IEEE Instrumenta-
tion and Measurement Society AdCom and EUPAS (European
Project for ADC-based devices Standardisation).

Gyula Simon received the M.Sc. and Ph.D. degrees in electri-
cal engineering from the Budapest University of Technology,
Budapest, Hungary, in 1991 and 1998, respectively. Since
1991, he has been with the Department of Measurement and
Information Systems, Budapest University of Technology and
Economics, Budapest. His research interest includes digital
signal processing, embedded systems, adaptive systems, and
system identification.

Tamds Megyeri is a gradate student at the Budapest Uni-
versity of Technology and Economics, Faculty of Electrical
Engineering and Informatics. He began his studies in 1996.
His specializations are embedded systems and digital sig-
nal processing.

IEEE Instrumentation & Measurement Magazine 33

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

