Digital signal processors

Lecturer: Krébesz, Tamás

General computing applications

- Data manipulation
 - Word processing
 - Database
 management
 - Data movement(A->B)
 - Value testing
 - Execution time is not critical, not predictable

- Math calculations
 - Digital signal processing
 - Motion control
 - Simulations
 - Real-time signal proc.
 - Addition (C=A+B)
 - Multiplication (C=A*B)
 - Time to execute is critical and predictable

Processing units

• uC

- Best in I/O capabilities and control
- Speed less important
- Haeward architecture
- RISC operations

• uP

- Neumann architecture
- General applications
- CISC (RISC) operations

• DSP

- Optimized for fast repetitive math for real-time processing
- RISC/VLIW

DSP operations

- Application areas
 - Telecommunications
 - Measurement data acquisition and processing
 - Control engineering
 - Medical circuits
 - Audio processing
 - Data compression, coding (MP3)
 - Graphical processing

- Common DSP operations
 - Digital filtering, convolution
 - Decimation, interpolation
 - Adaptive filters
 - Transformation (DFT, FFT, DCT,...)
 - Signal generation
 - Modulation/demodulation

Independent addressing arithmetic in DSP

Digital filtering (IIR, FIR, Multirate)

- FIR (Finite impulse response)
 - Uses the most fundamental DSP operation: sum of products->MAC multiply and accumulate
 - Precisely reproductable
 - Linear phase
 - Always stable
 - Steep cut-off

$$y(n) = h(n) * x(n) = \sum_{k=0}^{N-1} h(k) x(n-k)$$

***** = Symbol for Convolution

Requires N multiply-accumulates for each output

– Requirements

- Fast arithmetic fast MAC
 - Basic requirement
 - Requires high bandwidth
- Extended precision
 - 16-bit word * 16-bit word = 32-bit word
 - ADSPP21xx DSP
 - » 16-bit fix point core architecture (other may have floating point)
 - » 40-bit accumulator ->high degree of overflow protection
- Harvard architecture
 - Dual operand fetch -> convolution, MAC

– MAC instruction

- MR=MR+MX0*MY0
 - MR: accumulator register
 - MX0, MY0: operand registers
- HW supported loop
 - DO convolution UNTIL CE
- HW suppoerted circular buffer -> memory part
 - Buffer content circulated (filter coefficients)
 - When last buffer location reached memory pointer reset to the buffer beginning

- FIR filter algorithm
- 1. Obtain sample from ADC (typically interrupt driven)
- 2. Move sample into input signal's circular buffer
- 3. Update the pointer for the input signal's circular buffer
- 4. Zero the accumulator
- 5. Implement filter (control the loop through each of the coefficients)
 - 6. Fetch the coefficient from the coefficient's circular buffer
 - 7. Update the pointer for the coefficient's circular buffer
 - 8. Fetch the sample from the input signal's circular buffer
 - 9. Update the pointer for the input signal's circular buffer
 - 10. Multiply the coefficient by the sample
 - 11. Add the product to the accumulator
- 12. Move the filtered sample to the DAC

- Fast Fourier Transform (FFT)
 - FFT is an algorithm for efficiently calculating Discrete Fourier Transform (DFT)

Frequency Domain
$$\leftarrow \leftarrow$$
 DFT $\leftarrow \leftarrow$ Time Domain
 $X(k) = \frac{1}{N} \sum_{\substack{n=0 \\ n=0}}^{N-1} x(n) e^{\frac{-j2\pi nk}{N}} = \frac{1}{N} \sum_{\substack{n=0 \\ n=0}}^{N-1} x(n) \left[\cos \frac{2\pi nk}{N} - j \sin \frac{2\pi nk}{N} \right]$
 $\left[\sum_{\substack{n=0 \\ W_N = e^{\frac{-j2\pi}{N}}} e^{\frac{-j2\pi}{N}} \right] = \frac{1}{N} \sum_{\substack{n=0 \\ n=0}}^{N-1} x(n) W_N^{nk}, \quad 0 \le k \le N-1$

Time Domain $\leftarrow \leftarrow$ INVERSE DFT $\leftarrow \leftarrow$ Frequency Domain

$$x(n) = \sum_{k=0}^{N-1} X(k) e^{\frac{j2\pi nk}{N}} = \sum_{k=0}^{N-1} X(k) \left[\cos \frac{2\pi nk}{N} + j \sin \frac{2\pi nk}{N} \right]$$
$$= \sum_{k=0}^{N-1} X(k) W_N^{-nk} , 0 \le n \le N-1$$

- Example: 8-point DFT (Number of taps=8)

$$X(k) = \frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{\frac{-j2\pi nk}{N}} = \frac{1}{N} \sum_{n=0}^{N-1} x(n) W_N^{nk} \qquad W_N = e^{\frac{-j2\pi}{N}}$$

X(0) =	x(0)W ₈ ⁰	+ x(1)W ₈ ⁰ + x(2)W ₈ ⁰ + x(3)W ₈ ⁰ + x(4)W ₈ ⁰ + x(5)W ₈ ⁰ + x(6)W ₈ ⁰ + x(7)W ₈ ⁰						
X(1) =	x(0)W ₈ ⁰	$+ x(1)W_8^1 + x(2)W_8^2 + x(3)W_8^3 + x(4)W_8^4 + x(5)W_8^5 + x(6)W_8^6 + x(7)W_8^7$						
X(2) =	x(0)W ₈ ⁰	$+ x(1)W_8^2 + x(2)W_8^4 + x(3)W_8^6 + x(4)W_8^8 + x(5)W_8^{10} + x(6)W_8^{12} + x(7)W_8^{14}$						
X(3) =	x(0)W ₈ ⁰	$+ x(1)W_8^3 + x(2)W_8^6 + x(3)W_8^9 + x(4)W_8^{12} + x(5)W_8^{15} + x(6)W_8^{18} + x(7)W_8^{21}$						
X(4) =	x(0)W ₈ ⁰	+ x(1)W ₈ ⁴ + x(2)W ₈ ⁸ + x(3)W ₈ ¹² + x(4)W ₈ ¹⁶ + x(5)W ₈ ²⁰ + x(6)W ₈ ²⁴ + x(7)W ₈ ²⁸						
X(5) =	x(0)W ₈ ⁰	+ x(1)W ₈ ⁵ + x(2)W ₈ ¹⁰ + x(3)W ₈ ¹⁵ + x(4)W ₈ ²⁰ + x(5)W ₈ ²⁵ + x(6)W ₈ ³⁰ + x(7)W ₈ ³⁵						
X(6) =	x(0)W ₈ ⁰	$+ x(1)W_8^6 + x(2)W_8^{12} + x(3)W_8^{18} + x(4)W_8^{24} + x(5)W_8^{30} + x(6)W_8^{36} + x(7)W_8^{42}$						
X(7) =	x(0)W ₈ ⁰	+ $x(1)W_8^7$ + $x(2)W_8^{14}$ + $x(3)W_8^{21}$ + $x(4)W_8^{28}$ + $x(5)W_8^{35}$ + $x(6)W_8^{42}$ + $x(7)W_8^{49}$						
N ² Complex Multiplications								

V² Complex Multiplications

 $\frac{1}{N}$ Scaling Factor Omitted

- Exploiting symmetry and periodicity

Symmetry:
$$W_N^{r+N/2} = -W_N^r$$
, Periodicity: $W_N^{r+N} = W_N^r$
 $W_8^4 = W_8^{0+4} = -W_8^0 = -1$
 $W_8^5 = W_8^{1+4} = -W_8^1$
 $W_8^6 = W_8^{2+4} = -W_8^2$
 $W_8^7 = W_8^{3+4} = -W_8^3$
 $W_8^8 = W_8^{0+8} = +W_8^0 = +1$
 $W_8^{9} = W_8^{1+8} = +W_8^1$
 $W_8^{10} = W_8^{2+8} = +W_8^2$
 $W_8^{11} = W_8^{3+8} = +W_8^3$

– Butterfly computation in FFT

• Example: N=8

Note: order of input is changed -> bit-reverse algorithm is used for input

New generation of DSP

- Increasing speed?
 - Higher clock frequency
 - Higher power consumption/dissipation
 - Limited by technonlogy
 - Parallel structures: more processors
 - Same function multiple blocks in one core
 - Single instruction multiple data (SIMD)
 - VLIW, superscalar processor

- SIMD architecture
 - Two identical instructions at the same time
 - Dedicated registers, ALU, bus width doubled
 - Faster operation with block of data (filtering, DFT)

– VLIW DSP

- One long instruction contains many short RISCtype ones
 - Compile time scheduling
 - » Long instruction built up during compilation
- Program memory
 - 128-256-bit wide
 - 4-8 short instructions/cycle
- Superscalar architecture
 - Runtime scheduling
 - Instructions executed parallel in runtime

- Embedded DSP
 - Offer specialized peripherals to solve a problem
 - High performance ADC
 - Power measurement
 - PWM
 - Data compression
 - Encoding

Data representation

• Fixed point

- 16-bit: 2^16=65536 possible bit patterns
- Unsigned integer: 0 -> 65536
- Signed integer: two's complement for negative: -32768 -> 32767
- Unsigned fractional: 65536 levels spread uniformly between 0 and 1
- Signed fractional 65536 levels spread equally between -1 and 1

16-bit fixed point arithmetic fractional 1.15 format

NSE	SB BIT WEIGHT												LSB		
-2 ⁰	2 ⁻¹	2-2	2 ⁻³	2 ⁻⁴	2 ⁻⁵	2 ⁻⁶	2 ⁻⁷	2 ⁻⁸	2 ⁻⁹	2 ⁻¹⁰	2 ⁻¹¹	2 ⁻¹²	2 ⁻¹³	2 ⁻¹⁴	2 ⁻¹⁵
		HEX	(Ļ		в	NAF	۲Y		Ļ		DECIMAL			
	_	7FFF	:	01	11	111	1 1	1111	11	11		+0.9	9999	69	
	_	0001		00	000	000	0000 0000 00			01	+0.000031				
	_	0000		00	000	000	0 0	0000	00	000		+0.0	0000	00	
	FFFF			11	11	111	1 '	1111	11	11		-0.0	0000	31	
		8000		10	000	000	0 0	0000	00	000		-1.0	0000	00	

 Single precision IEEE-754 32-bit floating point format

References

Analog devices: Mixed signal and DSP design techiques