
Microcontroller HW and SW platforms

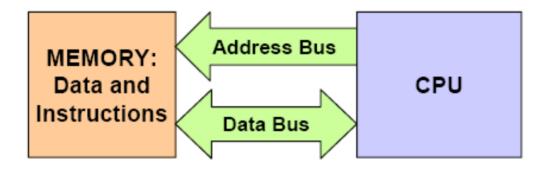
Lecturer: Krébesz, Tamás

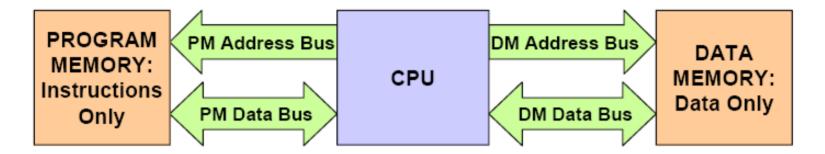
MITMÓT

- Modular mote system developed by
 - **BME-MIT**
 - Processor modules
 - 32-bit ARM core
 - 8-bit ATMEL core
 - Communication modules
 - Radio 1: 433-866 MHz
 - Radio 2: 2 GHz, ZigBee
 - Ethernet
 - Power line

Sensor, actuator modules

- Basic I/O module
 - LED, 3-digit display
 - Pushbuttons, switches
 - I2C thermometer
- Acoustic module
 - Analog in/out
 - Mic, speaker
- DC motor driver module
 - 2 DC motor drivers
 - 2 rotation sensors




uC architectures

von Neumann

- Shared bus system and memory for program and data -> limited system performance
- Self-modifying code is possible
- General purpose computers, traditional uC

Harvard

- Separate memories for data and program -> different bus size is possible
- Faster data fetch and so processing
- Program cannot be self modifying

- Main general features of 8-bit uCs
 - Harvard architecture
 - 8-bit data bus
 - Address bus can be wider 14-16-bit (PIC16: 14-bit)
 - RISC reduces instruction set computer
 - Generally 1 instruction / 1 clock pulse
 - » fetch+operation+store
 - Speed: 8-20 MIPS million instruction per second
 - Static operation
 - Clock rate reduced -> power consumption reduced
 - Clock can be changed on needs -> can be 0,but <20MHz</p>
 - Memory: RAM n*k, Flash 128k, EEPROM

- Power-on-reset: keeps resetting until power level stabilized after turning on the device
- Timer: 8-16-bit
- ADC: 8-10-12-bit (SAR ADC)
- PWM (pulse width modulation) output:
 - Using one of the timers
 - Usually can be used as DAC
- GPIO: general purpose I/O
- UART/USART: universal asynchronous/synchronous receiver transmitter

VIMIA347-Embedded and Ambient Systems

- SPI: serial peripheral interface
- I2C: inter-integrated circuits
- CAN: controller area network
- LIN: local interconnect network
- Interrupt: priorities, shared
- Reset
- Watchdog: detect & recover from malfunction
- Ports: TTL or Schmitt-trigger input

Development platform

- AVR Studio
 - Integrated development environment (IDE) for writing and debugging AVR applications
 - Free to download from ATMEL webpage
 - AVR Studio 4.19. Build 730
 - Assembler: SW that translates assembly code into machine code
 - Compiler: code written in higher level language translated into assembly or machine code directly

 Make file: a type of script that pass parameters for the compiler, loader, contains infromation of the compiling process and source files

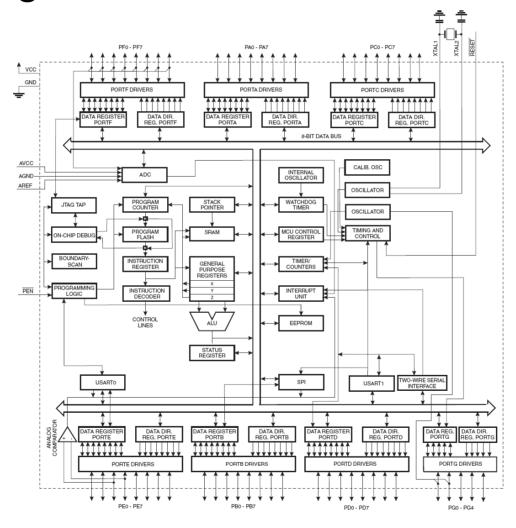
JTAG ICE

- HW (converter chip)+SW for on-chip debugging
- Happy JTAG: freeware SW to interface between AVR Studio and converter chip

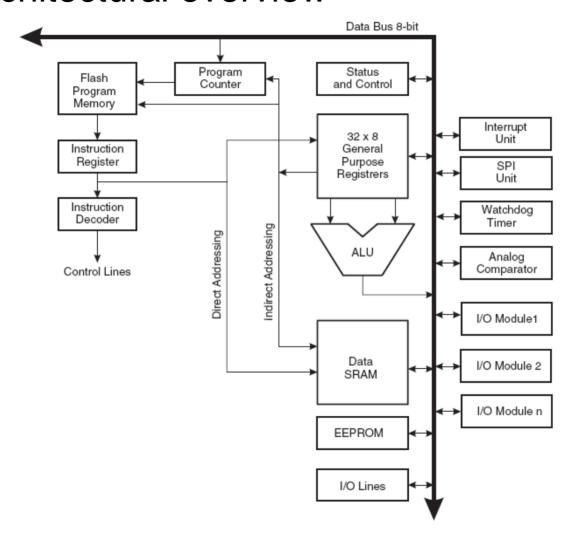
- WinAVR
 - Tool chain under AVR Studio
 - Includes compiler for C/C++ (by GNU-GCC)
- MITMÓT system SW level considerations
 - CPU independent bus system
 - API application programming interface
 - HW dependent: open HW specification
 - HW independent: application layer can be handled independently fro the HW on a general SW platform
 - Advantage of the layered structure

ATMEL AT Mega 128 uC

- Main features
 - Harvard architecture
 - 8-bit data bus
 - RISC, 133 instructions
 - Static operation
 - Max. 16 MHz crystal oscillator: 16 MIPS
 - On-chip HW multiplier


VIMIA347-Embedded and Ambient Systems

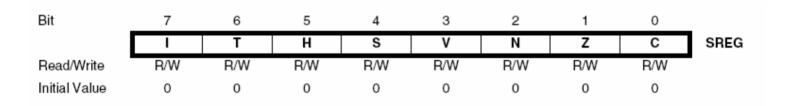
- Memory
 - 128 kb program Flash
 - 4 kb internal SRAM
 - 4 kb EEPROM
 - Optional external memory max. 64 kb
- JTAG/SPI programming interface
- Peripherals
 - 2x8-bit timer/counter
 - 2x16-bit timer /counter
 - 2x8-bit PWM output
 - 8-channel 10-bit SAR ADC


VIMIA347-Embedded and Ambient Systems

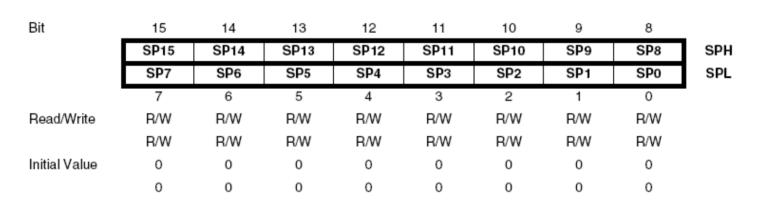
- USART
- SPI
- Watchdog timer
- Analog comparator
- Power-on reset
- Brown-down detection supply voltage dropped below threshold -> reset uC
- Internal RC oscillator
- External and internal interrupt sources
- 6 sleep modes

AT mega 128 inside

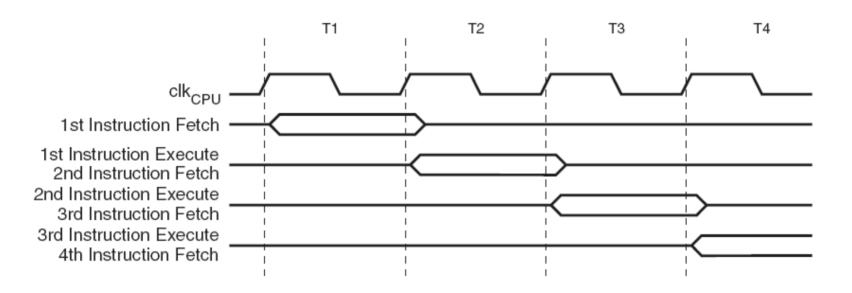
Architectural overview

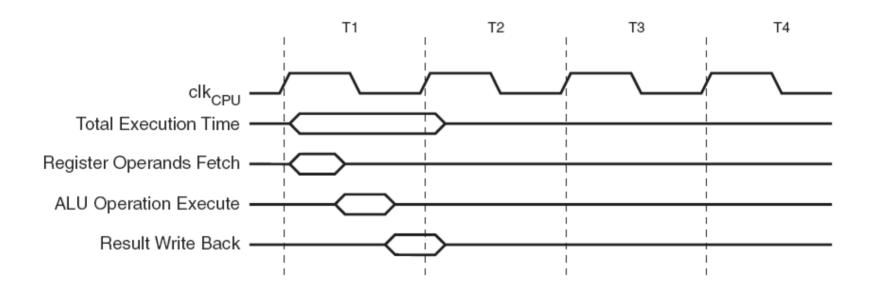


General purpose registers

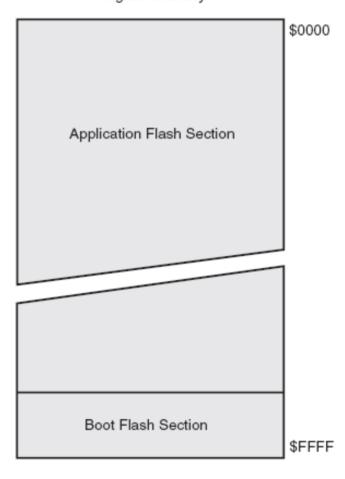

General Purpose Working Registers

7 0	Addr.	
R0	\$00	
R1	\$01	
R2	\$02	
R13	\$0D	
R14	\$0E	
R15	\$0F	
R16	\$10	
R17	\$11	
R26	\$1A	X-register Low Byte
R27	\$1B	X-register High Byte
R28	\$1C	Y-register Low Byte
R29	\$1D	Y-register High Byte
R30	\$1E	Z-register Low Byte
R31	\$1F	Z-register High Byte

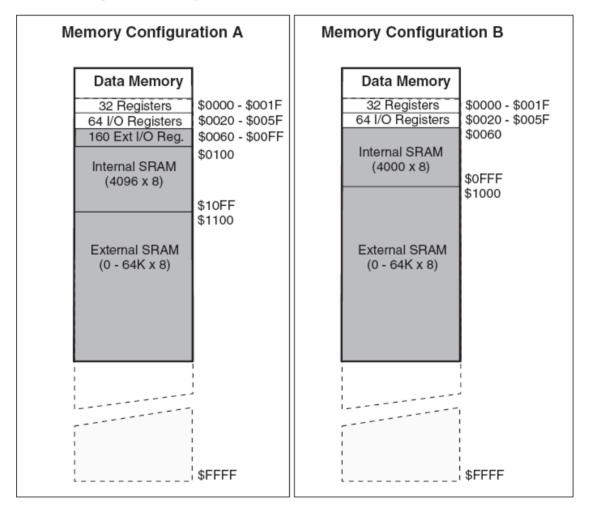

- Special function registers: control or monitor chip components
 - Status register


Stack pointer

Parallel instruction fetches and execution



Single cycle ALU operation



Program memory map

Program Memory

Data memory map

References

- ATMEL: 8-bit Atmel Microcontroller with 128KBytes In-System Programmable Flash
- Analog devices: Mixed signal and DSP design techniques