

Final version appeared in: ISAS 2007, LNCS 4526, 2007, pp 20–30. DOI:

10.1007/978-3-540-72736-1_3. The final publication is available at link.springer.com.

Comparing Robustness of AIS-based Middleware

Implementations†

Zoltán Micskei
1
, István Majzik

1
, and Francis Tam

2

1 Dept. of Measurement and Information Systems,

Budapest University of Technology and Economics, Budapest, Hungary

{micskeiz, majzik}@mit.bme.hu

2Nokia Research Center, Nokia Corporation, Finland

francis.tam@nokia.com

Abstract. To enable the interoperability of high availability (HA) middleware

systems the Service Availability Forum has released a set of open specifica-

tions. The benefit of having open specifications is the choice of implementa-

tions available from different vendors. When one chooses a product, one of the

selection criteria (besides performance) is the robustness of the implementation,

as the crashing or hanging of such a HA middleware causes the failure of the

whole system. The challenge is to develop the appropriate technology for

measuring and comparing robustness of HA middleware implementations.

Based on our earlier results, we present a set of automatic testing tools and a

benchmark suite constructed using these tools. We demonstrate the robustness

testing approach by comparing the results of benchmarking carried out on three

HA middleware implementations.

Keywords: dependability, robustness testing, HA middleware

1 Introduction

Recently availability became a key factor even in common off-the shelf computing

platforms. High availability (HA) can be achieved by introducing manageable redun-

dancy in the system. The common techniques to manage redundancy and achieve

minimal system outage can be implemented independently from the application, and

can be put on the market as a HA middleware. The standardization of the functionali-

ty of such middleware systems has begun as the leading IT companies joined the

Service Availability Forum (SA Forum) to elaborate the Application Interface Speci-

fication (AIS) [1]. One of the benefits of an open specification is that it enables a

company to choose from different vendors, thus reducing the technology risks.

With multiple middleware products developed from the same specification the de-

mand to compare the various implementations naturally arises. The most frequently

† The funding of this work by Strategy and Technology, Nokia Networks under the project

HASEK in 2006 is acknowledged.

examined properties are performance and functionality, but especially in case of HA

products the dependability is also an important property to be considered. This paper

outlines an approach to compare robustness, one of the attributes of dependability of

HA middleware systems.

2 Robustness testing approach

Robustness is defined as the degree to which a system operates correctly in the pres-

ence of exceptional inputs or stressful environmental conditions. Related work in-

cludes API robustness testing and dependability benchmarks. In the Ballista project

[2] the robustness of several POSIX implementations were compared using type-

specific testing, and several failures were found even in well-known commercial

operating systems. Dependability benchmarks aim for a slightly broader goal, to as-

sess the dependability of the complete system. In DBench [3] a conceptual framework

was designed and several case studies (e.g. for OS and OLTP systems) were carried

out. Based on the above results we elaborated an approach for robustness testing of

high availability middleware systems [4]. Because of the complex state-based nature

of HA middleware, the previous methods had to be extended.

The first step of developing the test strategy was the identification of the potential

sources for activating robustness faults in the HA middleware. Figure 1 illustrates

these sources, considering a typical computing node of a HA distributed system, as

follows:

1. External errors: They affect the operation of the application, thus their effects reach

the HA middleware only indirectly (through normal, erroneous or missing API

calls).

2. Operator errors: In general, operator errors appear as erroneous configuration of

the middleware and erroneous calls using the specific management interface.

3. API calls: The calls of the application components using the public interfaces of

the HA middleware can lead to failures if they use exceptional values, e.g. NULL

pointer or improperly initialized structures.

4. OS calls: The robustness of a system is also characterized by its ability to handle

the exceptions or error codes returned by the OS services it uses.

5. Hardware failures: The most significant HW failures in a HA system are host and

communication failures (that has to be tolerated in the normal operating mode of

the HA middleware) and lack of system resources.

From the above sources the following ones were selected to be included in the first

version of the dependability benchmark suite:

 The standardized middleware API calls are considered as a potential source of

activating robustness faults. Because of the high number of possible exceptional

value combinations and scenarios, the elements of the robustness tests suite were

automatically generated by tools. The challenge in testing the API calls was that

most of the AIS interface functions are state-based, i.e. a proper initialization call

sequence, middleware configuration and test arrangement is required, otherwise a

trivial error code is returned.

Fig. 1. HA middleware fault model Fig. 2. Testbed tools

 The failures of the OS system calls were included for the following reason. They

do not only represent the faults of the OS itself (which has lower probability for

mature operating systems), but failures in other software components, in the under-

lying hardware and in the environment also could manifest in an error code re-

turned by a system call. Possible examples of such conditions are writing data to a

full disk, communication errors when sending a message, etc.

 Studies show that operator errors cause also a significant part of service unavaila-

bility, however, the configuration of the HA middleware and the system manage-

ment interface are still under standardization by the SA Forum, thus they were not

included in the current version of the benchmark suite.

3 Testbed tools and benchmark suite

Taking into consideration the potential sources of activating robustness faults, a set of

tools was developed to assist the activation of these faults by generating proper test

values and performing the test calls. This dependability benchmark testbed is depicted

in Figure 2. In the following, we describe these tools and the benchmark suite devel-

oped for testing version B.02.01 of the AIS Availability Management Framework

(AMF). Although the API of the AMF is standardized, the implementations selected

for testing (two versions of openais [5] and one version of SAFE4TRY [6], see Sec-

tion 4) influenced the realization of the test execution environment.

3.1 Template-based type-specific test generator

The template-based type-specific test generator (TBTS-TG) uses the following ap-

proach to generate robustness test cases that realize calls to the HA middleware API

with exceptional values. Instead of defining the exceptional cases one by one for each

API function, the exceptional values are defined with regard to the parameter types

that are used in the functions. From the description of these types, the tool generates a

test program for each API function, and this test program calls the given function

with all combinations of the specified values. Each combination is executed in a new

process to separate the test cases from each other, and the result code of the call is

logged after completion. The test case is considered to detect a robustness failure if

the test program or the middleware implementation crashes or hangs (e.g. due to a

segmentation fault or a timeout). To help diagnosing the robustness faults, the first

calls contain only a single exceptional value (using valid values in the case of the

remaining parameters).

The inputs and outputs of the tool are presented in Figure 3. The skeleton of the

test program is prepared manually as an XSL template. The metadata of the functions

and types to test are specified in XML files. The exceptional and valid values are

defined as C code snippets. For simple types, e.g. numbers and enumerations, values

recommended by traditional testing techniques were selected, like valid values,

boundary values and values outside the domain of the given type. In the case of com-

plex structures the following systematic method was used: for each member there are

test cases that assign invalid values to the given member while the other members

remain valid.

Fig. 3. Architecture of TBTS-TG tool

The first version of the benchmark suite consisted of standalone C programs that

called the AIS API functions directly (outside of the AMF). In the current version the

AMF service of the middleware starts the test programs configured as SA-aware

components. To support the automatic execution of the benchmark suite a test execu-

tion engine was prepared. This engine runs the same test programs on each HA mid-

dleware, only the following tasks are implementation-dependent (as these are not

standardized by the SA Forum): (i) construction of an implementation-specific con-

figuration file on the basis of a common abstract configuration (which consists of one

service group and one service unit containing the actual test case as a single compo-

nent), and (ii) restarting the middleware between the runs of the test cases.

3.2 Mutation-based sequential test generator

While the TBTS-TG tool tests mostly individual functions, the mutation-based se-

quential test generator (MBST-TG) could be used to generate complex call sequences.

The basic idea of the tool is that mutation operators representing typical robustness

faults, like omitting a call or changing the specified order of calls, are applied to valid

functional test programs that use the HA middleware. In this way a large number of

complex robustness test cases can be obtained automatically.

The challenge of implementing the MBST-TG tool was the parsing and modifica-

tion of the test programs’ C source files. As the available free parsers encountered

various problems when system header files were included in the input files, we fol-

lowed a light-weight approach instead of obtaining the full parse tree (that is required

for compilation). The srcML tool [7] was used to build an XML file representing only

the syntactic structure of the input source files. This syntactic structure is enough to

implement the common mutation operators.

Currently five mutation operators are implemented: omission, relocation and

swapping of calls, modifying conditions, replacing parameters. The inputs of the

MBST-TG (Figure 4) are the source files to be mutated and a configuration file that

describes the parameterization of the mutation operator, e.g. the filters to be used

when searching for a call to apply the mutation. Note that occasionally the mutation

may result in such source code that cannot be compiled (data flow analysis is not

performed, this way, for example, changing of function calls may result in using vari-

ables that were not assigned a value before).

Fig. 4. Architecture of the MBST-TG tool

The mutant candidates came from two sources. The first one was the SAF Test [8]

project, which is an open-source conformance test suite for SA Forum specifications.

Because the test cases in SAF Test are redundant, 10 source files could be selected

that cover the functionality of the others as well. The source files had to be slightly

modified, because the current SAF Test does not use the required LDAP Distin-

guished Name (DN) format for component names. The second source was the func-

tional test suite provided in openais, from which the testamf test file was used for

mutation. The MBST-TG tool was configured to generate (i) two mutants using each

operator in the case of each input file (using one operator each time) and (ii) ten mu-

tants in case of each input file using two random operators each time. Altogether from

these mutants 92 valid mutants were included in the test suite.

3.3 OS Call wrapper tool

The OS call wrapper intercepts system calls executed by the HA middleware and

injects exceptional values into their return values (Figure 5). Since the middleware is

tested here as a black box, the system calls can be triggered only indirectly, by start-

ing a workload application.

The OS call wrapper can be configured to intercept or delay selected system calls.

The return value of an intercepted call could be (i) the actual value returned by the

original system call, if the call was also forwarded to the OS, (ii) a predefined valid or

exceptional value or (iii) a randomly selected value from the possible error codes of

the function. The wrapper is implemented using the Unix LD_PRELOAD variable,

which can be used to load predefined libraries instead of system libraries.

Fig. 5. Architecture of the OS call wrapper based testing

As a workload to trigger OS calls from the middleware, a synthetic HA application

was prepared that resembles a search and index engine. The application utilizes the

AMF and checkpoint service of the middleware. Using the strace utility all system

calls of the middleware were logged during the execution of the workload application

on both openais and SAFE4TRY, and the intersection of the two sets of OS calls was

included in the benchmark suite, namely the functions accept, bind, close, get-

timeofday, munmap, poll, sendmsg, setsockopt and socket.

4 Robustness testing results

The benchmark suite created by the above tools was used to test the robustness of the

following implementations: (1) the SAFE4TRY evaluation package from Fujitsu Sie-

mens Computers, which consists of the SAF AIS implementation RTP-SAF-L V2.1A

and the PRIMECLUSTER cluster foundation, and (2) openais, an open source im-

plementation of the AIS specification, including its version 0.80.1 (the latest stable

release) and the trunk (the latest development version directly from the source control

system of the project).

4.1 Results from the type-specific tests

Just by trying to compile the test suite on the system under test, several discrepancies

were found: The header files used in openais differ in eight places from the official

header files of the AIS specification, and thus from the header files used by the test

suite. There is also one misspelling in SAFE4TRY’s header files. Moreover, there are

several types in the specification that are mapped to different types in the implementa-

tions, e.g. SaInt32T is mapped to long in SAFE4TRY and to int in openais.

Table 1 summarizes the exit codes of the test cases that were logged when execut-

ing the benchmark suite. Segmentation faults definitely indicate robustness failures,

since in a HA middleware even invalid inputs should be handled correctly. Timeouts

could indicate normal behavior, because some of the API functions could be parame-

terized to wait for an event to dispatch. However, while examining the concrete val-

ues used in the benchmark it turned out that the large number of timeouts in openais-

trunk and openais-0.80.1 is not reasonable. Note for openais-0.80.1 there are less calls

listed in the table because in case of saAmfProtectionGroupTrack the test program

and the middleware crashed at the beginning of the test and no calls were executed for

that functions.

Table 1. The number of test cases that exited with the given status code in case of type-specific

testing of the different platforms.

Status code openais-0.80.1 openais-trunk SAFE4TRY

 0 (success) 24568 26019 29663

11 (seg. fault) 1110 1468 0

14 (timeout) 467 2178 2

Segmentation faults occurred in 13 functions of openais-trunk and in 12 functions

of openais-0.80.1. Timeouts were observed in 7 functions of openais-trunk, in 7 dif-

ferent functions of openais-0.80.1, and in one function of SAFE4TRY (namely, in

saAmfDispatch when specifying a flag representing blocking; here timeout is the

correct behavior). For the details, see Table 2.

Some of the test cases caused fatal error in the middleware. The tests for 14 func-

tions in openais-0.80.1 and for 6 functions in openais-trunk produced an internal as-

sertion violation and the middleware exited. The following two assertion violations

were observed:

aisexec: amf_lib_exit_fn: Assertion `comp != ((void *)0)' failed.

aisexec: amfcomp.c:1142: amf_comp_register: Assertion `0' failed.

In the case of SAFE4TRY, after executing the test program for saAmfProtec-

tionGroupTrackStop() the stopping of the middleware was not successful.

Table 3 details the different error codes for the successful calls. Every AMF call

has a handle parameter, which is checked first before any operation. All tested AIS

implementations could process the incorrectly initialized handles well, as it can be

seen from the high number of SA_AIS_ERR_BAD_HANDLE codes. The number of

SA_AIS_ERR_INVALID_PARAM codes show that SAFE4TRY detects much more

invalid parameter combinations. When an assertion was violated in openais, all the

remaining calls for the given test program resulted in library error, that is the reason

of the high number of SA_AIS_ERR_LIBRARY codes. In the case of SAFE4TRY,

library errors were observed for the saAmfHealthcheckConfirm and saAm-

fHealthcheckStop functions. In both versions of openais a significant number of test

cases returned invalid error codes, which cannot be considered as a robust behavior.

Table 2. Functions that produced robustness failures in case of type-specific testing

Failure openais-0.80.1 openais-trunk

seg. fault

saAmfComponentErrorClear, saAm-

fComponentErrorReport

saAmfComponentNameGet, saAm-

fComponentRegister, saAmfCompo-

nentUnregister, saAmfHAStateGet,

saAmfHealthcheckConfirm, saAm-

fHealthcheckStart, saAm-

fHealthcheckStop, saAmfInitialize,

saAmfProtectionGroupTrackStop,

saAmfSelectionObjectGet

saAmfComponentErrorClear,

saAmfComponentErrorReport

saAmfComponentNameGet,

saAmfComponentRegister, saAm-

fComponentUnregister, saAm-

fHAStateGet, saAm-

fHealthcheckConfirm, saAm-

fHealthcheckStart, saAm-

fHealthcheckStop, saAmfInitialize,

saAmfProtectionGroupTrack,

saAmfProtectionGroupTrackStop,

saAmfSelectionObjectGet

timeout

saAmfComponentErrorClear, saAm-

fComponentNameGet, saAmfC-

SIQuiescingComplete, saAmfDis-

patch, saAmfInitialize, saAm-

fHealthcheckConfirm, saAmfProtec-

tionGroupTrackStop

saAmfComponentErrorClear,

saAmfComponentNameGet,

saAmfComponentUnregister,

saAmfCSIQuiescingComplete,

saAmfDispatch,

saAmfProtectionGroupTrack,

saAmfProtectionGroupTrackStop

Table 3. The number of test cases that finished and returned the given SaAisErrorT error code

in case of type-specific testing of the different platforms.

Error code openais-0.80.1 openais-trunk SAFE4TRY

SA_AIS_ERR_BAD_FLAGS 0 0 384

SA_AIS_ERR_BAD_HANDLE 18828 20408 20708

SA_AIS_ERR_EXIST 0 0 1

SA_AIS_ERR_INIT 0 0 6

SA_AIS_ERR_INVALID_PARAM 56 226 6073

SA_AIS_ERR_LIBRARY 3953 2316 52

SA_AIS_ERR_NOT_EXIST 0 1296 1786

SA_AIS_ERR_NOT_SUPPORTED 0 0 144

SA_AIS_ERR_TRY_AGAIN 30 30 0

SA_AIS_ERR_VERSION 336 336 294

SA_AIS_OK 86 128 215

invalid error code 1279 1279 0

In our previous work [4] version 0.69 of openais (based on version A.01.01 of the

AMF specification) was used for benchmarking. In comparison with these previous

experiments, the following could be observed: the simple method of using only inva-

lid pointers and integer values as exceptional parameters did not activate so many

robustness failures in the current versions of openais. One of the reasons for this is

that moving to version B.01.01 of AMF the number of pointer parameters decreased

significantly. 58.6% of the tests in the type-specific robustness test suite resulted in

segmentation fault for version 0.69, while this number was only 4.2% and 4.9% for

the 0.80.1 and trunk versions, respectively. Thus, the robustness of openais was defi-

nitely improved, although it still lags behind the robustness of SAFE4TRY, where the

only robustness problem discovered by the benchmark suite was the error code

SA_AIS_ERR_LIBRARY for two functions.

4.2 Results from the mutation-based testing

The mutant test sequences obtained from SAF Test and testamf were executed on the

three implementations. The number of observed robustness failures is summarized in

Table 4.

Table 4. The number of observed robustness failures / the total number of executed test cases

in case of mutation-based testing of the different platforms.

Input openais-0.80.1 openais-trunk SAFE4TRY

SAF Test 8 / 63 0 / 63 1 / 63

testamf 22 / 29 28 / 29 0 / 29

The robustness failures discovered by the SAF Test mutants were the following. In

case of eight mutants, openais-0.80.1 exited with one of the previous or with the fol-

lowing assertion:

./aisexec: symbol lookup error: /opt/openais-

0.80.1/exec//service_amf.lcrso: undefined symbol: assert

In SAFE4TRY, when stopping the middleware after one of tests the following error

occurred:

Error in communication! ERROR: Stopping AMF subsystem was not

successful

Note that the SAF Test programs are constructed in such a way that the return value is

checked after each function call, and if it does not match the predefined value then the

program is aborted with an error message. This feature of the SAF Test programs

makes them difficult to be used in robustness tests, because the subsequent calls are

not executed if a wrong return value is detected.

When the testamf mutants were executed as AMF components in openais-trunk

and openais-0.80.1 the CPU utilization increased to 100% and a hard reset had to be

performed. Thus, Table 4 contains the results from running the testamf mutants as

standalone programs. During the experiments with the mutants the above detailed

assertions were also observed.

It could be observed that mutation based robustness testing highlighted additional

robustness failures that were not detected by the type-specific tests. It gives reasons

for applying such complex test sequences.

4.3 Results from the OS wrapper

For each of the 9 system calls (see Section 3.3) a separate test case was executed by

starting the workload application and after a while forcing a failover. During the exe-

cution the system calls were forwarded to the OS, and with a predefined probability a

random error code was returned (the probability depended on the frequency of the

call, which was determined in probe runs).

Table 5. The system calls that provided the given outcome using the OS call wrapper.

Outcome openais-0.80.1 openais-trunk SAFE4TRY

No failure

observed

accept, close, gettimeofday,

munmap, sendmsg,

setsockopt

accept, bind, close,

gettimeofday,

sendmsg

accept, close,

gettimeofday,

sendmsg, setsockopt

Application

failed
-

munmap,

setsockopt
poll

Middleware

failed
bind, poll, socket poll, socket

bind, munmap,

socket

The first row of Table 5 lists the system calls in which case the workload application

was executed successfully in spite of the injected fault. The second row shows such

cases when the application exited but the middleware did not fail. The last row indi-

cates the test cases when also the middleware exited (typically silently, without error

messages). Note that due to the random injection of error codes, these latter cases just

indicate potential robustness faults without objectively comparing the implementa-

tions.

5 Conclusion

In this paper a robustness testing approach for HA middleware systems was present-

ed. The novelty of the approach is the application of automatic tools that construct the

test cases systematically on the basis of the standard interface specification (API

functions) and existing functional test suites. The robustness testing of the HA mid-

dleware implementations demonstrated that these tools can be used efficiently and

their test results are complementary as they detect distinct failure types. It turned out

that there are still several robustness problems both in version 0.80.1 and in the trunk

version of the openais implementation. SAFE4TRY turned out to be much more ro-

bust with regard to the exceptional inputs generated by the benchmark suite. It is

important to emphasize, however, that robustness testing was used only to observe

these problems, and further work is needed to find the causes and to turn the observa-

tions into dependability benefits, e.g. by identifying the wrong implementation ap-

proaches or coding errors that shall be corrected. The work with AIS-based imple-

mentations will be continued in the HIDENETS project (IST 26979) which develops

resilience solutions for distributed applications.

References

1. Service Availability Forum, Application Interface Specification, February 2006.,

URL: http://www.saforum.org/

2. P. Koopman et al., “Automated Robustness Testing of Off-the-Shelf Software Compo-

nents,” in Proceedings of Fault Tolerant Computing Symposium, pp. 230-239, Munich,

Germany, June 23-25, 1998.

3. K. Kanoun et al., “Benchmarking Operating System Dependability: Windows 2000 as a

Case Study,” in Proceedings of 10th Pacific Rim International Symposium on Dependable

Computing, Papeete, French Polynesia, 2004.

4. Z. Micskei, I. Majzik and F. Tam, “Robustness Testing Techniques For High Availability

Middleware Solutions,” in Proc. of Int. Workshop on Engineering of Fault Tolerant Sys-

tems (EFTS 2006), Luxembourg, Luxembourg, 2006.

5. OpenAIS, AIS implementation, URL: http://developer.osdl.org/dev/openais/

6. Fujitsu Siemens Computers, SAFE4 Continuous Services, SAFE4TRY version, URL:

http://www.safe4cs.com

7. Software Development Laboratory, srcML, URL: http://www.sdml.info/projects/srcml/

8. SAF Test, SAF-conformance test suite, URL: http://saftest.sourceforge.net/

