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Summary

Testing is one of the most common veri�cation and validation activities in software development.

Testing is a complex process, where numerous test artifacts have to be developed that represent test

requirements, test cases, etc. The precise construction of these test artifacts requires suitable lan-

guages. Together the languages describing the test artifacts and the tools supporting the various test

tasks form a test framework that can support the entire test process. This dissertation is concerned

with developing languages and test frameworks for two speci�c, new application domains.

The �rst part of the dissertation presents research on testing high availability middleware systems.

In case of such middleware not just the usual functional properties, but also the robustness of an

implementation – the degree to which it can function correctly in the presence of invalid inputs

– is of great concern. The �rst challenge the dissertation aimed for was the robustness testing of

high availability middleware systems. One of the contributions of the dissertation is the systematic

de�nition of languages and development of supporting tools that form a test framework, which uses

a combination of API testing, state-based mutation testing and OS call interception to provide inputs

that exercise the middleware to activate potential robustness faults. The test suite generated by the

test tools in the framework was executed on three di�erent middleware implementations comparing

their robustness.

The second part of the dissertation focuses on mobile systems. The context-aware, highly dynamic

nature of mobile systems makes it especially hard to describe them in test artifacts using the existing

languages. The second challenge of the dissertation was centered on testing of mobile systems. The

dissertation recommends language extensions to graphical scenario languages that can intuitively

capture the frequently changing communication structures. Using these extensions a formal test

requirement language, called TERMOS, was designed that is based on UML 2 Sequence Diagrams.

An automaton-based operational semantics was de�ned for the new language. A test framework was

developed that supports the evaluation of execution traces against the graphical scenarios and can

identify violations of the requirements captured in the scenarios.

When we started to work on TERMOS, it turned out that the semantics of UML 2 Sequence Di-

agrams is a complex issue. The UML speci�cation contains some explicit semantic variations, but

there are many more subtle semantic choices. The third challenge of the dissertation was about the

semantics of UML 2 Sequence Diagrams. The dissertation collects 13 proposed formal semantics and

analyses the di�erent choices taken by them. The contribution of the dissertation is a structured

representation of the various semantic choices and options. The detailed discussions of the choices

highlight the relations and consequences of each of the options. This categorization was later used to

design the semantics of the TERMOS language.
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Összefoglaló

A tesztelés az egyik leggyakrabban használt veri�kációs és validációs tevékenység a szoftverfejlesztés

során. A tesztelés egy összetett folyamat, ahol sokféle tesztelési terméket kell elkészíteni, amik

az egyes tesztkövetelményeket, teszteseteket stb. tartalmazzák. A tesztelési termékek precíz ter-

vezéséhez viszont szükség van megfelelő nyelvekre. A tesztelési termékeket leíró nyelvek és az egyes

tesztelési feladatokat támogató eszközök együttesen egy tesztkeretrendszert alkotnak, amely képes a

tesztelési folyamatot támogatni. Az értekezés témája nyelvek és tesztkeretrendszerek kidolgozása két

új alkalmazási területhez.

Az értekezés első része egy, a magas rendelkezésre állású köztesrétegek tesztelésével kapcsolatos

kutatást mutat be. Ilyen köztesrétegek esetén nem csak a szokásos funkcionális jellemzők, hanem

az implementáció robusztussága – azaz az érvénytelen bemenetekkel szembeni ellenállósága – is

fontos szempont. Az értekezés által tárgyalt első kihívás tehát a magas rendelkezésre állású köztes-

rétegek robusztusságának tesztelése. Az értekezés egyik eredménye egy olyan szisztematikusan

kidolgozott tesztkeretrendszer (nyelvek és eszközök), ami az API tesztelés, állapot-alapú mutációs

tesztelés valamint az OS hívások eltérítésének kombinációjával többféle robusztussági hibatípust tud

felderíteni. A keretrendszer eszközei által generált tesztkészlet futtatásával három különböző köztes-

réteg robusztusságát hasonlítottuk össze.

Az értekezés második része mobil rendszerekre összpontosít. A mobil rendszerek kontextusra

érzékeny, dinamikus jellege különösen megnehezíti leírásukat a különböző tesztelési termékekben

a meglévő nyelvekkel. Az értekezés második kihívása a mobil rendszerek tesztelésére vonatko-

zott. Az értekezés kiegészítéseket javasol a gra�kus forgatókönyv-leíró nyelvekhez, amiknek a

segítségével intuitív módon lehet leírni a gyakran változó kommunikációs struktúrákat. Ezekre a

kiegészítésekre építve bevezet egy TERMOS nevű, formális, tesztkövetelményeket leíró nyelvet, ami

az UML 2 Szekvencia Diagramokra épül. Az új nyelvhez egy automatákon alapuló működési sze-

mantikát de�niál. Kidolgoztunk továbbá egy olyan tesztkeretrendszert is, amely képes futási ny-

omokat kiértékelni a gra�kus forgatókönyvek alapján, és azonosítani tudja, hogy sérülnek-e a for-

gatókönyvekben megfogalmazott követelmények.

Amikor elkezdtünk dolgozni a TERMOS nyelven, kiderült, hogy az UML 2 Szekvencia Dia-

gramok szemantikája sokkal összetettebb kérdés, mint ahogy gondoltuk. Habár az UML szabvány

egyértelműen megjelöl néhány szemantikai változatot, annál sokkal több rejtett szemantikai dön-

tési pont van valójában. Az értekezés harmadik kihívása az UML 2 Szekvencia Diagramok sze-

mantikájához kapcsolódik. Az értekezés 13 korábban javasolt formális szemantika alapján vizsgálta

a különböző választási lehetőségeket. Az értekezés eredménye az egyes döntési pontok és azok

lehetőségeinek strukturált formában való megjelenítése és kiértékelése. Az egyes lehetőségek el-

emzése kitér az azok közötti kapcsolatokra, valamint az egyes választások következményeire. Ezt

a kategorizálást használtuk fel később a TERMOS nyelv szemantikájának meghatározása során.
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Chapter 1

Introduction

Testing is an essential but complex and resource-consuming task in software development. IEEE

de�nes testing as an “activity in which a system or component is executed under speci�ed conditions,

the results are observed or recorded, and an evaluation is made of some aspect of the system or

component” [IEE10]. Figure 1.1 depicts a high-level view of testing: test cases are created from the

speci�cation of the system, these are executed, and verdicts are assigned describing the outcome,

e.g., passed or failed. Of course many important questions need to be answered before testing can

be carried out. What part or functionality of the system needs to be tested? In what manner are

the outcomes of the tests evaluated? Who decides whether a test passed or failed? To answer these

questions several other test artifacts are needed besides test cases.

Specification, 
requirements

Test cases Verdicts
Test

execution

Figure 1.1: High-level view of the testing process

Figure 1.2 presents the artifacts used in testing in more detail
1
. From the high-level user require-

ments and the speci�cation of the system test requirements are derived that de�ne how the system

should or should not behave in a certain situation. The test approach collects how and when the test-

ing should be conducted, e.g., what processes, techniques, test levels and tools should be used. Test
purposes describe what part or functionality of the system should be covered by testing. Later, test
case speci�cations are created in which the inputs, predicted results, and set of execution conditions

are speci�ed. The expected output for a given input is obtained from a test oracle. The test cases

are implemented, and with the help of test adapters they are executed in a test execution environment,
which contains the system under test (SUT) and potentially some test doubles (drivers, stubs, etc.)

that simulate the other components and the environment of the system. During the test execution

test traces are recorded, which can contain the responses of the SUT, details about the changes in

the test environment, etc. Finally, the outcomes of the test executions are evaluated, and verdicts are

assigned. The set of possible verdicts is usually pass, fail, error (there was an error in the test execu-

tion environment itself), and inconclusive (neither a pass nor a fail verdict can be determined). These

artifacts and the tools supporting them are combined into a test framework.

1

As testing is such a general term, these basic concepts have been de�ned in many ways. The dissertation follows

mainly the IEEE terminology [IEE10] extended with the ISTQB glossary [IST10].

1
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Specification, 
requirements

Test 
requirements

Test purposes

Test suite
(test cases) Test traces Verdicts

Test approach

Test
execution

Test
evaluation

Test oracle

Figure 1.2: General test artifacts

Testing has an extensive literature (just to name a few well-known books [Bei90; Bec02; MS04]),

numerous methods and techniques have been proposed to test di�erent types of systems. In order to

apply these methods, suitable languages are needed that can be used to precisely design and describe

the above test artifacts.

The research presented in this dissertation was focused on (i) what languages can be used to

describe these test artifacts especially in application domains in which a proper solution is missing,

and (ii) using the test artifacts how can test frameworks be constructed that can be used for testing in

speci�c application domains.

1.1 Existing test languages and approaches

This section �rst gives examples of the existing languages used for describing test artifacts. Next, it

presents how the Uni�ed Modeling Language (UML), one of the most commonly used languages to

model software systems, can be used in modeling test artifacts. Finally, di�erent test approaches are

introduced, which will be used in the dissertation.

1.1.1 Examples of languages for describing test artifacts

Depending on the type of the test artifact to describe, several methods and notations have been pro-

posed. For example, test purposes can be described with labeled transition systems [JJ05] or with

temporal logic formulae [Hon+01]. Test requirements can be extracted from UML models [BL02].

Test cases can be de�ned using TTCN-3 [ITU07], test con�gurations in the ATML language [IEE11].

Test oracles can be expressed as automata [Hes+08] or in SDL [Koc+98].

For describing partial behavior like test requirements or test purposes, a very common approach

is to use graphical scenario languages [GHN93; PJ04; KSH07]. They provide an intuitive yet powerful

notation to express communication between di�erent entities. Several language variants were pro-

posed over the years. The International Telecommunication Union’s (ITU) Message Sequence Chart

(MSC) [ITU11] was one of the �rst of such languages. It is widely used, since its �rst introduction in

1993 it was updated several times. Live Sequence Chart (LSC) [DH01] concentrated on distinguish-

ing possible and necessary behaviors. The dissertation focused on software systems, thus from the

possible testing and modeling notations, the UML language was highly relevant.

1.1.2 Using UML 2 for specifying test artifacts

The Uni�ed Modeling Language (UML) [OMG11b] developed by the Object Management Group

(OMG) is one of the most commonly used languages to model software systems. UML has extensive
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tool support, and can be used in many aspects of software development from capturing requirements

to specifying deployments. A recent paper by Cook [Coo12] presents a good overview of the history

and evolution of the language.

To support the testing activities, a dedicated UML pro�le was developed. With the help of theUML
2 Testing Pro�le [OMG05] a UML model can specify (i) the test architecture, (ii) the behavior of test

cases, and (iii) contents of the test data. The test architecture is modeled typically with stereotyped

components for test context, arbiter etc. The behavior of test cases and test procedures are given

usually with the scenario language found in UML, namely Sequence Diagrams, and the pro�le o�ers

stereotypes to express default behavior or logging and validation actions. The test data stereotypes

are used to de�ne data partitions, and make expressing wildcards, omitted values possible.

The �rst version of Sequence Diagrams included in UML 1.x was similar to basic MSCs, i.e., it

included lifelines representing communicating instances and messages going between lifelines. The

next version introduced in UML 2.0 was a major rework; the language was extended with several

complex, high-level elements. For example, new notations were added to express alternative or par-

allel �ows. Moreover, what is even more signi�cant from a testing perspective, language constructs

were included to express mandatory and forbidden behavior, or messages that can be ignored. How-

ever, the meaning of these elements, i.e. their semantics, was described only in natural language text

fragments, which allowed several di�erent interpretations.

Thus in order to use Sequence Diagrams to describe test artifacts or extend the language to cope

with the characteristics of new application domains, �rst it should be identi�ed what semantic vari-

ations exist for the language, and which of them �ts for testing related activities.

1.1.3 Test approaches utilized in the dissertation

Testing activities can be di�erentiated based on what level they operate. Typical categories include

module or unit testing (dealing with only one module), integration testing (checking the cooperation

of several modules), and system testing (analyzing the whole system possibly taking into account its

environment). The dissertation focuses on methods for system testing.

There are many approaches that can be applied at system level to test the functionality. One

typical categorization, which is common in the protocol testing community, di�erentiates active and

passive testing [CGP03; AMN12]. In active testing the tests stimulate directly the SUT by providing

inputs to it. However, this is not possible in some situations, e.g., when there is no direct interface

to the SUT or the SUT operates in a complex environment. In these cases passive testing techniques

o�er an alternative, where the operation of the system is observed by recording execution traces, and

then this trace is checked on-line or o�-line to determine whether it conforms to the speci�cation.

This approach is common in testing distributed systems, where the test framework does not provide

constant input to each of the nodes, instead it creates an initial test setup, and later observes the

behavior of the nodes through their communication. In the application domains presented in this

dissertation both active and passive testing were useful test approaches.

In system level testing usually not only the core functionality, but other non-functional require-
ments are considered. Non-functional requirements include performance or the di�erent attributes

of dependability [Avi+04], like robustness or availability. Such testing can be characterized with the

following two components of the tests (stimuli); the workload triggers the (regular) operation of the

system, while the faultload contains the di�erent faults and stressful conditions applied on the sys-

tem. Depending on how these two loads are balanced, di�erent kinds of system properties can be

tested, e.g., in API robustness testing only a faultload is executed against the public interfaces of the

system, or in stress testing only a high level of workload is applied. One part of the research presented
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in this dissertation focused on robustness, which is the attribute of dependability that measures the

behavior of the system under non-standard conditions. Robustness is de�ned by IEEE as “the degree

to which a system or component can function correctly in the presence of invalid inputs or stressful

environmental conditions” [IEE10].

As new application domains emerge and new system attributes become relevant to test, the classic

methods have to be evaluated and one should identify whether new challenges have been arisen.

1.2 New application domains

The dissertation focuses on the following new and emerging application domains, which present

several new challenges for the testing activities.

1.2.1 High availability middleware systems

Recently availability became a key factor even in common o�-the-shelf computing platforms. High

availability (HA) can be achieved by introducing manageable redundancy in the system. The common

mechanisms to manage redundancy and achieve minimal system outage can be implemented indepen-

dently from the application in a component called a HA middleware. To standardize the functionality

of such middleware systems leading IT companies formed the Service Availability Forum (SA Forum)

to elaborate the Application Interface Speci�cation (AIS) [SAF07]. Di�erent vendors implemented the

common speci�cation in their solutions.

With multiple middleware products developed from the same speci�cation the demand to com-

pare the various implementations naturally arises. The most frequently examined properties are per-

formance and functionality, but especially in case of HA products dependability is also an important

property to be considered.

The characteristics of HA middleware systems can be summarized as follows.

State-based nature The complexity in testing these middleware implementations comes from the

highly state-based nature of these systems: without a proper setup code most of the calls in the

public interface result in trivial error messages, this way the valid operation cannot be tested.

For example, the health of a component is checked in a callback, which needs to be registered

after a connection to the middleware is initialized.

Robustness is a key factor As the availability requirements towards these systems are extremely

high, HA middleware systems should handle even the unexpected situations. Typically testing

e�ort is focused on all the valid paths and some of the common invalid inputs. However, in a

HA middleware preparing for erroneous inputs is especially important, because an error in one

component can render the whole system inaccessible if the middleware is not robust enough.

Testing, among other veri�cation and validation techniques, can be used also to assess the robust-

ness of a system. Speci�cally the goal of robustness testing is to activate robustness faults (typically

design or programming faults) by supplying invalid inputs or presenting stressful environmental con-

ditions.

Although robustness testing of HA middleware was a new research topic, previous robustness

testing results from other application domains can serve as guidance. Early robustness testing exper-

iments on command line programs generated a large number of random inputs [MFS90] (a technique

known as “fuzzing”). As HA middleware systems have a common interface speci�cation, a more rel-

evant technique is type-speci�c testing introduced in the Ballista project [KDD08]. Here robustness

tests were generated for POSIX compliant operating systems using valid and invalid values de�ned
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for the data types in the API. This method shall be extended to be used in testing the robustness of

state-based middleware systems.

The challenge in describing tests for HA middleware systems lies in that (i) existing test languages

mostly focus on conformance and not robustness, (ii) an HA middleware is a complex system that

has several inputs that may trigger robustness faults, and (iii) its API is state-based with numerous

functions, types and parameters.

1.2.2 Context-aware mobile computing systems

Mobile computing systems involve devices (handset, PDA, laptop, intelligent car, etc.) that move

within some physical areas, while being connected to networks by means of wireless links (Blue-

tooth, IEEE 802.11, GPRS, etc.). Such devices represent an integral part of our life now. The speci�c

characteristics of these systems can be summarized as follows.

Context awareness Context might be “any information that can be used to characterize the situa-

tion that are considered relevant to the interaction between a user and an application” [BDR07].

For example, in mobile computing the context can be information collected by means of phys-

ical sensors such as location, time, speed of vehicle, or it can be information about network

parameters, such as bandwidth, delay and connection topology. These systems have to take

into account the actual context in their actions.

Dynamic, evolving environment In mobile computing systems the system structure, the number

of mobile devices are not �xed. It varies over time, due to the dynamic appearance, suspension

or stopping of nodes. Besides that, connectivity between nodes is also highly dynamic. As the

nodes are free to move arbitrarily, they can join or leave the system in an unpredicted manner.

Links may be established or destroyed, yielding an unstable connection topology.

Communication with unknown partners in local vicinity In ad hoc mobile networks, a natural

communication is local broadcast. It is used as a basic step for the discovery layer in mobile ap-

plications (e.g., group discovery service for membership protocols, a route discovery in routing

protocols, etc.). In this class of communication, a node broadcasts a message to its neighbors.

As the topology of the system is unknown, the sending node does not know a priori the number

and identity of potential receivers. Whoever is in transmission range of the sending node may

listen and react to the message.

Existing languages presented in Section 1.1.1 were developed to describe mainly static con�g-

urations. Object creation or destruction can be depicted in some of the languages; however, these

notations are not suitable to express frequent appearance or disappearance of other nodes or nearby

objects. There were some works proposing extensions (e.g., [BM04; SE04]), but they concentrated

mostly on mobile software agents and logical mobility. Moreover, existing languages focus on the

communication between the entities, and do not o�er an intuitive way to describe the actual context,

i.e., the current state of the environment. Modeling language extensions and adaptation of existing

test methods are needed that take into account the speci�cities of context-aware mobile systems.

1.3 Summarizing the new challenges

As the previous sections illustrated there are several relevant existing test approaches and languages,

however they need to be adapted or extended to suit the new application domains. The following

challenges summarize the open research questions, which have driven the work presented in the dis-

sertation.



6 CHAPTER 1. INTRODUCTION

Challenge 1: Adapting robustness testing to HA middleware. How can relevant test inputs for

a HA middeware be speci�ed in test artifacts to support the automated testing of the robustness

of such systems?

Challenge 2: Specifying mobile systems in test artifacts. How can dynamic, frequently chang-

ing communication structures and unknown partners be speci�ed in test artifacts in a way that

such systems can be later evaluated?

Instead of designing completely new test languages, we tried to reuse existing languages when

possible. However, to incorporate new concepts into an existing language, that language should have

a clear and precise semantics. From the available scenario languages, we focused on UML 2 Sequence

Diagrams. But, as described previously, Sequence Diagrams can have several semantic interpretations.

Thus in order to de�ne testing related extensions, �rst the semantics of UML 2 Sequence Diagrams

has to be studied.

Challenge 3: Analyzing the semantics of UML 2 Sequence Diagrams. What semantic choices

are available in UML 2 Sequence Diagrams, and what options can be chosen when the language

is extended to support the description of test artifacts in a speci�c application domain?

Therefore the goal of the dissertation was to de�ne test frameworks addressing these challenges,

and develop the necessary languages for expressing the various test artifacts in the frameworks.

1.4 Research method

According to [SS07], a research activity can be classi�ed as basic (“research for the purpose of obtain-

ing new knowledge”) or applied research (“research seeking solutions to practical problems”). More-

over, classical research (using the scienti�c method of “formulate hypotheses then check or test these

by means of experiments and observations”) and technology research (“research for the purpose of

producing new and better artefacts”) can be di�erentiated. Technology research belongs usually to

applied research, and it uses an iterative process: (i) starting with a problem analysis in which the

potential needs for the new artifact are collected; (ii) the new artifact is constructed in an innovative

way; (iii) the new artifact is evaluated against the initial needs.

The research presented in this dissertation can be categorized as applied, technology research,

as its goal is to create better artifacts for solving practical problems. As the artifacts included new

modeling languages, an important question was how modeling languages can be constructed.

Language construction To solve the identi�ed challenges, it was required to design new model-

ing languages and extend existing ones. Engineering a new language is a complex task, in order to

precisely de�ne a new modeling language the following artifacts have to be speci�ed [OMG11a].

• Abstract syntax de�nes the main conceptual elements of the language and their relationships.

The abstract syntax is meant for automated processing, and nowadays it is usually given using

metamodels.

• Concrete syntax de�nes the human interface of the language (e.g., visual or textual notation).

The elements of the concrete syntax have to be mapped to the elements of the abstract syntax.

• Well-formedness rules de�ne additional constraints on the abstract syntax, which capture more

complex conditions that cannot be speci�ed otherwise easily in the abstract syntax.

• Semantics de�ne the meaning of the language elements, usually with the help of a mapping to

a well-de�ned semantic domain.
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Lets use the language of UML Sequence Diagrams as an example to demonstrate these concepts.

According to the abstract syntax, Sequence Diagrams have concepts like message, guard and lifeline;

there are several types of messages (synchronous, asynchronous, etc.); and a lifeline can send zero or

more messages. The concrete syntax of a message in Sequence Diagrams is a graphical arrow symbol,

a lifeline is depicted with a box and a dashed line. A well-formedness constraint de�ned for message

is that the sending event of a self-message has to appear before its receiving event. The semantics is

given by mapping diagram fragments to set of event traces.

De�ning semantics The semantics of a language de�nes the language’s semantic domain and a

mapping from the syntactic elements of the language to constructs of the semantic domain [HR04].

The semantic domain can be anything that has a well-de�ned meaning, e.g., another modeling or

programming language or some well-understood formalism. The semantics does not necessarily de-

�ne behavior, e.g., the semantics of UML Class Diagrams should also be de�ned. Depending on the

actual context and needs, the de�nition of the semantic domain and the semantic mapping can be

given with di�erent levels of formalization (e.g., natural text, mathematics or automatic tools). The

following two styles are relevant for graphical modeling languages [LRS11]:

• Denotational: With a denotational semantics the meaning is given with a mathematical function

that maps a model directly to its meaning, called its denotation.

• Operational: With an operational semantics the meaning is given as a sequence of computa-

tional steps that results from processing the input model.

- High-level test goals
- Required test artifacts

Application domain

- Types of languages
- Syntax and semantics

Languages

- Test case generation
- Test evaluation

Test framework

- Robustness, state-based API
- Interface description, test data

HA middleware

- Configuration languages
- XML Schema, static semantics

Languages

- Automatic tool support
- CRASH criteria

Test framework

- Context-aware behavior
- Scenarios, test requirements

Mobile systems

- Sequence diagrams, TERMOS
- UML 2 metamodel, semantics

Languages

- Random simulations
- Checking against requirements

Test framework

Design approach

Figure 1.3: Common design approach

Design approach Although the characteristics and the challenges of the two applications do-

mains are quite di�erent, the approach used for designing the test frameworks was similar. Figure 1.3

illustrates the common steps utilized: �rst, the high-level goals and required test artifacts were col-

lected; next, the required test languages were designed; �nally, based on the languages a test frame-

work was developed. Moreover, the �gure depicts the focus points in each of the two application

domains. For example, HA middleware systems required simpler con�guration languages to describe

interfaces, but the tools of the framework o�er test generation. For mobile systems more complex

languages were needed to express scenarios, however, the framework concentrated on evaluation of

test traces. The specialties of the two application domains will be elaborated in the next chapters.
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1.5 Contributions and structure of the dissertation

The main contributions of the dissertation are centered around the above challenges, and the disser-

tation’s chapters follow this organization. The work presented here was part of joint collaborations in

various research projects. After summarizing the general results I formulate my own contributions.

Chapter 2 deals with robustness testing of HA middleware (Challenge 1). We designed and imple-

mented a robustness test framework, and conducted experiments on several middleware implemen-

tations to compare their robustness. This work was a joint research with Francis Tam from Nokia

Research Center, whose contributions included the overall directions of the investigation and discus-

sions on the tool concept [Tam09]. Related publications are the following: [4], [9], [12], [16], [19],

[20], [21].

Thesis 1 Following a systematic method I identi�ed potential activation modes of robustness faults
(including activation through stateless API, stateful API and underlying services), designed languages to
represent the related test artifacts, and developed algorithms for tools that use these languages to generate
test data. I implemented the languages and tools in a test framework, which can compare the robustness
of standard speci�cation-based middleware implementations.

Chapter 3 presents the semantic choices of UML 2 Sequence Diagrams (Challenge 3). We surveyed

the proposed formal semantics for Sequence Diagrams, categorized the semantic choices and options

found in them, and developed a structured framework to represent these choices. This work was

partially carried out in the ReSIST EU research project [ReS09]. Related publications are the following:

[1], [23].

Thesis 2 I identi�ed and categorized the semantic choices and available options in UML 2 Sequence
Diagrams. I gave a structured framework with an easy to use feature-model like representation of the
available options that can be used to adapt the semantics of the language to a speci�c purpose.

Chapter 4 contains the results on testing mobile systems (Challenge 2). We proposed the neces-

sary language extensions for graphical scenario languages to represent the characteristics of mobile

systems, designed a test requirement language called TERMOS using these extensions, and devel-

oped a test framework that can check execution traces against these requirements. This work was

partially carried out in the HIDENETS EU research project [HID09]. Developing the test language

and framework for mobile systems was a joint research with Nicolas Rivière and Minh Duc Nguyen

from LAAS-CNRS. Designing and developing a tool called GraphSeq for matching parts of the test

traces with test requirements was a contribution in Minh Duc Nguyen’s PhD dissertation [Ngu09].

Áron Hamvas, an MSc student I supervised at BME, created a tool [Ham10] for TERMOS. Related

publications are the following: [5], [8], [13], [18], [24].

Thesis 3 I designed a test requirement language that can be used in the domain of mobile systems. I
de�ned the syntax of the language using extensions to the UML Sequence Diagrams’ metamodel, and its
semantics using an automaton-based formal operational semantics. The language is capable of express-
ing local broadcasts and changes in the communication topology, and has the necessary syntactic and
semantic choices to make the speci�ed requirements checkable.



Chapter 2

Robustness testing of HA middleware

A high availability (HA) middleware is a software component that implements common techniques

to protect applications from failures resulting in outages. Typical techniques include introducing and

managing redundancy in the system, e.g., adding warm standby computers or duplicated communi-

cation channels. The Service Availability Forum (SA Forum) consortium was formed to develop open

speci�cations on the interfaces of such middleware systems to increase the interoperability of prod-

ucts and applications from di�erent vendors [TT12]. SA Forum’s Application Interface Speci�cation

(AIS) [SAF07] de�nes the interface between the HA middleware and the custom application. It is a C

language interface partitioned into a number of services. For example, the Cluster Membership Ser-

vice (CLM) provides a consistent view of the computing nodes, while the Availability Management

Framework (AMF) manages the life-cycle of redundant components. Several implementations have

been developed for the speci�cations, e.g., the open-source OpenAIS and OpenSAF or commercial

ones like GoAhead’s SAF�re and Fujitsu Siemens Computers SAFE4TRY
1
.

In case of HA products the robustness of the implementation is also an important property to

be considered. Robustness failures in the middleware can be activated by poor quality application

components, and one such component may render the whole application inaccessible. The common

API used by di�erent implementations makes it possible to develop a single robustness test framework

and compare the di�erent implementations. However, generating an e�ective test suite, executing

it and evaluating the results usually needs a lot of manual work. As AIS provides a semi-formal

description of the interfaces, which can be used to gather the possible inputs and output acceptance

conditions, it allows automated test construction and test execution.

Robustness testing of HA middleware

Characteristics

Research question

State-based API
Robustness is 

key factor

How can robustness tests be constructed and executed for HA middleware systems?

Activation modes of 
robustness faults

Figure 2.1: Research question of the chapter

1

Note that some of these products are not available anymore, e.g., GoAhead was acquired by Oracle in 2011.

9
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Thus, the goal of the research presented in this chapter was to de�ne a test approach for evaluating

and comparing the robustness of di�erent HA middleware implementations (Figure 2.1).

The chapter starts with an overview of existing robustness testing experiments, and collects the

di�erent test techniques (Section 2.1). Next, Section 2.2 describes the developed test approach: based

on the potential inputs for activating the robustness faults, di�erent test techniques are identi�ed for

each of the activation modes. Section 2.3 presents the design and implementation of the test frame-

work, including the languages for expressing the test artifacts and the tools for generating tests.

Section 2.4 evaluates the test approach and framework using case studies on several middleware im-

plementations. Finally, Section 2.5 summarizes the contributions of the chapter.

2.1 Robustness test techniques

Robustness is an attribute of resilience that measures the behavior of the system under non-standard

conditions. Robustness is de�ned in IEEE Standard 24765:2010 as the degree to which a system op-

erates correctly in the presence of exceptional inputs or stressful environmental conditions [IEE10]. To

further re�ne the di�erence between robustness and resilience Avizienis et al. de�ned robustness as

“dependability with respect to external faults, which characterizes a system reaction to a speci�c class

of faults” [Avi+04].

The goal of robustness testing is to activate those faults (typically design or programming faults)

or vulnerabilities in the system that result in incorrect operation, i.e., robustness failure, a�ecting

the resilience of the system. Robustness testing mostly concentrates on the internal design faults

that can be activated through the system interface. Usually, the results of robustness tests are not

checked against a detailed functional speci�cation, just against a set of simpli�ed failures modes. One

such classi�cation is the CRASH criteria [KD00]: Catastrophic (the whole system crashes or reboots),

Restart (the application has to be restarted), Abort (the application terminates abnormally), Silent
(invalid operation is performed without error signal), and Hindering (incorrect error code is returned

— note that returning a proper error code is considered as robust operation). Typically robustness is

expressed as a collection of measures; such measures can include the ratio of test cases that expose

robustness faults, or the number of robustness faults exposed by a given test suite.

If the robustness of a complex systems is tested, then usually the tests consists of two components:

the workload triggers (regular) operation of the system, while the faultload contains the di�erent

e�ects of external faults and stressful conditions applied on the system.

In the past decades many research projects were devoted to the robustness testing of a speci�c

application or application type. The early methods were mainly based on hardware fault injection, but

later the research focus moved to software-implemented techniques. This section introduces the main

milestones, which can be connected to the introduction of new test techniques. Note the techniques

presented here were usually used much earlier for other purposes (e.g., physical fault injection was

developed before the ’90s), this section concentrates on using a technique speci�cally for testing

robustness.

2.1.1 Injecting physical faults

Early work on robustness testing used fault injection (FI) tools to induce or simulate the e�ects of

various hardware related faults. Here a clear distinction shall be made between the purposes of general

FI and FI for robustness testing. The general technique assesses the ability of a system or component

to handle internal hardware or software faults. In a robustness test framework, FI can be used to assess

the ability of a component to handle the e�ects of external faults (that reach the system through its
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interactions with its environment) that are triggered by injecting faults into the environment (e.g.,

interacting components or underlying layers) while keeping the tested component intact. In this way

also the robustness of error detection and error handling mechanisms (considered as components to

be tested) can be investigated. FIAT [Bar+90] or FTAPE [TIJ96] are examples for FI tools that are

reported to be used for such robustness testing purposes.

2.1.2 Using random inputs

One of the �rst robustness test techniques was the generation of random input for the system. Random

inputs are easy to generate, there is a chance that robustness faults are activated by them, and due to

the simple acceptance criteria (crash/hung is checked) there is no need to generate reference output.

Fuzz [MFS90] was one of the �rst tools supporting this technique. It was utilized in three series

of experiments to test the reliability and robustness of various applications. In 1990, utility programs

on seven variants of Unix operating systems were tested. In 1995, the tests were repeated to check

whether robustness of these utilities had been improved and support to test X Window applications

were added. Lastly, in 2000, Fuzz was used to test 30 GUI applications on Windows NT. Although

the method used was really simple, it detected numerous robustness errors, namely 40% of the Unix

command line programs and 45% of the Windows NT programs crashed (terminated abnormally) or

hung (stopped responding to input within a reasonable length of time) when called with random input

data.

Although random testing is a basic technique, it proves to be useful even for modern COTS soft-

ware systems. The tests in Fuzz were reapplied to MacOS in a study prepared in 2007 [MCM07] with

the following results: 10 command line utilities crashed out of the 135 utilities that were tested (a

failure rate of 7%), 20 crashed and 2 hung out of the 30 GUI programs tested (a failure rate of 73%).

Thus, it turns out that robustness testing using random inputs is still a viable technique as robustness

of common software products has not been signi�cantly improved in general in the last �fteen years.

Fuzzing is extensively applied to security related testing, as presented in the book [TDM08].

2.1.3 Using type-speci�c tests

The robustness tests can be further re�ned by using speci�c invalid inputs as recommended by the

classical test design techniques [MS04]. To minimize the amount of manually created test cases a type-
speci�c method was introduced. The basic idea is that valid and invalid values, or ranges of values

are de�ned for the data types used in the system’s interface functions, and the robustness tests are

generated by combining the values for the di�erent parameters. The size of the invalid input domain

can be further reduced by utilizing inheritance between the types to test.

The Ballista tool [KD00] introduced this approach to compare the robustness of 15 POSIX op-

erating systems using a test suite for 233 function calls. The general goal of the research was to

implement methods to measure the robustness of the exception handling mechanism of systems. The

results could be used to evaluate the dependability of a system and characterize how it responds to

the failures of other components. In an experiment performed on the Safe Fast I/O library, the perfor-

mance drawback of robustness hardening was also measured. The tests showed that the performance

penalty of proper data validation and parameter checking was fewer than 2%. A good summary of

the experiences gained using Ballista can be found in [KDD08].
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2.1.4 Testing object-oriented systems

The type-speci�c technique mentioned above can be enhanced in object-oriented (OO) systems with

the help of automatically building a parameter graph with the type structure. The parameter graph

describes how the speci�c object types used as parameters in method calls can be generated as results

of calling constructors or public methods of other classes. This way the generation of an invalid

object (needed to test a given method) can be traced back to the call of another method (possibly

having parameters of simpler input types).

The JCrasher tool [CS04] creates robustness tests for Java programs automatically by analyzing

which methods could return a type needed for the actual parameters. It examines the type information

of the set of Java classes constituting the application and constructs code fragments that will create

instances of di�erent types to test the behavior of public methods with random or invalid data.

In OO applications the testing of exception handling is an important aspect of assessing the ro-

bustness of the fault handling and recovery code. Exception �ow analysis and testing exception-catch

paths is presented in [Fu+05].

2.1.5 Applying mutation techniques

Code mutation techniques [DeM+88] can be also applied to generate robustness tests. Starting from

a valid code, e.g., a functional test or an application using the system’s interfaces, mutation operators

can be applied, which resemble the typical faults causing robustness problems (e.g., omitting calls,

interchanging calls, replacing normal values in parameters with invalid values). One such approach

is [DM02], where the machine code of device drivers were mutated according to typical programming

errors.

Mutation and extension of valid test sequences may also help in state-based systems or compo-

nents to cover more states and transitions than in case of stateless API testing. In [Lei+10], �rst a

set of paths is generated to cover state transitions of the tested component, and normal test cases

are applied to traverse these paths and bring the component into speci�c states. In each state, the

available methods are called with invalid inputs to test the robustness in that state. This approach is

motivated by the fact that complex components may fail di�erently in di�erent states.

2.1.6 Model-based robustness testing

The increasingly popular model-driven development paradigm led to the idea of model-based testing

(using models as formal or semi-formal speci�cation for testing purposes) [Bro+05; Net+07] and also

model-based automated test generation. Naturally, model-based test generation can be tailored to

create robustness tests by looking for extreme values and conditions on the basis of interface de�ni-

tions, pre- and post-conditions, invariants, and constraints �xed in the design model. Model-based

testing is currently a very active �eld of research; here we mention only a few techniques and tools

that are relevant to testing robustness.

The �rst test generation approaches utilized formal speci�cations and functional models (B, Z,

LOTOS, etc.). Constraint-solving techniques were applied to generate boundary values of input do-

mains as well as the corresponding test cases. In state-based formalisms, e.g., in IOLTS [FMP05], path

searching and model mutation (on the basis of fault models) were applied in order to �nd tests for

concrete robustness criteria. Timed behavior was modeled and tested using timed automata [FRT10]

or extended interoperability models [Mat+09].

In protocol testing FSM-based models are used for a long time. The robustness of an implementa-

tion were tested by supplying messages representing unde�ned transitions in the model [BP94]. In a
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more recent experiment SDL was the primary modeling language used for generating robustness tests

in case of communication protocols [SRC07]. In another work [PK07], �nite state machine models of

communication protocols were extended and faulty protocol data units were generated on the basis

of a stress operational pro�le in a statistical approach to model-based robustness testing.

In UML-based designs the Object Constraint Language (OCL) was used to specify valid domains,

this way providing input information also for robustness testing. Typical examples of UML-based test

generator tools that support (a subset of) OCL were LTG/UML [UL06] and ParTeG [WS08]. Adding

all robustness-related information (e.g., error-handling, invalid transitions) could result in a complex,

hard to read model. To counter this [ABH12] recommended a methodology that uses aspect-oriented

modeling; robustness behavior is modeled as separate aspect state machines that are woven together

with the behavioral model later.

Model-based con�guration and execution of robustness testing is complementary to model-based

testing. In [OM09], a framework was presented that �ts to the model-based development approach by

o�ering to the tester the model of the tested application (using UML class diagram model elements)

and domain-speci�c extensions that allow the con�guration of fault injection and robustness testing

experiments. The modi�cations that are required in the environment of a tested component for ro-

bustness testing are implemented automatically (using a Java bytecode manipulation technology) on

the basis of the model extensions.

2.2 Activation modes of robustness faults and the test approach

The �rst step of developing the test approach in the case of a “black box” AIS middleware was to

identify the possible sources of inputs that can activate robustness faults. These inputs are depicted

in Figure 2.2(a), considering a typical computing node of a HA distributed system.

Custom Application

HA Middleware

Operating System

Hardware

3

External Components 1
Human 

Interface

API calls

OS calls4

HW 
failures

5

Operators

2

(a) Sources for activating robustness faults

3 3

Type-specific 

testing
Workload

Mutation 

testing

4

Operating System

Hardware

4

OS call interception

HA Middleware

(b) Robustness test techniques

Figure 2.2: Overview of the test approach for HA middleware systems

1. External components and human interface: They a�ect the operation of the application, thus

their e�ects reach the HA middleware only indirectly (through normal, erroneous or missing
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API calls).

2. Operators: In general, operator errors appear as erroneous con�guration of the middleware and

erroneous calls using the speci�c management interface.

3. API calls: The calls of the application components using the public interfaces of the HA mid-

dleware can lead to failures if they use exceptional values in parameters or try to call a certain

function when the component is not in the required state.

4. OS calls: The robustness of a system is also characterized by its ability to handle the exceptions

or error codes returned by the OS services it uses.

5. Hardware failures: The most signi�cant hardware failures in a HA system are host and commu-

nication failures (that have to be tolerated in the normal operating mode of the HA middleware)

and lack of system resources.

These sources can be categorized as direct sources (API calls, OS calls, operators) and indirect

sources (externals components, human interface, HW failures). The e�ects of the indirect sources

could only reach the middleware through one of the direct ones. Regarding the direct sources the

following decisions were made:

• The standardized middleware API calls are considered as a potential source of activating ro-

bustness faults as they represent faults in the applications, in external components used by the

applications and human interaction also. The challenge in testing the API calls was that most of

the AIS interface functions are state-based, i.e., a proper initialization call sequence, middleware

con�guration and test arrangement is required, otherwise a trivial error code is returned.

• The failures of the OS system calls were included as they do not only represent the faults of

the OS itself (which has lower probability for mature operating systems), but failures in other

software components, in the underlying hardware and in the environment could also manifest

in an error code returned by a system call. Possible examples of such conditions are writing

data to a full disk, communication errors when sending a message, etc.

• Operator errors cause also a signi�cant part of service unavailability, however, the con�guration

of the HA middleware and the system management interface were still under standardization

by the SA Forum, thus they were not included in the robustness test framework.

The developed test approach focused on the direct sources, as the thorough testing of the potential

failures caused by the direct sources would cover a signi�cant part of the failures induced by the

indirect sources.

Test approach Generally, testing the robustness of a component could have three di�erent targets:

testing the robustness of (i) the component’s stateless API, (ii) the component’s state-based API, and

(iii) handling the failures of the used lower-level services. As we could see from the description of the

selected sources, which can activate robustness faults, all these three targets are relevant in case of a

HA middleware.

The following test approach was developed that utilizes a combination of three techniques to

cover these targets, as depicted on Figure 2.2(b). Table 2.1 illustrates the relationship between the

activation sources, test targets and the selected test techniques.

• Type-speci�c testing: The robustness of the middleware’s API functions should be tested in case

of invalid values are used as parameters. This requires calling all the functions in the API of the

middleware with a thorough combination of the possible valid and invalid values. The type-

speci�c testing technique is used to construct such a robustness test suite, as this technique

o�ers a systematic method to de�ne the necessary valid and invalid test values.
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Table 2.1: Relationships of sources, targets and techniques in the test approach

Activation source Test target Test technique

API calls stateless and state-based API type-speci�c testing

API calls state-based API mutation-based testing

OS calls lower-level services OS call interception

• Mutation-based sequential testing: Some speci�c states of the middleware can only be reached by

complex call sequences; nevertheless, the robustness of the API functions should be tested even

from these states. Thus �rst the middleware should be directed to these states, then its functions

should be called with invalid inputs. The functional test suites provided by the vendors of the

HA middleware could be used to reach these states as these test suites usually cover all the

important states of the middleware. Therefore exceptional test sequences are constructed by

using mutation operators on functional test suites that represent typical faults (e.g., changing

the sequence of test calls, modifying parameters or function names).

• OS call interception: In order to test how the middleware reacts to the failures of the consumed

lower-level services, the calls to the OS services should be intercepted and their return values

should be modi�ed. This interception can be realized with the help of a wrapper component

that is placed between the middleware and the operating system libraries. Furthermore, this

kind of test activity requires a workload application that drives the middleware in a way that

the full range of the utilized OS calls could be observed and intercepted.

Thus the robustness faults activated by the API calls are covered by type-speci�c and mutation-

based testing, while the faults activated by OS calls are tested by OS call interception.

The recommended test approach uses the following method to evaluate of the outcomes of the

tests. Recall, that the results of robustness tests can be categorized according to the CRASH criteria

(Section 2.1). A widely accepted simpli�ed approach is that �rst only the obvious robustness failures

are recognized: Catastrophic, Restart and Abort. These classes of results can be easily detected in the

current setting also, e.g., the middleware crashes, a segmentation fault occurs in the tested application

or the test does not �nish after a reasonably long timeout. The other two classes (Silent, Hindering)

would require much more e�ort to recognize, as they need the proper de�nition of expected return

value for every test case.

To develop a test framework that can implement the above de�ned test approach, the follow-

ing systematic method was designed that makes it possible to create the necessary languages and

automatic tools for a given test technique.

1. First, the necessary test artifacts and their requirements are collected.

2. Next, the required test languages describing the test artifacts are constructed.

3. Finally, automatic tools are developed that can generate the test artifacts from descriptions

given using the test languages.

The next section presents how this method was used to construct a robustness test framework

that uses type-speci�c testing, mutation-based testing and OS call interception.
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2.3 Robustness test framework and tools

Taking into consideration the potential sources of activating robustness faults, we developed a set of

tools to assist in the activation of these faults by generating proper test values and performing the

test calls. As the AIS speci�cation is quite low-level, i.e. it speci�es C functions and types directly,

the test framework is aligned to this abstraction level. For example, the languages used in the tools

contain references to function calls or include code fragments, and they have simple textual syntax.

We selected XML as the basic language format, as it can be conveniently processed, and the abstract

syntax can be easily speci�ed with XML Schema (XSD).

2.3.1 Type-speci�c testing

The part of the test framework presented in this section concentrates on calling the functions in

the API of the HA middleware with systematic combinations of exceptional values. In type-speci�c

testing instead of de�ning the exceptional cases one by one for each API function, the exceptional

values are de�ned with regard to the parameter types that are used in the functions. The section

�rst collects the required test artifacts, then designs the languages describing these tests artifacts, and

�nally presents a tool that can generate an executable test suite based on these languages.

2.3.1.1 Required test artifacts

The �nal test artifacts required in type-speci�c testing are the test programs implementing the test

cases that call the API functions of the middleware with a given combination of exceptional values. In

a type-speci�c approach the following additional artifacts are needed to generate these test programs.

• Functions to test: the list of the functions and their signature de�ne the subset of the API to test.

• Types used in the functions: as type-speci�c testing focuses on the individual types present in

the functions to test, a list of these types and their properties are required.

• Test values for each type: the list of the values used for each type in the test cases should also

be collected.

Thus the required test artifacts are determined in the end by the requirements of the di�erent

exceptional test values to specify.

Test values In case of an AIS-based HA middleware the test values can be analyzed and designed

as follows.

• Exceptional values: For simple types, e.g., numbers and enumerations, values recommended

by traditional test techniques [MS04] were selected, like nominal values, boundary values and

values outside the domain of the given type. For more complex types the exceptional values

can be extended with (i) syntactically incorrect values, e.g., string not in the format A.B.C.D for

an IPv4 address, (ii) semantically incorrect values, e.g., non-existing version number, and (iii)

values used in invalid context, e.g., not initialized handle
2
.

• Valid values: If only exceptional values are used in the testing, then the e�ect of a simple pa-

rameter can be masked by the exceptional values of the other parameters. Thus it is important

to include valid values for each type, and test the possible combinations of valid and invalid test

values. (Note that this has the additional bene�t that it simpli�es later fault localization.)

2

In AIS a handle is a reference between the application and the middleware, which is used in every subsequent invo-

cation after the initialization.
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• Chaining of types: It was often the case that a valid value for some types required valid instances

of other types (e.g., to de�ne a registered component in AIS, �rst a valid handle is needed).

Thus the de�nition of the test values had to include references to other types or non-trivial

initialization code.

• Complex structures: Some types used in API functions are complex structures. For example,

SaAmfProtectionGroupMemberT is a structure consisting of a component name (SaNameT), a

HA state (SaAmfHAStateT) and a rank (SaUint32T). Constructing exceptional values from all

possible combinations of the basic types in these structures would result in far too many values,

because many structures are built from more than four basic types and the AIS functions have

on average two or three parameters. Thus, in the case of complex structures the following

systematic method was used. For each member one invalid value is selected. Test values are

assigned to the complex structure, where all members are valid and where only one member

has an invalid value while the others have valid values.

• Inheritance: Inheritance among the types helped to reduce the number of type-speci�c excep-

tional values to be de�ned. Namely, exceptional values of an ancestor type are not de�ned

again in an inherited type, because the tool will use them automatically: the exceptional values

speci�ed in the ancestors are also applied recursively as test values in the descendants. In this

way, in each type only the speci�c values shall be de�ned. The example in Table 2.2 illustrates

how this method can be applied in the case of AIS types. In this case SaAmfHandleT would

inherit the values speci�ed for BaseType and SaUint64T also.

Having collected the necessary test artifacts and their requirements, the languages used for spec-

ifying these artifacts can be designed.

Table 2.2: Using inheritance when de�ning the test values for types

Type Parent Test values

BaseType - not initialized

SaUint64T BaseType 0; MAXINT

SaAmfHandleT SaUint64T initialized AMF handle; already �nalized handle

SaClmHandleT SaUint64T initialized CLM handle; handle with no callbacks registered

2.3.1.2 De�ning the languages for the test artifacts

As described in the previous section a language is required to de�ne the metadata of the functions to

test, the metadata of the types used in those functions, and the test values for each type.

Function metadata The requirements for the description of the API functions are quite simple, it

should include the return value and the parameters for a given function. The language was speci�ed

in a way to simplify the subsequent automatic processing. The full abstract syntax of the language

can be found in Appendix A.1.2. The following elements can be speci�ed in the language:

• ReturnType: the type of the function’s return value;

• Parameters: contains a Parameter child element for each of the function’s parameters;

• ParameterOrder : the position of the parameter (included to make the processing easier);

• IsPointer : identi�es directly whether the parameter is a pointer or not;
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<Function name="saAmfFinalize">

<ReturnType>SaAisErrorT</ReturnType>

<Parameters>

<Parameter>

<ParameterOrder>1</ParameterOrder>

<ParameterName>amfHandle</ParameterName>

<ParameterType>SaAmfHandleT</ParameterType>

<IsPointer>true</IsPointer>

<Type>in</Type>

</Parameter>

</Parameters>

</Function>

Listing 2.1: Example function metadata

• Type: can have the value of “in”, “out” or “in/out”.

An example for using the language can be seen on Listing 2.1.

<Type>

<Name>SaAmfCallbacksT</Name>

<ValidValueMethod generate="true" validValueIndex="2"/>

<PointerMethod generate="true"/>

<ParentName value="BaseType"/>

<IncludeFile fileName="CallBackMethods.c" />

</Type>

Listing 2.2: Example type metadata

Typemetadata The following requirements were identi�ed for the language to describes the types

used in the API functions. It should be able to

• de�ne the inheritance between types;

• include complex initialization code;

• o�er a way to return an instance of the given type representing a valid value;

• make it possible to access the test values for the given type from the test values of other types.

The full abstract syntax of the language used to describe types can be found in Appendix A.1.1 as

an XML Schema. The de�nition of the elements of the language are the following:

• Name: the name of the type;

• ValidValueMethod: designates that a method should be generated that returns a valid value for

this type;

• PointerMethod: initiates the construction of a method to access test values via pointers, which

can be used in other types;

• ParentName: if this element is present, then all test cases of the given ancestor type are re-used

in this type;

• IncludeFile: speci�es a source �le that contains common initialization code for the test values

of the type.

Listing 2.2 shows an example for describing the SaAmfCallBacksT type.
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Test values The most important requirement against the test value de�nition was that it should

o�er a very �exible description, where even complex logic or even calls to other parts of the middle-

ware can be speci�ed. Thus instead of trying to design a complicated high-level modeling notation,

the valid and exceptional test values are stored in stand-alone �les as C code snippets. Storing test

values as C code snippets makes it easy to de�ne values that use complex call sequences for initial-

ization. An example for such a test value can be seen on Listing 2.3. Note that %I% is a placeholder,

that will be later replaced when these test artifacts are processed.

// values[%I%]: test value representing a registered component name

char compName[15] = "comp_b_in_su_x";

values[%I%].length = strlen( compName );

memcpy( values[%I%].value, compName, values[%I%].length );

SaAmfHandleT handle = generateValidSaAmfHandleT();

saAmfComponentRegister(handle, &(values[%I%]), NULL );

Listing 2.3: Example test value as a C code snippet

2.3.1.3 Template-based type-speci�c test generator tool

The template-based type-speci�c test generator (TBTS-TG) tool should process the test artifacts de-

�ned with the above languages and automatically generate an executable robustness test suite. The

TBTS-TG tool consists of two components (see Figure 2.3). The �rst component creates a library of

test values for each of the types. The second one creates the actual test case programs, which will call

the API function with combinations of the test values. These two components together generate the

full test suite, that can be later executed on the middleware implementations.

TBTS-TG tool Generated test suite

Type-specific test
value generator

«source»
Test value library

«source»
Common functions

«source»
Test case files

«include»

«include»

«generate»

Test case
generator

«generate»

«model»
Type metadata

«source»
Test values

«source»
Generator skeletons

«model»
Function metadata

«source»
Test case template

«input»

«input»

«use»

Figure 2.3: Architecture of the type-speci�c test tool

Test value generator The �rst component uses the type metadata, the de�nitions of the test data

a C code skeleton to generate the test value library. Algorithm 2.1 contains the pseudo-code of the

test value generator’s behavior.
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Algorithm 2.1: Generating the test value library

Input: T type metadata description

Input: V1, . . . Vn set of test values for each type

foreach t ∈ T .Types do
create the �t�* generate�t�() function

foreach v ∈ Vt do
insert v in the function’s skeleton

if t.ValidValueMethod .generate then
create the �t� generateValid�t� function

if t.PointerMethod .generate then
create the �t�** generatePointer�t� function

Listing 2.4 shows an example of a method in the test value library created by the TBTS-TG tool

for the SaNameT type. It contains invalid values representing typical programming errors (0 and 1), a

syntactically invalid value (2), a semantically invalid value (3), a value used in an invalid context (4)

and a valid value (5). Note that the tool is �exible enough to create complex test values, e.g., in (5) a

custom code gets the actual component’s name using the middleware’s API.

SaNameT* generateSaNameT(int * numberOfGenerated)

{

static SaNameT values[6];

*numberOfGenerated = 6;

// 0 - not initialized

// 1 - not valid length

values[1].length = strlen( "string1" ) + 20;

memcpy( values[1].value, "string1", values[1].length );

// 2 - name not specified in LDAP DN format

values[2].length = strlen( "aisRobustnessComp" );

memcpy( values[2].value, "aisRobustnessComp", values[2].length );

// 3 - not defined component name

values[3].length = strlen( "safComp=UnknownComponent" );

memcpy( values[3].value, "safComp=UnknownComponent", values[3].length );

// 4 - service unit name instead of a component name

values[4].length = strlen( "safSu=aisRobustnessSU" );

memcpy( values[4].value, "safSu=aisRobustnessSU", values[4].length );

// 5 - component name belonging to this process

SaAmfHandleT handle = generateValidSaAmfHandleT();

saAmfComponentNameGet( handle, &(values[5]) );

return values;

}

Listing 2.4: Example type-speci�c test value generator
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If a new type is added to the API, only its XML type metadata and the C code snippets with the

test values have to be added, and all the other test codes can be regenerated with the tool.

Test case generator In the next step the tool creates the actual test programs for each of the func-

tion de�ned in the API to test. It is a straightforward step, which uses the function metadata and a C

code test case template as inputs.

Figure 2.4 illustrates the behavior of generated test program using a UML 2 Activity Diagram.

Before starting the test calls the test program waits for a prede�ned time to let the middleware �nish

all initialization. Next, the test value combinations of the function under test’s parameters are enu-

merated (note, because some of the AIS functions have a very large number of parameters, there is

a con�gurable upper limit for the calls to execute). The actual call is performed in a newly forked

child process. The test program waits for (i) the child process to �nish, (ii) a signal representing a

segmentation fault in the child process, or (iii) a timeout. After that, it logs the outcome, and gets the

next parameter value combination.
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Figure 2.4: Overview of the generated test program’s behavior

Once the input generators and the test program sources are created by the TBTS-TG tool, they

are compiled and linked with a utility library, which contains functions for logging the results. The

generated test suite is self-contained, i.e., it does not depend on the TBTS-TG tool; it is pure C code,

which can be easily executed on the di�erent middleware implementations.

Executing the test suite The �rst version of the test suite consisted of standalone C programs

that called the AIS API functions directly (outside of the AMF framework). However, in more recent

middleware implementations the AMF functions cannot be called from a process that was not started

by AMF. Thus, in the current version the AMF service of the middleware starts the test programs

con�gured as SA-aware components. The test cases were executed by forking a new process for

each test case – in order to minimize impact of the test cases on each other. To further minimize the

impact of test suites on each other (here test suites consist of a group of tests that focus on the same

API function), the middleware was restarted between two suites.

To support the automatic execution of the test suite a test execution engine was prepared.

This engine runs the same test programs on each HA middleware, only the following tasks are
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implementation-dependent (as these are not standardized by the SA Forum): (i) construction of an

implementation-speci�c con�guration �le on the basis of a common abstract con�guration (which

consists of one service group and one service unit containing the actual test case as a single compo-

nent), and (ii) restarting the middleware between the runs of the test cases.

2.3.2 Mutation-based sequential testing

While the TBTS-TG tool tests mostly individual functions, mutation-based techniques could be used

to generate tests with complex call sequences. The basic idea is that mutation operators representing

external e�ects (including the faults of the external components) that can activate robustness faults

in the tested component, like omitting a call or changing the speci�ed order of calls, are applied to

valid functional test programs that use the HA middleware. In this way a large number of complex

robustness test cases can be obtained automatically.

The advantage of using mutation-based techniques in the robustness testing of HA middleware

is that it can handle the state-based nature of the middleware. The original call sequences in the

source code to mutate can lead the middleware to a state, which is otherwise not trivial to reach, e.g.,

a component is initiated and a restart was already triggered on it once. From this state an excep-

tional condition can be simulated with the applied mutation that otherwise, if not encountered in this

speci�c state, would not have an e�ect.

2.3.2.1 Required test artifacts

To develop this mutation-based sequential test approach, the following test artifacts are required:

• source code to mutate: source code that contains complex call sequences utilizing the services

of the middleware;

• mutation operators: de�nition of suitable mutation operators to create robustness test cases;

• con�guration of mutations: con�guring how and how many mutants to create.

In the current version of the robustness test framework �ve types of mutation operators are im-

plemented: omission, relocation and swapping of calls, modifying conditions, replacing parameters

with a NULL value. The meaning of the operators are described in Table 2.3. Note that the approach

can be extended with other mutation operators (e.g., replace parameters with other invalid values).

Table 2.3: Implemented mutation operators

Operator Description

OmitCall Removes a statement from the source code in which a call

to a given function is found.

RelocateCall Moves a statement containing a call to a given function to

another random position in the source code.

SwapCalls Swaps two function calls.

ModifyIfCondition Replaces a logical operator in the condition of an if state-

ment with a randomly chosen another operator.

ReplaceParameterWithNull Replaces a parameter in a function call with a NULL value.

With respect to applying the mutation operators it is important to de�ne constrains. If the opera-

tors are applied completely random, then the e�ectiveness of the generated mutants could be low (e.g.,
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omitting calls that only produce debugging information or modifying functions that are not related

to the middleware). For this reason the con�guration of the mutations shall allow to de�ne which

calls or parts of the source to mutate.

2.3.2.2 De�ning the mutant con�guration language

Based on the requirements outlined in the previous section a con�guration language was speci�ed

(Appendix A.2 contains the abstract syntax of the language in an XML Schema format). The language

makes it possible to de�ne the source �les used for mutation, the mutation operators to use, and

constrains on applying the operators. The elements of the language are the following:

• Inputs: root element having child elements describing the sources to mutate;

• Input: a source �le or a directory containing source �les to mutate, its Location child element

speci�es its absolute or relative path;

• Mutations: de�nition of the type and number of mutations to apply;

• NumberOfMutants: speci�es how many mutants should be created from each source �le,

• NumberOfOperatorToApply: describes how many times operators should be applied to create

one mutant (it can be the same or di�erent operators),

• Operators: the set of possible operators that can be used to generate mutants (it can be a subset

of operators de�ned in the previous section).

The semantics of the con�guration language is the following. Without any parameters, the oper-

ators are applied in a random manner (e.g., the OmitCall operator will search randomly for a function

call to delete in the input source �le). Parameters can be supplied to the operators to constrain this

random choice: the inFunction parameter describes that modi�cation should happen inside a given

function, while the call parameter directs that only calls to a certain function should be modi�ed.

Listing 2.5 shows an example for the con�guration. Here for all source �les located in the saftest

directory ten mutants will be generated, in each mutant one operator will be applied.

<?xml version="1.0" encoding="utf-8" ?>

<Inputs>

<Input type="directory">

<Location>saftest</Location>

<Mutations>

<NumberOfMutants>10</NumberOfMutants>

<NumberOfOperatorToApply>1</NumberOfOperatorToApply>

<Operators>

<OmitCall call="*" inFunction="main" />

<OmitCall call="saAmfComponentRegister" inFunction="*" />

<ModifyIfCondition inFunction="*" />

<RelocateCall call="*" inFunction="*" />

</Operators>

</Mutations>

</Input>

</Inputs>

Listing 2.5: Example mutant con�guration



24 CHAPTER 2. ROBUSTNESS TESTING OF HA MIDDLEWARE

2.3.2.3 Mutation-based sequential test generator tool

The inputs of the MBST-TG tool (Figure 2.5) are the source �les to be mutated and a con�guration

�le that describes the parameterization of the mutation operator, e.g., the �lters to be used when

searching for a call to apply the mutation.

MBST-TG tool Generated test suite

Mutation generator
tool

«source»
Mutants

«generate»

src2srcml

«source»
Code to mutate

«config»
Mutant configuration

«input»

srcml2src

«use» «use»

Figure 2.5: Architecture of mutation-based test tool

Algorithm 2.2 presents the strategy implemented in the tool to apply the mutation operators. The

con�guration for a given input source �le prescribes the applicable operators, the number of mutants

to create and number of operators to apply. If one operator shall be applied to create a mutant for a

source �le, then the possible operators are applied in a round-robin manner in the di�erent mutants.

If more than one operator shall be applied, then for each mutant the tool chooses randomly the given

number of operators from the possible ones. If an operator cannot be applied, e.g., there is no call that

was speci�ed, then the tool tries to apply another operator if there are some left.

Algorithm 2.2: Applying mutation operators

foreach input ∈ Inputs do
if NumberOfOperatorsToApply = 1 then

rr ··= RoundRobinList(Operators)
for i = 1 to NumberOfMutants do

m ··= NewMutant()
o ··= next(rr)
ApplyOperator(m, o)

else
for i = 1 to NumberOfMutants do

m ··= NewMutant()
l ··= List(Operators)
for i := 1 to NumberOfOperatorsToApply do

repeat
o ··= random(l)
remove(l, o)
success ··= ApplyOperator(m, o)

until success 6= true ∧ l 6= ∅

The challenge of implementing the mutation-based sequential test generator tool (MBST-TG) tool
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was the parsing and modi�cation of the test programs’ C source �les. As the available free parsers

encountered various problems when system header �les were included in the input �les, we followed

a light-weight approach instead of obtaining the full parse tree (that is required for compilation). The

srcML tool [SDM12] was used to build an XML �le representing only the syntactic structure of the

input source �les. This syntactic structure is enough to implement the common mutation operators.

The mutant candidates came from two sources. The �rst one was the SAF Test [SAF06] project,

which is an open-source conformance test suite for SA Forum speci�cations. Because the test cases

in SAF Test are redundant, 10 source �les were selected that cover the functionality of the others

as well. The source �les had to be slightly modi�ed, because the B.01.01 version of SAF Test did not

use the required LDAP Distinguished Name format for component names. The second source was the

functional test suite provided by OpenAIS, from which the testamf test �le was used for mutation. The

MBST-TG tool was con�gured to generate mutants using one operator each time, and in a second run

using two random operators each time. Note that occasionally the mutation may result in such source

code that cannot be compiled (data �ow analysis is not performed, this way, for example, changing of

function calls may result in using variables that were not assigned a value before). Altogether from

these mutants 92 valid mutants were included in the test suite.

2.3.3 OS call interception

The third part of the robustness framework intercepts OS system calls executed by the HA middleware

and injects exceptional values into their return values. This section �rst collects the typical use cases

for diverting OS calls, next it de�nes the language used to con�gure the interception, and �nally

presents the implemented OS call wrapper tool.

2.3.3.1 Required test artifacts

By intercepting OS calls, di�erent types of stressful environmental conditions can be simulated. The

most common ones include the followings:

• Call the original system call and return its result, but with a given probability include a delay.

This mode can simulate network delays or overloaded subsystems.

• With a given probability return one of the prede�ned error codes of the system call. This mode

can simulate various failures in the environment, like faulty authorization con�gurations or

hardware failures.

• Instead of calling always the requested system calls, omission failures can be simulated by

sometimes intercepting the calls but not forwarding them to the operating system.

Thus in case of OS call interception the test artifact that characterizes the robustness testing is

the con�guration of the diversion of the di�erent OS calls. The con�guration language of the OS call

interception shall support the following modes of diversion:

• inserting a variable delay;

• changing the return value of the system call;

• con�guring whether the original call should be forwarded to the OS or not;

• the interception should occur only with a given probability to represent rare faults.

Among this information the basic properties of the OS call (return type, list of possible error codes)

are required additionally.
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2.3.3.2 De�ning the con�guration language

Based on the requirements outlined in the previous section an XML-based con�guration was designed

(its abstract syntax can be found in Appendix A.3 as an XSD). Listing 2.6 presents an example for its

usage. It de�nes that the bind function returns an int, indicates an error with the -1 return value,

and if this function is called, then it should be intercepted with 0.5 probability and the return value

from the OS should be delayed with 10 milliseconds.

<function name="bind">

<signature>

<returnType>int</returnType>

<standardErrors>

<error type="int" value="-1" />

</standardErrors>

</signature>

<interception>

<logCall>true</logCall>

<forwardCall>true</forwardCall>

<detourChance>50</detourChance>

<returnValue>

<mode>normal</mode>

<delay>10</delay>

</returnValue>

</interception>

</function>

Listing 2.6: Example function con�guration in OS call interception

The description of the elements in the con�guration are the following:

• function: the name of the function to intercept is speci�ed in the name attribute;

• signature: the return type and the return values representing errors are listed in the signature

element;

• logCall: it de�nes whether the calls should be logged;

• forwardCall: it instructs whether the original function should also be called;

• detourChance: it speci�es a percentage of how often the interception of the call of the given

function shall happen;

• returnValue: the mode element in the returnValue node has three valid values:

– normal: the return value from the call to the original OS function is returned;

– desiredReturn: the value speci�ed in the desiredReturn element is returned by the wrapper;

– standardError : one of the errors de�ned in the standardErrors element is returned ran-

domly;

• delay: this element can instruct the wrapper to include a further delay (speci�ed in milliseconds)

before returning the value.

This con�guration o�ers a �exible way of intercepting or delaying system calls to simulate di�er-

ent types of exceptional situations.
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2.3.3.3 OS call wrapper tool

The developed OS call wrapper tool (see Figure 2.6) uses the con�guration language described in the

previous section. The wrapper is implemented in a library containing functions exactly matching

the signatures of the system calls to intercept. The wrapper is injected using the Unix LD_PRELOAD

variable, which can be used to load prede�ned libraries instead of system libraries.

Testing environment

HA application

AIS middleware

OS call wrapper

Operating system

«log»
Log file

«generate»

«config»
Wrapper configuration

«source»
Interceptor functions

«input»

Figure 2.6: Architecture and integration of the OS call wrapper tool

The algorithm of handling an incoming system call is given in Algorithm 2.3.

Algorithm 2.3: Handling a system call in the OS call wrapper

Input: s system call

Data: r return value

if detourChance ≥ rand(0, 100) then
switch mode do

case normal
r ··= call(s)

case standardError
if forwardCall then

call(s)

r ··= (e ∈ standarErrors)
case desiredReturn

if forwardCall then
call(s)

r ··= desiredReturn.value

if delay > 0 then
sleep(delay)

else
r ··= call(s)

return r
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Since the middleware is tested here as a black box, the system calls can be triggered only indi-

rectly, by starting a workload application. As a workload to trigger OS calls from the middleware, a

synthetic HA application was prepared that resembles a search and index engine. The application uti-

lizes the AMF and checkpoint service of the middleware. Using the strace utility all system calls of the

middleware were logged during the execution of the workload application on two implementations,

and the intersection of the two sets of OS calls was included in the test suite, namely the functions

accept, bind, close, gettimeofday, munmap, poll, sendmsg, setsockopt and socket.

2.4 Robustness testing case studies

As the �nal results of the research presented in this chapter are a new test framework and tools, a

natural way to evaluate them is to execute the robustness test suite generated by the tools on dif-

ferent HA middleware implementations. The objective of this evaluation could be summarized in the

following way.

Objective Can the test framework be used to assess the robustness of HA middleware systems?

The evaluation consisted of executing the test suites on middleware implementations and collect-

ing data on the results. Testing was conducted on system level, i.e. the real middleware running on

a computer node was studied. The results of the evaluation were used to make qualitative observa-

tions, and the results in�uenced the next set of test executions resulting in a �exible design. Thus

the evaluation method can be categorized as case study according to the taxonomy of [Woh+12]. The

next sections describe the case study design and the obtained results.

2.4.1 Case study design

The presentation of the case study design follows the guidelines of [RH09]. First, the general objective

is re�ned into detailed research questions. Next, the planning of the case study is detailed (e.g., unit

of analysis or data collection procedures).

Research questions Three research questions were formulated based on the objective.

RQ1 Can the more complex robustness testing techniques detect additional failures?

RQ2 Can the three di�erent test technique be used to uncover di�erent failures?

RQ3 Can the robustness of the di�erent middleware implementations compared?

These research questions directed the design of the case studies. Three related case studies were

performed, each of them focusing on one of the above research questions. The case studies used

similar contexts, but they di�ered in the types of the test techniques applied and the middleware

implementations tested (the case studies were performed in subsequent years with the continuously

improved test framework and new versions of the middleware systems).

Case The object of study was in each case study the AIS-based HA middleware systems.

Unit of analysis The units of analysis were the di�erent middleware implementations. Throughout

the case studies the following ones were studied.

• OpenAIS: OpenAIS was one of the �rst open source AIS implementation started by Mon-

taVista Software around 2002. Frequent versions were released until 2010, later the devel-

opment of some of the components were migrated to the Corosync project. In the case

studies several versions were studied: release 0.69 (2005-09-20), release 0.80.1 (2006-08-16),

trunk
3

2006-12-11, trunk 2007-10-02.

3

The trunk is a development version obtained directly from the source control system of the project at a speci�ed date.
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• SAFE4TRY : SAFE4TRY was a package from Fujitsu Siemens Computers, which consisted

of the SAF AIS implementation RTP-SAF-L V2.1A and the PRIMECLUSTER cluster.

• OpenSAF : OpenSAF is another open source implementation launched in 2007 by Motorola.

Later several major vendors joined the development. The project is still releasing new

versions, the last one was in October 2012.

Data collection The main method of data collection was indirect, the results of the test calls, test

cases and log �les were saved in each case study. The test framework was responsible to im-

plement the data collection protocol, the following information was persisted automatically for

each test execution.

• Exit code: The exit code of the test case process, possible values include success, segmen-
tation fault or timeout.

• Error code: For each of the calls made to the middleware API an AIS error code is

returned. The error codes are de�ned in the AIS speci�cation, e.g., SA_AIS_OK or

SA_AIS_ERR_VERSION.

• Log �les: Operational logs of the middleware were saved, which could contain information

about additional internal errors.

Analysis The test framework saved the exit and error codes for each test case in CSV �les, which

were later analyzed with spreadsheet applications or in the �rst case study with data mining

tools. The log �les were analyzed manually by searching for possible signs of errors or warn-

ings, as the format of these logs are di�erent for every implementation.

Validity The counter threats to validity several data sources (di�erent middleware implementations)

were used in the case studies. Both commercial and open source solutions were selected to cover

di�erent types of products. As the case studies did not involve human subjects or interviews,

typical interpretation problems were not relevant. However, reliability of the case studies was

a major concern. Scripts automated every aspects starting from test execution, middleware

restarts between tests to data collection to obtain reproducible, reliable results.

Three case studies were developed to answer the three research questions de�ned. The case stud-

ies di�ered in the tools used from the test framework and the middleware implementations tested.

• Case study 1: The �rst case study addressed RQ1. It used prototype testing tools implementing

random and type-speci�c techniques, and executed tests on an early version of OpenAIS to �nd

out whether more complex techniques could �nd extra failures.

• Case study 2: The second one used all the three test tools (type-speci�c, mutation-based and OS

call interception) on SAFE4TRY and two versions of OpenAIS, and tried to tackle RQ2 (regarding

the types of failures uncovered by the three techniques).

• Case study 3: The �nal case study used only the type-speci�c tool, but it executed tests on all

middleware to answer RQ3 by comparing the robustness of di�erent implementations.

2.4.2 Case study results

The next section presents the results of the three robustness testing case studies.

2.4.2.1 Case study 1: Comparing generic and type-speci�c testing

The �rst case study (�rst reported in [16]) assessed the e�ciency of the type-speci�c approach com-

pared to more simple methods of using the same valid and invalid values for all types. The tests
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were executed on the AMF (17 functions) and CLM module (7 functions) of OpenAIS 0.69, which

implemented the early A.0.1.01 version of the AIS speci�cation.

Three di�erent test suites were used. A generic tool created two test suites, where each test case

called one AIS function with all the possible combinations of a set of prede�ned input values. The

same set of input values was used for every type in every function (this was possible as most of the

parameters were pointers in the AIS functions). The �rst suite used only invalid addresses, while

the other used NULL and a valid address as an input to the tested functions. Note, that this was a

very crude technique, but it represents coding errors when handling pointers that are frequent in C

programs. The initial version of the generic test tool was implemented in approximately three days.

The third test suite was generated by the type-speci�c testing tool (Section 2.3.1). In case of

functions with more than �ve complex parameters the number of the generated test cases for that

function was limited to 4000. The design and implementation of the type-speci�c tool itself required

about two weeks. The main advantage of the automated test approach is that the type-speci�c testing

of a new function requires only the completion of the metadata, and supplying the test values and

logging code for the new types used in the function. When adding a new function these activities

required usually only 1-2 hours (or even less, if the types of the function’s parameters were already

de�ned).

Table 2.4: Results from the di�erent exceptional input generation and test techniques. Legend: calls

resulting in robustness failures / total number of calls.

Technique OpenAIS AMF OpenAIS CLM

Generic testing with invalid addresses 2406 / 2456 60 / 424

Generic testing with NULL and valid address 87 / 136 0 / 44

Type-speci�c testing 8001 / 13640 65 / 2280

Table 2.4 lists the ratio of API calls that resulted in robustness failures and the number of test calls

executed. The result of the call was initially considered as a robustness failure if the call produced a

segmentation fault in the test program. CLM was more resilient to generic testing since it used less

pointers than AMF. Just the number of observed robustness failures are not enough to compare the

e�ectiveness of the three test suites, thus we re�ned the characterization of the results of the tests

using the following methods.

First, we assigned the possible error codes (as potential results) to test inputs values. The test

outputs were then �ltered and only those test runs were inspected, in which the output was not

among the expected error codes. In this way hindering failures (i.e., when an incorrect error code

is returned) can be di�erentiated from robust behavior (where the proper error code is returned in

response to an invalid input).

Next, instead of the number of the observed robustness failures a much better measure is the num-

ber of the robustness faults causing those failures. The �rst step is toward this goal is to identify the

exact parameter combination that causes a failure (note that in case of closed source implementation

faults can be traced back only to this level). However, even in our early tests thousands of robustness

test cases were generated, thus an automated method was needed to analyze the results. Following

the method presented in [Pin+05], the decision tree method of a data mining tool was used to trace

back robustness failures to the parameter combinations causing those failures in each of the AIS func-

tions (e.g., if the version is valid but the handle is NULL in saAmfInitialize, then it causes always

a segmentation fault). Table 2.5 lists the obtained results. In case of several functions, type-speci�c
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testing identi�ed additional robustness faults in comparison with generic testing, while in case of

three functions only type-speci�c testing was e�ective.

Table 2.5: Faults found in OpenAIS by functions. X + Y means that generic testing found X faults

while type-speci�c identi�ed Y more. The star denotes a critical error, which caused segmentation

fault not only in the test program, but in the middleware executive also.

Function name Faults

saAmfCompNameGet 1

saAmfComponentCapabilityModelGet 1

saAmfComponentRegister 2

saAmfComponentUnregisterRegister 2

saAmfDispatch 1

saAmfErrorCancelAll 1

saAmfErrorReport 3

saAmfFinalize 1

saAmfHAStateGet 2

saAmfInitialize 0 + 2

saAmfPendingOperationGet 1

saAmfProtectionGroupTrackStart 2

Function name Faults

saAmfProtectionGroupTrackStop 2

saAmfReadinessStateGet 1 + 1

saAmfResponse 1*

saAmfSelectionObjectGet 1 + 1

saAmfStoppingComplete 1*

saClmClusterNodeGet 0 + 1

saClmClusterTrack 0 + 1

saClmClusterTrackStop 0

saClmDispatch 0

ClmFinalize 0

saClmInitialize 0

saClmSelectionObjectGet 0

Conclusions of the �rst case study This �rst case study addressed research question RQ1 (Can
the more complex robustness testing techniques detect additional failures?). The analysis of the data col-

lected showed that there could be failures that could not be detected by simple techniques. The use

of more complex robustness testing techniques is further motivated by the fact that the type-speci�c

testing in the case study found two additional critical faults a�ecting not just the test application

but the middleware itself. Although results of the case study are limited by the fact that it was per-

formed only on one implementation, the obtained results are consistent with the experiences of other

robustness testing projects (e.g., the Ballista project [KDD08]).

2.4.2.2 Case study 2: Comparing the three testing techniques

The second case study (�rst reported in [12]) analyzed the failures found by all three tools in

SAFE4TRY and two newer versions of OpenAIS.

Results from the type-speci�c tests Just by trying to compile the test suite generated by the

TBTS-TG tool on the system under test, several discrepancies were found. The header �les used in

OpenAIS di�ered in eight places from the o�cial header �les of the AIS speci�cation, and thus from

the header �les used by the test suite. There was also one misspelling in SAFE4TRY’s header �les.

Moreover, there were several types in the speci�cation that were mapped to di�erent types in the

implementations, e.g., SaInt32T is mapped to long in SAFE4TRY and to int in OpenAIS.

Table 2.6 summarizes the exit codes of the test cases that were logged when executing the test

suite. Segmentation faults de�nitely indicate robustness failures, since in a HA middleware (that has

to be prepared for the erroneous behavior of the managed components) even invalid inputs should

be handled correctly. Timeouts could indicate normal behavior, because some of the API functions

could be parameterized to wait for an event to dispatch. However, after examining the concrete
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values used in the tests, it turned out that the large number of timeouts in openais-trunk-2006-12-11

and openais-0.80.1 is not reasonable. Note for openais-0.80.1 the sum of the calls is lower than for the

other two implementations, because in case of saAmfProtectionGroupTrack the test program and

the middleware crashed at the beginning of the test and no calls were executed for that functions.

Table 2.6: The number of test cases that exited with the given status code in case of type-speci�c

testing of the di�erent platforms.

Status code openais-0.80.1 openais-trunk-2006-12-11 SAFE4TRY

0 (success) 24568 26019 29663

11 (seg. fault) 1110 1468 0

14 (timeout) 467 2178 2

Segmentation faults occurred in 13 functions of openais-trunk-2006-12-11 and in 12 functions of

openais-0.80.1. Timeouts were observed in 7 functions of openais-trunk-2006-12-11, in 7 di�erent

functions of openais-0.80.1, and in one function of SAFE4TRY (namely, in saAmfDispatch when

specifying a �ag representing blocking; here timeout is the correct behavior). Table 2.7 lists the details.

Table 2.7: Functions that produced robustness failures in case of type-speci�c testing

Failure openais-0.80.1 openais-trunk-2006-12-11

seg. fault

saAmfComponentErrorClear

saAmfComponentErrorReport

saAmfComponentNameGet

saAmfComponentRegister

saAmfComponentUnregister

saAmfHAStateGet

saAmfHealthcheckCon�rm

saAmfHealthcheckStart

saAmfHealthcheckStop

saAmfInitialize

saAmfProtectionGroupTrackStop

saAmfSelectionObjectGet

saAmfComponentErrorClear

saAmfComponentErrorReport

saAmfComponentNameGet

saAmfComponentRegister

saAmfComponentUnregister

saAmfHAStateGet

saAmfHealthcheckCon�rm

saAmfHealthcheckStart

saAmfHealthcheckStop

saAmfInitialize

saAmfProtectionGroupTrack

saAmfProtectionGroupTrackStop

saAmfSelectionObjectGet

timeout

saAmfComponentErrorClear

saAmfComponentNameGet

saAmfCSIQuiescingComplete

saAmfDispatch

saAmfInitialize

saAmfHealthcheckCon�rm

saAmfProtectionGroupTrackStop

saAmfComponentErrorClear

saAmfComponentNameGet

saAmfComponentUnregister

saAmfCSIQuiescingComplete

saAmfDispatch

saAmfProtectionGroupTrack

saAmfProtectionGroupTrackStop

Some of the test cases caused fatal error in the middleware. The tests for 14 functions in openais-

0.80.1 and for 6 functions in openais-trunk-2006-12-11 produced an internal assertion violation, and

the middleware exited. The following two assertion violations were observed (the assertions show
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that the code detected that some input values are not valid; however, the problem was not correctly

handled inside the middleware as it resulted in a crash):

aisexec: amf_lib_exit_fn: Assertion `comp != ((void *)0)' failed.

aisexec: amfcomp.c:1142: amf_comp_register: Assertion `0' failed.

In the �rst case study version 0.69 of OpenAIS was used. In comparison with this previous ex-

periment, the following could be observed: in the current versions of OpenAIS the simple method

of using only invalid pointers and integer values as exceptional parameters did not activate as many

robustness failures as previously. One of the reasons for this is that moving to version B.01.01 of AMF

the number of pointer parameters decreased signi�cantly. In the type-speci�c robustness test suite

58.6% of the tests resulted in segmentation fault for version 0.69, while this number was only 4.2% and

4.9% for the 0.80.1 and trunk versions, respectively. Thus, the robustness of OpenAIS was de�nitely

improved, although it still lags behind the robustness of SAFE4TRY.

Results from themutation-based testing The mutant test sequences obtained from SAF Test and

testamf were executed on the three implementations. The number of observed robustness failures is

summarized in Table 2.8.

Table 2.8: The number of observed robustness failures / the total number of executed test cases in

case of mutation-based testing of the di�erent platforms.

Input openais-0.80.1 openais-trunk SAFE4TRY

SAF Test 8 / 63 0 / 63 1 / 63

testamf 22 / 29 28 / 29 0 / 29

The robustness failures discovered by the SAF Test mutants were the following. In case of eight

mutants, openais-0.80.1 exited with one of the previous (Section 2.4.2.2) or with the following asser-

tion:

./aisexec: symbol lookup error: /opt/openais-0.80.1/exec/

/service_amf.lcrso: undefined symbol: assert

In SAFE4TRY, when stopping the middleware after one of tests the following error occurred:

Error in communication! ERROR: Stopping AMF subsystem was not successful

Note that the SAF Test programs are constructed in such a way that the return value is checked

after each function call, and if it does not match the prede�ned value then the program is aborted with

an error message. This feature of the SAF Test programs makes them di�cult to be used in robustness

tests, because the subsequent calls are not executed if a wrong return value is detected. thus the tests

terminate usually very early after one or two calls.

When the testamf mutants were executed as AMF components in openais-trunk and openais-

0.80.1 the CPU utilization increased to 100% and a hard reset had to be performed. Thus, Table 2.8

contains the results from running the testamf mutants as standalone programs. During the experi-

ments with the mutants the above detailed assertions were also observed.
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It could be observed that mutation-based robustness testing highlighted additional robustness

failures that were not detected by the type-speci�c tests. It gives reasons for applying such complex

test sequences.

Results from the OS call wrapper For each of the nine selected system calls (see Section 2.3.3)

a separate test case was executed by starting the workload application and after a while forcing a

failover. The system calls were forwarded to the OS, and with a prede�ned probability a random error

code was returned (the probability depended on the frequency of the call, which was determined in

probe runs).

Table 2.9: The system calls that provided the given outcome using the OS call wrapper.

Outcome openais-0.80.1 openais-trunk SAFE4TRY

No failure observed accept, close, get-

timeofday, munmap,

sendmsg, setsockopt

accept, bind, close,

gettimeofday,

sendmsg

accept, close, gettime-

ofday, sendmsg, set-

sockopt

Application failed - munmap, setsockopt poll

Middleware failed bind, poll, socket poll, socket bind, munmap, socket

The �rst row of Table 2.9 lists the system calls in which case the workload application was exe-

cuted successfully in spite of the injected fault. The second row shows such cases when the application

exited but the middleware did not fail. The last row indicates the test cases when also the middleware

exited (typically silently, without error messages). Note that due to the random injection of error

codes, these latter cases just indicate potential robustness faults without objectively comparing the

implementations.

Conclusions of the second case study This second case study addressed research question RQ2
(Can the three di�erent test technique be used to uncover di�erent failures?). The case study showed

that type-speci�c testing was useful to uncover problems in the de�nition of the API, and test a wide

range of parameter combinations. Mutation-based testing was able to detect a failure in SAFE4TRY,

where the type-speci�c test suite have not found any obvious robustness failures. The interception of

OS calls was able even to crash SAFE4TRY, which did not happen with the other two test techniques.

Thus di�erent kinds of robustness failures were observed with the three test techniques. However,

the case study also pointed out limitations in the current test framework, e.g., the SAF Test programs

are not the most adequate input for mutation-based testing or that tracing back robustness failures

detected with the OS call wrapper is not trivial.

2.4.2.3 Case study 3: Comparing the di�erent middleware implementations

The last case study (reported in [9] and [12]) compared the results of the type-speci�c test suite from

all middleware implementations. (Note, the testing of OpenSAF was performed by András Kövi on

a two node OpenSAF 3.0.FC cluster). The test suite generated by the type-speci�c test tool were

executed on all the tested implementations, thus comparing their results can o�er insights on the

robustness of the di�erent middleware systems. To be more precise, as the implementations supported

di�erent versions of the AIS speci�cation, di�erent versions of the test suite were also executed.

However, the di�erence between the versions was relatively small (e.g., adding two new type and
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removing four old ones from the approximately 60 de�ned types, removing one function from the 20

tested ones), thus quantitative observations can be deduced.

Two metrics of the executed robustness testing can be compared:

• the number of given exit codes of the test cases;

• the number of given error codes returned by the middleware.

As it can be seen from Table 2.10 most of the tests returned with success (exit code 0), a few

returned with timeout (exit code 14), and only the early development branch of OpenAIS su�ered

segmentation violations (exit code 11). It is also notable that in the second OpenAIS version all of these

bugs were corrected and no segmentation violations happened. Comparing the number of timeout

errors reveals that SAFE4TRY caused signi�cantly less of these than the other two. Even though

it cannot be easily veri�ed, as the source code of this implementation is not publicly available, the

probable reason behind it can be the di�erent way of memory handling and early veri�cation of

invalid parameters.

Table 2.10: Exit code counts by middleware implementations

Exit code OpenAIS OpenSAF SAFE4TRY

trunk-2006-12-11 trunk-2007-10-02

0 (exit) 26019 21228 28309 29663

11 (segv) 1468 0 0 0

14 (timeout) 2178 1578 1356 2

Table 2.11 contains the distribution of returned error codes by middleware implementations. Al-

though all implementations are based on the same high-level API, their parameter and error handling

mechanism can di�er signi�cantly. The two most frequently returned errors are the BAD_HANDLE

and the INVALID_PARAM codes. The BAD_HANDLE means that the handle is invalid or corrupted.

The INVALID_PARAM covers most of the cases when parameters do not conform to the requirements.

The number of SA_AIS_ERR_INVALID_PARAM codes show that SAFE4TRY and OpenSAF detect much

more invalid parameter combinations. Moreover, OpenSAF mostly returns INVALID_PARAM instead

of BAD_HANDLE. This can probably mean that OpenSAF checks the library handle in most cases only

if the other parameters conform to the requirements. When an assertion was violated in OpenAIS, all

the remaining calls for the given test program resulted in library error, that is the reason for the high

number of SA_AIS_ERR_LIBRARY codes (which could not be considered as robust behavior). Finally,

as there are signi�cant di�erences in the types and numbers of the returned error codes, probably the

answers to invalid calls should be more precisely de�ned in the AIS speci�cation.

Conclusions of the third case study The third case study was conducted to answer research

question RQ3 (Can the robustness of the di�erent middleware implementations compared?). The case

study showed that even just the analysis of the error and exit codes of the executed test suite can

point out the following di�erences.

• The robustness test framework can quickly identify implementations with signi�cantly lower

robustness (e.g., the early versions of OpenAIS, where tests produced segmentation faults).

• The test suite can identify whether an implementation could return invalid error codes (as in

the case of OpenAIS). Invalid error codes hinder the error handling in the applications and can

signal further bugs in the implementation.
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Table 2.11: Error code counts by middleware implementations

Error code OpenAIS OpenSAF SAFE4TRY

trunk-2006-12-11 trunk-2007-10-02

(invalid error code) 1279 0 0 0

139 0 1260 0 0

SA_AIS_ERR_BAD_FLAGS 0 0 576 384

SA_AIS_ERR_BAD_HANDLE 20408 16628 7056 20708

SA_AIS_ERR_EXIST 0 0 0 1

SA_AIS_ERR_INIT 0 0 295 6

SA_AIS_ERR_INVALID_PARAM 226 64 19755 6073

SA_AIS_ERR_LIBRARY 2316 2644 0 52

SA_AIS_ERR_NOT_EXIST 1296 1458 0 1786

SA_AIS_ERR_NOT_SUPPORTED 0 0 0 144

SA_AIS_ERR_TRY_AGAIN 30 0 224 0

SA_AIS_ERR_VERSION 336 336 294 294

SA_AIS_OK 128 98 109 215

• Finally, the results can exhibit the di�erences between the parameter and error handling mech-

anisms of the implementations. An implementation that identi�es invalid parameters early

could signal better robustness.

A more detailed analysis that traces back robustness failures to faults (like the one performed in

the �rst case study) would o�er a more precise comparison, but it remains future work as it was not

performed for the data of the third case study.

2.4.3 Conclusions of the case studies

The case studies were performed to evaluate whether the developed test framework can be used to

assess the robustness of HA middleware systems. The three case studies tried to �nd out whether (i)

can more complex techniques �nd additional failures, (ii) the di�erent test techniques would �nd the

same robustness failures, and (iii) the test framework could be used for comparison. The results of

the case studies were constructive, i.e., they showed additional failures found only by di�erent test

techniques or identi�ed more robust implementations. Note, the case studies focused on qualitative

and on quantitative data.

The case studies used several middleware implementations to increase the trustworthiness of the

results. Moreover, all test execution and data collection were automated to counter human errors.

The type-speci�c test suite and all detailed results on OpenAIS were made available online [BME07]

to enable the reproduction and analysis of the case studies.

Finally, the case studies helped to identify limitations and future work in the robustness test frame-

work, which will be summarized in the next section.

2.5 Summary

In this chapter a test approach for HA middleware systems was presented. Figure 2.7 summarizes the

research problem and the developed languages and test framework. Based on the possible activation
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modes of the robustness faults of the HA middleware the following methods were developed:

• adapting the classical type-speci�c API function testing;

• state-based testing using mutated functional tests;

• diverting the calls going to and return values coming from the OS services using a wrapper.

The novelty of the approach is (i) the method of identifying test artifacts and designing the sup-

porting languages and tools, and (ii) the application of automatic tools that construct the test cases

systematically on the basis of the standard interface speci�cation (API functions) and existing func-

tional test suites. The robustness testing of the HA middleware implementations demonstrated that

these tools can be used e�ciently and their test results are complementary as they detect distinct

failure types. It is important to emphasize that robustness testing was used only to observe these

problems, and further work is needed to �nd the causes and to turn the observations into dependabil-

ity bene�ts, e.g., by identifying the wrong implementation approaches that shall be corrected.

Robustness testing of HA middleware

Characteristics

Research question

Languages

Test framework

Test oracle

State-based API
Robustness is 

key factor

How can robustness tests be constructed and executed for HA middleware systems?

Types and Invalid inputs Mutation operators OS call diversion

- sample application
- AMF components

Workload

- TBTS-TG tool
- MBST-TG tool
- OS call wrapper

Faultload

Activation modes of 
robustness faults

CRASH criteria

Figure 2.7: Summary of problem, languages and framework for robustness testing

The developed test tools and test suite could form the basis of a robustness benchmark for HA

middleware. To be useful as a means to obtain a fair comparison of various implementations, the

following required properties of a benchmark suite [KS08] were taken into consideration.

• Representativeness: A benchmark must re�ect the typical use of the target system. The robust-

ness testing is complete from the point of view of the set of AMF functions that can be called

from the potential applications. In the case of the set of operating system calls that should be

intercepted – since no speci�c application was known at the time of constructing the robustness

test suite – a synthetic application was used as a workload that exercised the AMF services.

• Repeatability: The results obtained for a speci�c execution of the benchmark should be re-

peatable (within acceptable statistical margins) for the same system setup, even if executed by

di�erent end users. Since the test suite is available as a ready-to-use set of programs, and not

as a high-level speci�cation that can be interpreted in various ways, the implementation of the

test suite is unambiguous and its execution is repeatable.



38 CHAPTER 2. ROBUSTNESS TESTING OF HA MIDDLEWARE

• Portability: Most of the developed tools are used only in the construction phase of the bench-

mark (namely, the type speci�c test generator and the mutant based test generator) and the

resulting test �les (that are used during benchmarking) are available as standard C �les. This

way the portability of these tools is not an issue. The OS call wrapper tool is available as a

standard C program which can be compiled in di�erent AIS application environments.



Chapter 3

Semantic choices in UML 2 Sequence
Diagrams

Graphical scenario languages are frequently used to express various test artifacts. They o�er an

intuitive visual notation to communicate test requirements or test cases, or other artifacts depicting

messages sent between di�erent entities. In our research, we concentrated on the scenario language

de�ned in the Uni�ed Modeling Language (UML), namely Sequence Diagrams.

The 2.0 version of UML changed Sequence Diagrams signi�cantly. Several elements were bor-

rowed from MSC, many new complex elements were added to the language, and the semantics and

the underlying metamodel were rewritten. Due to the increased expressiveness of the language, in-

terpreting a complex diagram that uses the new constructs is a di�cult task; thus, having a precise

formal semantics becomes even more critical. But the many di�erent purposes Sequence Diagrams

are used for, e.g., showing the �ows of method calls inside a program, or giving a partial speci�cation

of interactions in a distributed system, require quite di�erent interpretations of the language. Indeed,

many di�erent semantics have been proposed for Sequence Diagrams. For a practitioner wanting to

use Sequence Diagrams for a given purpose, it is not easy to select a suitable semantics.

We faced exactly this problem when we were working on the de�nition of test languages for mo-

bile computing systems. When we tried to de�ne the semantics of the new language, we encountered

the problem that the various formal semantics for Sequence Diagrams handle even the most basic

diagrams quite di�erently. It turned out that there are several subtle choices in the interpretation of

language constructs. Moreover, these choices and all their consequences are often not obvious. A

structured representation of all these choices was needed.

Semantic choices in UML 2 Sequence Diagrams

Characteristics

Research question

Lack of official 
formal semantics

Numerous subtle 
semantic variants

What semantic choices are in UML 2 Sequence Diagrams?

Several new, 
complex elements

Figure 3.1: Research question of the chapter

Based on our experience, our aim was to (i) give an overview about the proposed formal semantics,

39
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(ii) collect and categorize the semantic choices faced by them, and (iii) present the di�erent options for

the collected choices and the relations between these options in a structured format.

The chapter is divided into the following parts. Section 3.1 presents the syntax and semantics

as de�ned in the OMG speci�cation. We tried to highlight those parts, which are usually missing

from published overviews about Sequence Diagrams. Section 3.2 presents a survey of 13 proposed

formal semantics for Sequence Diagrams. We selected semantics created for di�erent purposes (e.g.,

for using in high-level speci�cations or in veri�cation tools), to have a broad coverage of language

variants and usage modes. Section 3.3 collects and categorizes the semantic choices for Sequence

Diagrams and describes what are the consequences of choosing one or the other options. Finally,

Section 3.4 summarizes the contributions of the chapter.

3.1 UML Sequence Diagrams in the OMG speci�cation

Sequence Diagrams are de�ned in the UML Superstructure speci�cation [OMG11b]. More precisely,

scenarios in UML are modeled with Interactions
1
. Interactions can be illustrated on several diagram

types: Sequence Diagrams, Interaction Overview Diagrams, Communication Diagrams, Timing Dia-

grams, and Interaction Tables. Thus, the syntax and semantics are de�ned for Interactions; Sequence

Diagrams are just a concrete notation to depict them.

3.1.1 Syntax of Sequence Diagrams

The syntax de�ned in the speci�cation consists of (i) a concrete syntax de�ning the graphical notation,

and (ii) an abstract syntax given with a metamodel de�ning the relationships between the elements.

3.1.1.1 Concrete syntax

This section summarizes the elements of Interactions and their notations on Sequence Diagrams. Fig-

ure 3.2 illustrates a basic Interaction. Lifelines represent the individual participants in the Interaction,

which communicate via Messages.

sd example 1

a : A b : B c : C

m3

m4

d : D

m1()
m2

Lost 
message

Found 
message

Asynchronous 
message

Synchronous call

Execution-
Specification

Message-

Occurrence-

Specification 

GeneralOrdering

LifelineName of 
Interaction

Figure 3.2: Example Sequence Diagram

Message is a general term: it can be a synchronous or an asynchronous communication; it can

mean calling an Operation or sending a Signal (speci�ed by its MessageSort attribute). MessageKind
de�nes whether the sender or receiver of the message is known (complete, lost or found messages).

1

Throughout the text, elements of the UML metamodel are written with CamelCase.
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Messages have two MessageEnds. GeneralOrdering can constrain the ordering of otherwise unrelated

occurrences. ExecutionSpeci�cation is a speci�cation of the execution of a unit of behavior or action

within a Lifeline. OccurrenceSpeci�cation (and its descendants) is the basic unit of semantics. Send-

ing and receiving messages are marked with MessageOccurrenceSpeci�cation; starting and ending of

ExecutionSpeci�cations are represented with ExecutionOccurrenceSpeci�cation.

sd example 2

alt

a : A b : B

m1

m2

m3

c : C

m3

[a.d < 5]

[else]
StateInvariant

Interaction-
OperatorKind

Interaction-
Constraint

Interaction-
Operand

Combined-
Fragment

Gate

m4

{ c.e > 5}

d : C

ref
anotherSD(31, „p2”) InteractionUse

sendState

Figure 3.3: Example for CombinedFragment

More complex Interactions can be created with CombinedFragment. A CombinedFragment con-

sists of one or more InteractionOperands. An InteractionOperatorKind speci�es the purpose of the

fragment. InteractionConstraints can guard each InteractionOperand. Messages on their own cannot

cross the boundaries of CombinedFragments: they need a Gate which links the two parts of the mes-

sage. An InteractionUse refers to another Interaction. It can be passed parameters and can have a

return value.

StateInvariant is a run-time constraint on one of the participants of the Interaction. StateInvariants

have two kinds of notation: it can be an expression of attributes and variables, or it can refer to a state

of the Lifeline’s instance (both notations are used on Figure 3.3). Further constructs exist, e.g., for

specifying time and duration constraints, for a complete list see the speci�cation [OMG11b].

3.1.1.2 Abstract syntax

The abstract syntax of Interactions is de�ned with metamodeling; the model is presented in Section
14.2 Abstract Syntax of [OMG11b]. The abstract syntax is depicted in several separate diagrams,

which makes it sometimes hard to see all the connections between the important elements. Thus,

we illustrate the abstract syntax of the most important elements of the BasicInteractions package on

one diagram in Figure 3.4. (Note that the various Events classes, the MessageSort and MessageKind

classes, attributes and some of the association names are not depicted on the picture for readability.)

Figure 3.5 illustrates the abstract syntax of the Fragments package. (Again, attributes and some

of the association names are not depicted on the picture for readability.) InteractionFragment is an

abstract class for Interaction, CombinedFragment, InteractionOperand, InteractionUse and Continu-

ation, and also for OccurrenceSpeci�cation, ExecutionSpeci�cation and StateInvariant.

From the abstract syntax we can see for example, that a StateInvariant belongs to one Lifeline;

thus it is a local constraint, or that there are three kinds of Gates, each for di�erent purposes.

The speci�cation contains a simple example illustrating an Interaction’s concrete and abstract

syntax; however that diagram does not contain CombinedFragments. It is really helpful to see how
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Figure 3.4: The abstract syntax of the BasicInteractions package (fragment)

Figure 3.5: The abstract syntax of the Fragments package (fragment)

the di�erent elements relate to each other; thus a more complex example is included here.

The right side of Figure 3.6 contains the metamodel elements of sd1 . The Interaction is a con-

tainer for all other elements. The OccurrenceSpeci�cations are linked to the appropriate Lifelines

and Messages. The Lifelines are connected to the CombinedFragments that cover them. The Inter-

actionOperand contains the InteractionFragments (OccurrenceSpeci�cations, StateInvariants, other

CombinedFragments, etc.) which are enclosed by this operand. An InteractionFragment can be en-

closed only by one operand; thus when an InteractionFragment is nested in several operands, only

the bottom-most containment is illustrated in the model explicitly.

Finally, an Interaction can be stored in XMI (XML Metadata Interchange) format to exchange

models between di�erent tools. The XMI contains the Interaction’s abstract representation, e.g., for

Figure 3.6 the XML in Appendix B.1 is generated.
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sd sd1

opt

a : A b : B

m2

[b.d > 5]

(a) Concrete syntax

sd1:Interaction

a:Lifeline
b:Lifeline

m2:Message s-m2:MessageOccurranceSpecificationr-m2:MessageOccurranceSpecification
fragment

enclosingInteraction

fragment

sendEventreceiveEvent

message

covered
covered

opt-cf:CombinedFragment

opt-op:InteractionOperand

guard:InteractionConstraint

fragment
coveredBy coveredBy

enclosingOperandfragment
fragment

(b) Abstract syntax

Figure 3.6: A complex Interaction’s concrete and abstract syntax (fragment)

3.1.2 Semantics of Sequence Diagrams

There are two major challenges when dealing with the semantics given in the OMG speci�cation.

• The description of the semantics is scattered throughout the text. Some parts are in the intro-

duction of the chapters, while some information is only in the constraints de�ned in the detailed

description of a class.

• The speci�cation uses so-called semantic variation points [Sel04], i.e., part of the semantics is

not speci�ed in detail to allow using UML in many domains. When UML is used in a concrete

domain, the modeler has to choose from the di�erent possible variations. However, sometimes

these variation points are not marked explicitly.

This section summarizes the parts of [OMG11b] that deal with the semantics of Interactions.

(Note, in the remaining part of this section page numbers refer to [OMG11b].)

3.1.2.1 Common run-time semantics

UML introduced a common run-time semantics for its di�erent notations, which de�nes basic el-

ements, e.g., Behavior, Actions, and Event. Section 6.2 of [OMG11b] (On the Run-Time Semantics of
UML) summarizes the basics. All behavior is caused by actions executed by active objects. It describes

also the basic causality model.

“The causality model is quite straightforward: Objects respond to messages that are gen-

erated by objects executing communication actions. When these messages arrive, the

receiving objects eventually respond by executing the behavior that is matched to that

message. (page 11)”

The CommonBehaviors package (Chapter 13) deals with the fundamentals of behavior. A Behavior
describes how the states of the objects, as re�ected by their structural features, change over time.

Behavior is an abstract metaclass; its subtypes are Interactions (Chapter 14), Activities (Chapter 12),

State Machines (Chapter 15) and Use Cases (Chapter 16). These subtypes di�er on how they model a

behavior, e.g., what level of detail is captured. A Behavior is attached to a BehavioredClassi�er (e.g.,

to a Class or to a Collaboration). A Behavior is the implementation of a BehavioralFeature, which can

be an Operation or a Reception of a Signal. Behaviors can be invoked by Actions. An Action (Chapter

11) is the fundamental unit of behavior speci�cation. “An action takes a set of inputs and converts them
into a set of outputs, though either or both sets may be empty (page 225).” Examples for actions are

CallOperationAction, SendSignalAction or WriteVariableAction. The execution of Actions can result in
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an Event. Possible Events include CallEvent or SignalEvent. For Events caused by InvocationActions a

request (e.g., a Message) is generated and sent, which contains the arguments of the Action and the

identities of the sender and receiver object. Similarly, at the receiving of the request an Event will

occur. Events, through Triggers, may cause the execution of Behaviors. Figure 3.7 summarizes the

inheritance relations between these elements.

Behavior

Interaction StateMachine

BehavioralFeature

OperationReception

Signal

Action Event

MessageEvent

CallEventSignalEvent

InvocationAction

CallActionSendSignalAction

Figure 3.7: The inheritance relationship between some of the fundamental elements

Figure 3.8 presents the relations of these fundamental concepts. Associations in red are not part

of the speci�cation; they illustrate only possible implicit relationships. For example, a CallBehav-

iorAction Action causes a direct invocation of a Behavior, while the CallOperationAction does this

via a BehavioralFeature. Likewise, Actions do not necessarily cause an Event, and not all Events are

caused by Actions. These relationships and the semantic domain of behaviors are detailed in Section
13.1 Overview of the Common Behaviors chapter.

The run-time semantics of UML is also described in [Sel04], where not only the concepts, but also

the design decisions behind them are explained.

Finally, in Relation of trace model to execution model (page 496) the relation between this general

semantic domain and the elements of Interactions is described. Invocation occurrences and receive

occurrences are modeled by OccurrenceSpeci�cation. Actions are generally not described in Interac-

tions. A request is modeled by a Message; an execution of a behavior is by ExecutionSpeci�cations.

Although the CommonBehaviors package tries to unite the behavior described in the several di�erent

notations, sometimes this is not achieved yet completely. For example, both ReceiveSignalEvent (from

BasicInteractions) and SignalEvent (from Communications) describe the receipt of a Signal, they both

are descendants of MessageEvent, but have no relations with each other.

Behavior

BehavioralFeature

Action Event

method

specification

Trigger

event

BehavioredClassifier
ownedTrigger

invokes causes

Figure 3.8: Relations of the basic behavioral concepts (red associations are not part of the speci�cation)
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3.1.2.2 Semantics of basic Interactions

Interactions describe behavior with messages between participants. The focus is on the order and the

types of the messages, although Interactions can contain reference to data in message parameters and

constraints. The central concept of the semantics is a trace.

“A trace is a sequence of event occurrences, each of which is described by an Occurrence-

Speci�cation in a model” (page 495).

A central question is what part of the behavior is modeled by the Interactions.

“There are normally other legal and possible traces that are not contained within the

described interactions” (page 473).

Interactions can model also invalid traces, and there could be traces that are not described by the

Interaction:

“The semantics of an Interaction is given as a pair of sets of traces. The two trace sets

represent valid traces and invalid traces. The union of these two sets need not necessarily

cover the whole universe of traces. The traces that are not included are not described by

this Interaction at all, and we cannot know whether they are valid or invalid” (page 495).

Collecting all the references yields that invalid traces are de�ned by assert and negative fragments,

and constraints such as StateInvariant, DurationConstraint and TimeConstraint. The semantics of

Interactions is explained with an interleaving semantics, i.e., two events may not occur at exactly the

same time.

Producing the traces of a diagram is constrained by the following rules:

• Occurrences on the same Lifeline must occur in the same order as they are speci�ed, even for

the receiving of messages sent by di�erent objects (page 483).

• Receiving a message should occur after the sending of the message (page 507).

• GeneralOrdering can add further constraints to OccurrenceSpeci�cations, which are not re-

lated.

Thus the semantics de�nes partial orders on OccurrenceSpeci�cations, and valid traces are those,

which can be generated satisfying these orders.

3.1.2.3 Semantics of fragments

If no operator is explicitly given, then the InteractionFragments of a diagram should be combined

using a form of sequential composition, weak sequencing (page 500). As Figure 3.5 shows, Occur-

renceSpeci�cations are also InteractionFragments; thus this default composition applies also to basic

Interactions. The rules for weak sequencing are the following (page 483):

1. “The ordering of OccurrenceSpeci�cations within each of the operands is maintained.”

2. “OccurrenceSpeci�cations on di�erent lifelines from di�erent operands may come in any order.”

3. “OccurrenceSpeci�cations on the same lifeline from di�erent operands are ordered such that

an OccurrenceSpeci�cation of the �rst operand comes before that of the second operand.”

The other sequencing construct, strict sequencing, has a stronger version of the second rule: Oc-

currenceSpeci�cations on di�erent Lifelines from di�erent operands become ordered as in the third

rule (that is, the content of the �rst operand comes before that of the second operand).



46 CHAPTER 3. SEMANTIC CHOICES IN UML 2 SEQUENCE DIAGRAMS

For the Interactions that use elements from the Fragments package, the semantics is mainly de-

�ned in the description of the CombinedFragment element when detailing the various operators (pp.

482–485). We grouped the operators into the categories of Table 3.1.

The �rst category contains operators that introduce choice and iteration. The operators in the

second category are for parallelization and sequencing. Operators in the last category are related to

the conformance relation, i.e., the way a trace is categorized as valid, invalid or inconclusive according

to a diagram. For example, an assert describes a mandatory behavior, while a neg one that should

not happen. The operators consider and ignore change the set of message names from which valid

and invalid traces can be built (see later in Section 3.3.5.2).

Table 3.1: Operators in CombinedFragment

Operators that introduce choice and iteration

alt “alt designates that the CombinedFragment represents a choice of behavior.”

opt “opt designates that the CombinedFragment represents a choice of behavior

where either the (sole) operand happens or nothing happens.”

break “break designates that the CombinedFragment represents a breaking scenario

in the sense that the operand is a scenario that is performed instead of the

remainder of the enclosing InteractionFragment.”

loop “loop designates that the CombinedFragment represents a loop. The loop

operand will be repeated a number of times.”

Operators for parallelization and sequencing

par “par designates that the CombinedFragment represents a parallel merge be-

tween the behaviors of the operands.”

seq “seq designates that the CombinedFragment represents a weak sequencing

between the behaviors of the operands.”

strict “The semantics of strict sequencing de�nes a strict ordering of the operands

on the �rst level within the CombinedFragment.”

critical “critical designates that the CombinedFragment represents a critical region.

A critical region means that the traces of the region cannot be interleaved by

other OccurrenceSpeci�cations.”

Operators that are related to the conformance relation

neg “neg designates that the CombinedFragment represents traces that are de-

�ned to be invalid.”

assert “assert designates that the CombinedFragment represents an assertion. The

sequences of the operand of the assertion are the only valid continuations.

All other continuations result in an invalid trace.”

ignore “ignore designates that there are some message types that are not shown

within this combined fragment.”

consider “consider designates which messages should be considered within this com-

bined fragment.”

Other important classes de�ned in the Fragments package are InteractionConstraint (guards on

CombinedFragment) and variables (local attributes and parameters of Interactions, arguments of Mes-

sages).
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The semantics presented in the OMG speci�cation gives a basic idea how Sequence Diagrams

should work. However, this natural language semantics is incomplete and ambiguous; thus we need to

look into existing formal semantics to understand how Sequence Diagrams are interpreted in practice.

3.2 Overview of proposed semantics

Many formal semantics were proposed for UML 2 Sequence Diagrams over the years. We selected

thirteen approaches, listed in Table 3.2. As the UML 2.0 speci�cation completely changed how Inter-

actions are de�ned (di�erent semantics, introduction of invalid traces and CombinedFragments, etc.),

the table does not contain approaches for UML 1.x Sequence Diagrams.

Table 3.2: Summary of proposed semantics

Name References Years Comments/Tools

Störrle [Stö03a; Stö03b; Stö04] 2003–2004

STAIRS [HS03; Hau+05; RHS05a;

RHS05b; LS06; Run07; Lun08]

2003–2008 Implemented in Maude

Cavarra & Filipe [CK04a; CK05a] 2004

Cengarle & Knapp [CK04b; CK05b; CGW06; CK08] 2004–2008

Küster-Filipe [Küs06; Bow06] 2005–2006

P-UMLaut [Eic+05] 2005 P-UMLaut tool

Grosu & Smolka [GS05] 2005

Hammal [Ham06] 2006

MSD [HKM07; HM08] 2006–2008 Synchronous, S2A tool

Knapp & Wuttke [KW07] 2006–2007 HUGO/RT tool

Thread-tag based [DHC07] 2007

CPN [Fer+07] 2007 Synchronous

Template semantics [SVN08a; SVN08b] 2008

There are many other papers proposing a semantics for UML 2 Sequence Diagrams (e.g., [Bro+08;

Cen07]), and it is impossible to include all of them. The selected 13 approaches contain both pio-

neering works which in�uenced most of the others, and less referenced ones which concentrated on

speci�c usages of Sequence Diagrams. It is thus hoped that they are representative for the di�erent

possible choices and options, at least to some extent.

Table 3.3 collects which constructs are mentioned in the di�erent approaches. Note that the dif-

ferent approaches sometimes rede�ne the meaning of the original constructs, and handle the given

elements at very di�erent levels of detail. Thus, the goal of this table is not to calculate a percentage of

how much of the speci�cation is covered by each work; instead, it may serve as a reference to search

which publication mentions a given element.
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If we look through the table, the following observations can be made:

• Conformance-related operators were not considered in one third of the approaches. Even if

it is one of the most important aspects of the language, it is hard to formalize it and solve its

issues. Moreover, consider and ignore were not mentioned in four of the eight that dealt with

conformance.

• Gates were handled explicitly in only a small number of papers.

• Variables and arguments were also not mentioned in several approaches. It is understandable,

because they are not in the focus of Sequence Diagrams, and not easy to express in some of the

formalisms.

• Handling time and time constraints was also not common.

• Some of the elements (ExecutionSpeci�cation, Continuation, PartDecomposition) were not ex-

plicitly handled in any of the approaches; thus we left them out from the table.

The rest of the section gives a brief description of each of the approaches. As there are 13 ap-

proaches, the overall content is quite long. Readers more interested in the di�erent semantics choices

can jump directly to the discussion in Section 3.3, and return to some of the approaches later.

3.2.1 Trace semantics from Störrle

Störrle was one of the �rsts to propose a semantics for UML 2 Sequence Diagrams in [Stö04] (pre-

viously published in [Stö03a; Stö03b]). It is a trace-based semantics, which contains much of the

elements of the OMG speci�cation. The semantics de�ned the set of valid and invalid traces for

“plain InteractionFragments”, i.e., ones without CombinedFragment. Later, for CombinedFragment

the semantics of each operator is presented. At that time, the OMG speci�cation was still in a draft

version; since then a few element names have changed. Section 3.1 in [Stö04] analyzes the semantic

approach used in the OMG speci�cation and �nally categorizes it as an interleaving, linear-time se-

mantics of complete traces with abstract real time. Section 5 in [Stö04] deals with assert and neg in

detail, and gives several potential meanings for the neg operator. It also points out many issues with

the OMG speci�cation.

3.2.2 STAIRS approach

In [HS03] the authors introduce STAIRS (Steps To Analyze Interactions with Re�nement Semantics).

They de�ne a denotational, trace-based semantics for Sequence Diagrams, where the focus is on the

precise de�nition of re�nement for Interactions. Three types of re�nement are de�ned:

• Supplementing: inconclusive traces are categorized as either positive or negative;

• Narrowing: some of the positive traces are categorized now as negatives;

• Detailing: introducing a more detailed description without signi�cantly altering the externally

observable behavior.

In [Hau+05] the approach is extended to Timed STAIRS; the semantics is modi�ed in a way that

the reception and consumption of messages are di�erentiated (this leading to three event types: trans-

mission, reception, consumption). In [RHS05a] the interpretation of the neg operator is analyzed, and

new operators (refuse , veto) are proposed instead of it. The dissertation [Run07] summarizes the de-

notational STAIRS and its extensions.

In [LS06] (and later greatly extended in [Lun08]) an operational semantics is given complying

with the above denotational semantics. In Section 7.3 of [Lun08] a good overview is given of the
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challenges when de�ning semantics for UML Sequence Diagrams. The operational semantics uses

a reduced abstract syntax given by a grammar to represent Sequence Diagrams. The model of the

operational semantics consists of an execution system, which stores the state of the communication

channels and the sequence diagram, and a projection system, which �nds the enabled events. The

operational semantics is also implemented in the Maude language.

3.2.3 ASM-based semantics of Cavarra & Filipe

In [CK05a] the authors proposed a technique using Object Constraint Language (OCL) templates

to express liveness properties in UML Sequence Diagrams, based on results of LSC [DH01]. Using

concepts from LSC, several problematic parts of the OMG speci�cation were addressed. May and

must behavior, universal, and existential diagrams can be di�erentiated. In Fig. 2 in [CK05a] the

authors give a nice example that certain liveness properties cannot be expressed with assert or neg .

Therefore, they propose an after/eventually OCL template, which says that after a condition becomes

true there is a guarantee that eventually another condition will become true. Moreover, they introduce

global constraints and methods for synchronization at the beginning or end of CombinedFragments.

In [CK04a], the authors de�ned a semantics to this liveness-enriched Sequence Diagrams using

abstract state machines (ASM). Locations are associated with each important point on the Lifelines.

For each instance, a separate process is assigned. ASM rules are de�ned to specify the progress of one

instance depending on what kind of fragment the instance currently is in. In the conclusion, several

good observations are made on the challenges of UML Sequence Diagrams.

3.2.4 Trace-based semantics of Cengarle & Knapp

In [CK04b] the authors de�ne a denotational semantics for the traces of Interactions using pomsets

(partially ordered multisets). Later, in [CK05b] an operational semantics is given for Sequence Dia-

grams. The semantics of the positive fragments is similar to the one de�ned by Störrle. The authors

concentrate on the interpretation and de�nition of negative fragments. Rules are given for each of

the operators specifying whether a trace positively or negatively satis�es a fragment with that op-

erator. The authors point out that with the basic interpretation of negative fragments it is easy to

construct overspeci�ed Interactions, i.e., an Interaction that can be positively and negatively satis�ed

from the same trace. In the paper [CK04b] the operator not is introduced instead of neg and assert
to overcome some of the problems with negative satisfaction. Later, the work is extended in [CK08]

to de�ne the semantics using a di�erent formalism (namely institutions), and in [CGW06] to handle

variability expressed on a diagram.

3.2.5 True-concurrency semantics from Küster-Filipe

Küster-Filipe de�ned a true-concurrent semantics based on event structures in [Küs06]. In [Bow06]

the semantics is extended to handle the InteractionUse construct. It considers only a smaller number

of operators and constructs (alt , par , seq , and StateInvariant), but gives them a well-de�ned seman-

tics.

The semantics uses the temperature (hot and cold messages) concept from LSC to express manda-

tory or possible behavior. For example, hot messages must be received, while cold messages may be

received after sending. Furthermore, it uses LSC’s location concept to mark occurrences on a Lifeline.

The approach constructs for every Lifeline a labeled prime event structure. The model takes

into account the possible nesting of CombinedFragments and gives a very clear de�nition for the
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predecessors of every event. Finally, the event structures for the di�erent Lifelines are combined

according to the Messages sent between them. In the end of [Küs06] a two-level temporal logic is

presented, which can be used to specify Interactions.

3.2.6 M-net based semantics of the P-UMLaut project

In [Eic+05] a semantics is given for Sequence Diagrams based on M-nets (multivalued nets), which

is an algebra based on high-level Petri nets. The method handles basic data types (Boolean and in-

tegers); thus, it can include the local attributes of Interactions, the arguments of Messages, and the

evaluation of conditions in the semantics. M-net fragments are given for basic constructs, like start-

ing of a Lifeline or sending and receiving of a message. These are then connected by composition

operators according to the enclosing CombinedFragment’s operator. The semantics de�ned in the

paper assumes that all behavior is explicitly speci�ed in the diagrams and no conformance-related

operator is used.

3.2.7 Safety-liveness semantics from Grosu & Smolka

In [GS05] the authors propose to interpret valid and invalid parts of an Interaction as liveness and

safety properties, respectively. The Sequence Diagrams are �rst transformed to hierarchic, non-

deterministic automata, then the high-level automata are �attened, and �nally liveness Büchi au-

tomata are constructed from the positive automata, and safety Büchi automata from the negative

ones. Based on the languages these automata accept, re�nement of Sequence Diagrams is de�ned.

The paper only treats the combination of basic diagrams with no CombinedFragment and bounded

high-level Interaction Overview Diagrams. In this way, their trace language is regular, but it is a

restriction of the OMG speci�cation.

3.2.8 Branching time semantics from Hammal

The author of [Ham06] presents a denotational semantics based on partial orders. It assigns to each

fragment a graph containing the OccurrenceSpeci�cations and their relations. The structures are later

enriched with timing information using the timing constraints on the diagram.

3.2.9 Modal Sequence Diagrams

Modal Sequence Diagrams (MSD) [HKM07; HM08] are an extension to UML Sequence Diagrams by

Harel and Maoz, which adapts LSCs to the notation of UML. LSC is a language inspired from MSC

that allows the speci�cation of possible and mandatory scenarios.

The authors point out that the root of all the challenges regarding assert and neg are that these

were introduced as simple operators, while they are rather modalities. UML Sequence Diagrams do

not have a clear de�nition of the modalities of the diagrams and thus the authors apply the model of

LSC to UML. Themodal stereotype is attached to InteractionFragments to specify whether it describes

a hot (universal) or cold (existential) behavior. A hot fragment represents a behavior that is mandatory,

while the cold represents only a possible behavior. The operators assert and neg are used then just as

syntactic notation to show whether the constructs inside them have hot or cold modality. The authors

also treat the question how multiple diagrams should be handled, one point that is often missing from

others.

In the Appendix, a formal semantics based on weak alternating automata is sketched. First, the

diagram is transformed into an intermediate format, an unwinding structure, from which the states
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(the cuts of the diagrams) and the transitions (message sending) of the automaton are derived. The

current semantics considers only synchronous messages; the sending and receiving is treated as one

event.

3.2.10 Operational semantics from Knapp &Wuttke

The paper [KW07] proposes an operational semantics, where an interaction automaton is produced by

unwinding the Interaction. One single interaction automaton is created for the entire Interaction. The

authors apply some restrictions to ease the processing of Sequence Diagrams (e.g., replace neg with

the binary logic variant not introduced in [CK04b], restrict the use of not only to basic interactions,

restrict loops to only allow basic interactions, etc.). Later, this interaction automaton is used as an

observer process in the SPIN model checker to check the communication produced by UML State

Machines.

3.2.11 Thread-tag based semantics

In [DHC07] a trace semantics was proposed for specifying object-oriented programs with multiple

threads on the same Lifelines. The authors claim that if the instances of the Interaction are multi-

threaded objects, then the ordering should not be speci�ed for messages originating from the same

Lifeline; instead, only for those messages which are from the same Lifeline and from the same thread

of the Lifeline. For this reason, they extend messages with “thread tags”, i.e., identi�ers specifying

which the sender and receiver threads for that message are. Later, a trace-based semantics is given for

the operators, where the ordering rules are de�ned with respect to thread tags. Conformance-related

operators are not considered in the paper.

In our opinion, some of the problems presented in the paper can be solved without modifying the

original semantics with the help of inline PartDecompositions, i.e., when an instance is decomposed

to multiple Lifelines representing its inner connectable elements, like the threads of an object.

3.2.12 Semantics based on CPN

In [Fer+07] the authors propose a translation that produces a Colored Petri Net from UML use cases

and Sequence Diagrams. For the basic operators (opt , alt , par , loop, and ref ), templates are as-

signed to show what kind of CPN fragment should be created. The translation does not consider

conformance-related operators. It seems, although it is not stated explicitly in the paper, that each

diagram contains initially only one active instance (it can later fork into several executions with a

par ). Only synchronous messages are handled, because the sending and receiving are represented by

the same transition.

3.2.13 Template semantics

In [SVN08a] a formalization using template semantics is proposed for UML 2 Sequence Diagrams. The

formalization is described in more detail in the technical report [SVN08b]. The approach gives an op-

erational semantics for which the basic computation model is hierarchical transition systems (HTS).

First, the maximal sequence fragments of the diagram are computed, i.e., the maximal sequences of

consecutive Messages that do not contain CombinedFragments. Then, for each Lifeline a complex

HTS is formed by composing the maximal blocks of the Lifeline using the InteractionOperators. Fi-

nally, the HTSs for the Lifelines are composed using interleaving operators.
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3.3 Semantic choices in Sequence Diagrams

Section 3.1.2 presented the informal semantics de�ned in the OMG speci�cation. As it could be seen

from the overviews in Section 3.2, several approaches were proposed to formalize the semantics of

UML Sequence Diagrams. This section collects and categorizes the di�erent choices taken by these

approaches. Table 3.4 presents our categorization of the semantic choices collected.

Table 3.4: Categorizing semantic choices in UML 2 Sequence Diagrams

Interpretation of a basic Interaction What is a trace?

Categorizing traces

Complete or partial traces

Introducing CombinedFragments Combining fragments

Computing partial orders Processing the diagram

Underlying formalisms

Choices and predicates

Introducing Gates Gates on CombinedFragments

Formal and actual Gates

Interpretation of conformance-related

operators

Assert and negate

Ignore and consider

Conformance-related operators in complex

diagrams

Traces being both valid and invalid

First, the various interpretations of the basic concepts are listed (Section 3.3.1). Next, the methods

for handling the concept of CombinedFragment are analyzed (Section 3.3.2). Section 3.3.3 collects how

the partial orders of a diagram are computed, and how the related operators and elements (alterna-

tives, guards, etc.) are handled. Section 3.3.4 is about the di�erent types of Gates. Finally, Section 3.3.5

details the handling of conformance-related operators.

When necessary, the discussion is illustrated by example diagrams containing traces that show the

di�erence between the options listed in the given section. Since the approaches di�er quite heavily in

their formalization (basic de�nitions, symbols to use, etc.), we present each option without its respec-

tive formal de�nition. Some of the subsections do not list every approach, as some UML elements are

not considered by all the approaches.

Furthermore, each subsection ends with a diagram summarizing the di�erent choices and op-

tions. Figure 3.9 illustrates the notation used in these diagrams, which was inspired by feature mod-

els [Kan+90]. For example, for A both B and C has to be selected, for D only one of E or F can be

chosen, while H is an optional choice, which may or may not be selected. The † symbol marks an

option, which departs from the OMG speci�cation. Note, however, that there is no negative conno-

tation associated with this symbol, as several “non-standard” options proved to be really useful for

speci�c applications.

3.3.1 Interpretation of a basic Interaction

Let us start the discussion with a simple diagram without any explicit operator. Because the semantics

of an Interaction is de�ned as the valid and invalid traces produced by the diagram, �rst the content
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A

C

B

and

D

F

E

alternative

G

J †

H

optional

Legend

Figure 3.9: Notation used in the summary diagrams

of a trace has to be speci�ed.

3.3.1.1 What is a trace?

Since the purpose of the semantics is to categorize traces, a de�nition of traces is needed. Usually to

simplify the representation, the notation of !m1 .!m2 .?m1 .?m2 is used for traces, where !m denotes

sending and ?m denotes receiving the message m. However, in a formal semantics, one has to be

more explicit, e.g., because there can be several Lifelines in the Interaction sending messages with the

same name, it should be speci�ed who sent or received the message.

Thus some of the semantics (STAIRS, Cengarle & Knapp, Grosu & Smolka, Template semantics)

represents elements of the trace with tuples, e.g., (action, sender, receiver, message name).

However, on a diagram, where the same message name appears twice between the same Lifelines,

the above notation cannot describe the ordering that the receiving of the �rstmmessage should come

before the receiving of the second one (Figure 3.10).

sd c1

a : A b : B

m

Can the following 

two diagrams be 

distinguished by this 

trace?

!m.!m.?m.?mm

a : A b : B

m

m

 Figure 3.10: Handling ordering constraints from duplicate messages

Using explicit locations can help this: each OccurrenceSpeci�cation is assigned a unique location

name; thus the two receptions of Signal m can be di�erentiated. The location names are symbolic

labels that usually conform to the visual position of the location. Approaches using locations are

Störrle, Cavarra & Filipe, Küster-Filipe, P-UMLaut, Hammal, and MSD.

Another option can be to specify the underlying communication model. For example, in the op-

erational version of STAIRS, it can be speci�ed whether the execution model should use a global FIFO

or one FIFO for each Lifeline, etc.

The above solutions are de�ned for symbolic traces. In order to analyze concrete system traces,

the receiving events should be matched with the sending event that caused it, which is only possible

if each message in the trace can be uniquely identi�ed. Thus, each message should have a unique

identi�er obtained from some external monitoring facility. See, e.g., [Hal+06] for such a de�nition of

a trace, and for applications to monitoring distributed systems.
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Note that in our example diagrams, for the sake of simplicity, we will use the shorthand !m instead

of (send , lifeline , m, id ).

Representing 

events

Tuples like (action, sender, receiver, message name)

Tuples + unique location names

Tuples + underlying communication model

Tuples + message ids from external facilities

3.3.1.2 Categorizing traces

Once it is de�ned how to represent a trace, it should be decided how to categorize the traces. The

UML speci�cation gives the semantics of an Interaction as a set of valid and a set of invalid traces.

However, it states that there can be other traces, for which we cannot know whether they are valid

or invalid.

For the approaches that use Sequence Diagrams for speci�cation and re�nement (Störrle, STAIRS,

Cengarle & Knapp) using all the three classes is convenient. Usually, they de�ne the valid and invalid

traces explicitly, and all other traces are considered inconclusive. Cavarra & Filipe and Küster-Filipe do

not explicitly mention inconclusive traces, but they have a separate “aborted” mode for invalid traces;

thus they are able to di�erentiate invalid and inconclusive traces. In MSD, locations and messages

have cold or hot temperature assigned. A cold message depicts a potential behavior; thus, a trace

violating it is considered as an inconclusive one. A hot message represents a mandatory behavior; its

violation results in an invalid trace.

Some approaches di�erentiate only two classes of traces. The ones using Sequence Diagrams for

veri�cation purposes (Grosu & Smolka, Knapp & Wuttke) separate the traces into either valid/other

or invalid/other classes. The focus on validity or invalidity depends on whether the property to be

checked is a liveness property (a valid trace is exhibited) or a safety one (no invalid trace is exhibited).

The other approaches (P-UMLaut, Hammal, Thread-tag, CPN, Template semantics) are not dealing

with conformance-related operators; hence, they do not have invalid traces and may be classi�ed

into the valid/other category.

Categorizing 

traces

Three classes: valid, invalid, inconclusive

Two classes †

valid and other

invalid and other

3.3.1.3 Complete or partial traces

According to the OMG speci�cation, basic Sequence Diagrams specify complete, potential behaviors,

meaning that the traces represented by the Interaction are examples for valid traces, and all the other

traces are inconclusive with respect to the given diagram. Thus, the standard interpretation of the dia-

gram in Figure 3.11 is that !m1 .?m1 .!m2 .?m2 .!m3 .?m3 is valid and all other traces are inconclusive.

Most of the approaches use this interpretation.

Sometimes this interpretation is not convenient, e.g., when one would like to specify requirements

[HM08], safety properties [GS05] or test purposes [Pic03]. For this reason, two of the semantics use

an interpretation with partial traces, i.e., the diagram depicts only parts of the valid traces; other
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sd c2

a : A b : B

m1

m2

Are the following traces valid, invalid 

or inconclusive?

!m1.?m1.!m2.?m2.!m3.?m3.!m1.?m1

!m1.?m1.!m4.?m4.!m2.?m2.!m3.?m3

!m1.?m1.!m3.?m3.!m2.?m2.!m3.?m3

!m1.?m1.!m1.?m1.!m2.?m2.!m3.?m3

m3

 
Figure 3.11: Interpretation of a basic Interaction

messages can interleave with them to form the complete, valid traces. These extra messages usually

come from two sources:

• There can be a pre�x or su�x for the diagram.

• During the processing of the diagram, messages can interleave with the ones depicted explicitly

on it (e.g., messages coming from other Lifelines, other message types not used on the diagram,

or duplicate messages).

Grosu & Smolka use an interpretation where a valid trace can have any su�x, but no pre�x. In

MSD there may be any pre�x or any su�x in the system trace before the shown behavior occurs (e.g.,

in Figure 3.11 !m1 .?m1 .!m2 .?m2 .!m3 .?m3 .!m1 .?m1 is a valid trace for both approaches).

For handling interleaving messages, several interpretations are possible (see the discussion con-

ducted in [Klo03]). The shown events usually may interleave with other events that are not explicitly

mentioned in the diagram (e.g., in Figure 3.11 !m1 .?m1 .!m4 .?m4 .!m2 .?m2 .!m3 .?m3 is a valid trace

for both Grosu & Smolka and MSD). The di�erence is for the messages appearing on the diagram. For

example, after receiving m1 , are m1 or m3 allowed to appear? The strict interpretation, which is

used in MSD, is that the diagram is complete with respect to occurrence speci�cations that are given

in it explicitly. Therefore, neither m1 nor m3 are allowed right after an m1 message is matched.

The weak interpretation (a form of which is used by Grosu & Smolka) is less restrictive with respect

to the shown occurrence speci�cations. It only requires that the trace events occur in the speci�ed

order (e.g., an m2 message is in the future of m1 ) and may as well accept duplicates. Hence, the trace

!m1 .?m1 .!m3 .?m3 .!m2 .?m2 .!m3 .?m3 is valid for Grosu & Smolka, but not for MSD. Note that

the trace !m1 .?m1 .!m1 .?m1 .!m2 .?m2 .!m3 .?m3 is valid for both approaches; however, for MSD it

is valid only if the �rst m1 message is considered as a pre�x, and only the second m1 message is

matched for the diagram.

Intuitively, interpretations with partial traces amount to �lter out the behavior that is irrelevant

to the categorization of traces: trace pre�x, su�x, or extra interleaving events are ignored and cat-

egorization is based on the remaining part of the trace. It turns out that two operators of the UML

2.0 Sequence Diagrams, ignore and its dual operator consider , allow us to further manipulate the set

of events appearing in the traces. Not surprisingly, the decision of whether to work with partial or

complete traces will have a strong impact on how these operators are interpreted. We will come back

to this issue in Section 3.3.5.2 discussing ignore and consider .
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Complete 

or partial

An Interaction represents complete traces

An Interaction 

represents partial 

traces †

prefix allowed

messages not depicted on 

the diagram can interleave

interleaving with messages 

appearing in the diagram strict 

interpretation

weak 

interpretation

suffix allowed

3.3.2 Introducing CombinedFragments

The OMG speci�cation de�nes weak sequencing as the default composition operator for fragments.

Accordingly, most semantics retain this operator to compose a CombinedFragment with the rest of

the diagram (Störrle, STAIRS, Cengarle & Knapp, Küster-Filipe, Knapp & Wuttke, Thread-Tag based,

Template semantics).

Due to the weak sequencing, events that do not belong to the same lifeline can occur indepen-

dently if they are not related by a path of messages. Figure 3.12 exempli�es this. Message m1 is

located above the opt fragment, but there is actually no precedence relation: m1 can occur indepen-

dently of messages m2 and m3 . Similarly, placing something below a CombinedFragment does not

necessarily mean that it comes after the messages inside the CombinedFragment. In Figure 3.12, there

is an ordering constraint between m2 and m3 only because they share lifeline c. If the optional mes-

sage m2 does not occur, then there is no constraint on m3 . For example, trace !m3 .!m1 .?m1 .?m3
is valid.

sd c3

a : A b : B

opt

m2

c : C

m3

A CombinedFragment is 

not a synchronization 

construct.

!m3.!m1.?m1.?m3

d : D

m1

[b.d > 1]

 
Figure 3.12: Composition with weak sequencing: above/below positions do not imply before/after

relations

For such semantics, there is no synchronization point for crossing the borders of an operator.

Technically, entering or exiting an operator is not an OccurrenceSpeci�cation. As far as we understand

the OMG speci�cation, the only OccurrenceSpeci�cations are (1) sending and receiving of Messages

and (2) start and end of an ExecutionSpeci�cation. These are the events that can appear in traces, and

ordering constraints are de�ned for them only.

Also, the spatial extension of operators has no speci�c meaning if weak sequencing is used. In

Figure 3.12, the opt box expands to all lifelines, but the meaning would be the same if it covered

lifelines b and c only. This interpretation enjoys the property that an empty box is equivalent to no

box (except for conformance-related operators, to be discussed in Section 3.3.5).

As a last example of how weak sequential composition determines the interpretation of diagrams,
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let us take an example with a loop (Figure 3.13). The meaning of the loop operator is given as the

recursive application of the seq operator. Because weak sequencing is used between the successive

iterations of the loop, the trace where all the sending of m1 and m2 happens �rst, and all the receiving

comes after it, is a valid trace.

sd c5

a : A b : B

loop (2, 2)

m2

c : C

m1

According to the OMG 

specification there is weak 

sequencing between the 

iterations of a loop.

!m1.!m2.!m1.!m2.?m1.

?m1.?m2.?m2

 Figure 3.13: Loop means a weak sequencing between the iterations of the loop

While weak sequencing is the default according to the OMG speci�cation, �ve semantics we re-

viewed introduce synchronization on entering and exiting fragments (Cavarra & Filipe, P-UMLaut,

Hammal, MSD, CPN). This nonstandard interpretation is usually adopted for work using Sequence

Diagrams for veri�cation purposes. It is well known from previous work on MSCs that such graphical

scenario languages are neither regular nor context-free, which raises decidability issues [MP05]. The

synchronization then allows a reduction of the described partial orders of events, and makes proper-

ties easier to check. For example, assume the loop in Figure 3.12 can have an arbitrarily high number

of iterations. The language is not regular with the standard interpretation, while it becomes regular

if synchronization is enforced at each iteration.

In addition to reducing the expressive power of the language, the consequences of the synchro-

nization are the following:

• Above/below positions now imply before/after relations, making the interpretation of the dia-

gram close to the visual intuition;

• the spatial extension of boxes does matter, forcing each involved lifeline to synchronize;

• an empty box is no longer equivalent to no box; and

• the loop construct has an interpretation that is similar to the one of loops in programming

languages.

None of the traces shown in Figure 3.12 and Figure 3.13 is valid for the semantics enforcing syn-

chronization.

Some authors have proposed to retain the weak sequencing as the composition operator, except for

loops where a new construct (sloop) makes it possible to consider strict sequencing of loop iterations

[KW07].

Combining 

fragments

Use standard interpretation with weak sequencing

Synchronize on entering or exiting a CombinedFragment †
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3.3.3 Computing partial orders

The UML 2 speci�cation de�nes the rules for computing the orderings between the OccurrenceSpec-

i�cation on a simple diagram (see Section 3.1.2.2). This is usually a partial order because there can be

independent events in the Interaction. For example, in the leftmost diagram on Figure 3.14, !m1 and

!m2 are not related while ?m1 has to come before ?m2 .

With CombinedFragments this default ordering can be modi�ed, e.g., in the middle diagram on

Figure 3.14 the ordering between ?m1 and ?m2 is also relaxed, and we no longer have a complete

ordering for events on the same Lifeline. An important thing to note is that when using par , the imme-

diate predecessor and successor of OccurrenceSpeci�cations become sets. For example, in diagram c7
the predecessor of !m3 can be !m1 or !m2 . Likewise, there is no such concept as the immediate next

event; instead, there is a set of events. Finally, alternate fragments de�ne several partial orders, one

for each of their operands. In the rightmost diagram on Figure 3.14, there are two partial orders, one

over the set of events {!m1 , ?m1 , !m3 , ?m3} and the other one over the set {!m2 , ?m2 , !m3 , ?m3}.

sd c6

a : A b : B

m1

c : C

m2

sd c7

par

a : A b : B

m1

m2

m3

sd c8

alt

a : A b : B

m1

m2

m3

 
Figure 3.14: Partial orders in diagrams

When a diagram contains several CombinedFragments their e�ects combine. It may result in

complex orderings, which are not trivial to calculate. Thus, a signi�cant question about a semantics

is how it computes the orderings for an Interaction.

3.3.3.1 Processing the diagram

The approaches in the proposed semantics can be categorized in the following two main categories.

The semantics in the �rst category parse the diagram and decompose it. The CombinedFragments

and the basic fragments in the diagram are identi�ed (Störrle, P-UMLaut, Hammal, Thread-tag, CPN,

Template semantics); some approaches even build a syntax tree from the elements of the diagram

based on an abstract syntax (STAIRS, Cengarle & Knapp, Knapp & Wuttke). Usually, the parsing from

a diagram’s concrete syntax to this intermediate representation is not given in detail (some rules can

be found in [Eic+05] or in [SVN08a] based on maximal independent sets). After the parsing, the

semantics is computed by recursively unfolding the fragments and gluing them together based on

rules de�ned for each of the operators.

The semantics in the second category analyze the diagram as a whole. The locations in the di-

agram are labeled, and the constraints about the relative ordering of locations are computed. The

semantics connected to LSC use this approach (Cavarra & Filipe, Küster-Filipe, MSD). Küster-Filipe

computes the event sequences leading to each of the locations. In MSD the �rst step is to obtain the

valid cuts of the diagram from the analysis of locations.
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Processing 

the diagram

Decompose the diagram into basic and combined fragments

Analyze the diagram as a whole using locations

3.3.3.2 Underlying formalisms

In a semantics, the underlying formalism has a signi�cant impact on how the orderings are computed

and expressed. Table 3.5 summarizes the formalisms used in the surveyed approaches.

The diversity of formalisms in the approaches is the consequence of the diversity of interests for

using Sequence Diagrams. Some authors de�ne the semantics to check traces (e.g., Knapp & Wuttke),

some to compute all possible traces of a diagram (e.g., Störrle), some use the semantics to support

re�nement-based development (e.g., STAIRS), or translate the diagrams into behavior models in order

to connect to existing simulation or veri�cation tools (e.g., P-UMLaut). The di�erent purposes can be

supported in either one or the other formalism more easily.

Table 3.5: Underlying formalisms in the semantics

Name Type of semantics Concurrency

Störrle Denotational semantics, rules for computing the set of traces Interleaving

STAIRS Denotational semantics, rules for computing the set of traces;

operational semantics based on transitional systems

Interleaving

Cavarra & Filipe Building Abstract State Machines, the ASMs accept or reject a

trace

True concurrency

Cengarle & Knapp Denotational semantics based on pomsets; operational seman-

tics based on pomsets

True concurrency

Küster-Filipe Denotational semantics based on event structures True concurrency

P-UMLaut Translating to M-nets True concurrency

Grosu & Smolka Translating to Büchi automaton, semantics is de�ned by the

traces accepted by the automaton

Interleaving

Hammal Denotational semantics based on graphs representing all traces Interleaving

MSD Building an alternating Büchi automaton, the automaton de-

�nes the trace-language accepted by the diagram

Interleaving

Knapp & Wuttke Building an interaction automaton, the automaton observes

traces and accepts or rejects them

Interleaving

Thread-tag based Denotational semantics based on pomsets True concurrency

CPN Translating to Colored Petri nets True concurrency

Template semantics Operational semantics using Hierarchical Transition Systems Interleaving

As a general comment, the underlying formalisms can be di�erentiated depending on whether

they encode the partial orders into a �nite structure (Cavarra & Filipe, Küster-Filipe, P-UMLaut, Grosu

& Smolka, Hammal, MSD, Knapp & Wuttke, CPN, Template semantics), or they consist of sets of all

possible traces (Störrle, STAIRS, Cengarle & Knapp, Thread-tag). With the �rst approach it is easier

to verify traces, but it is usually feasible only with some syntactic restrictions (like Knapp & Wuttke

allowing only basic fragments nested in a neg) and an interpretation that reduces the described partial

orders (e.g., by synchronizing lifelines at the borders of fragments).

In MSD the model of not just one Interaction, but a system consisting of several Interactions is

also de�ned. This is consistent with the fact that in MSD Interactions de�ne only partial traces.



3.3. SEMANTIC CHOICES IN SEQUENCE DIAGRAMS 61

Underlying 

formalism

Encode the partial orders into a finite structure †

The formalism consists of sets of all possible traces

Interleaving

True concurrency †

Concurrency

Approach

3.3.3.3 Choices and predicates

The de�nition of choices and predicates in the OMG speci�cation is very permissive. As will be seen

in this section, there are numerous options what and when to choose and who chooses.

What An alt o�ers much more �exibility than an if construct in traditional programming lan-

guages would: several of its operands can have implicit true guards, from which one is non-

deterministically chosen. Some approaches try to reduce this non-determinism. Cavarra &

Filipe prescribe that the operands of the alt are evaluated from top to bottom, and the �rst one

evaluated as true be chosen (a similar concept, deterministic alt was introduced in the UML 2

Testing Pro�le [OMG05]).

Who The UML 2 speci�cation does not de�ne who should make the choice between the operands of

an alt . This can lead to non-local choices, a problem well studied in MSC [MGR05]. An example

for non-local choice can be seen on Figure 3.15, where either instance a sends m1 or instance

b sends m2 , but not both. For semantics working with complete traces, non-local choices raise

implementation problems: it may be impossible to implement a system, which shows the valid

traces of the diagram. Most of the semantics accept non-local choice as a consequence of having

a high-level, powerful speci�cation language.

When With the introduction of synchronization at the beginning and end of CombinedFragments

(Section 3.3.2) some approaches specify a common point in time when all Lifelines have to make

the choice.

sd c9

alt

a : A b : B

m1

m2

 
Figure 3.15: Simple non-local

choice

sd c10

opt

a : A b : B

m1[c == 1]

Can a false guard 

yield an invalid trace? 

Is the following trace 

invalid?

(c==0).!m1.?m1

 
Figure 3.16: Handling of explicit guards

Thus handling choices is a complex issue. The main approaches used in the di�erent semantics

are the followings.

• No explicit time point for the choice: The sets of traces from each operand are computed inde-

pendently and are combined with the rest of the diagram using the default weak sequencing to

obtain all the possible traces of a diagram (Störrle, STAIRS, Cengarle & Knapp, Thread-tag).
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• Explicit time points for the choice on each Lifeline: Lifelines process the diagram separately and

choose between operands independently (Cavarra & Filipe, Küster-Filipe, Template semantics).

Therefore, each Lifeline could make its choice at di�erent times, but the semantics guarantees

that all Lifelines choose the same operand (e.g., by �xing the evaluation order of operands).

• Explicit global time point for the choice: All involved lifelines synchronize before entering a

choice, and only one global choice is made (P-UMLaut, Hammal, Grosu & Smolka, MSD, Knapp

& Wuttke, CPN). These approaches typically use an automaton-based formalism, where one

transition represents the taken choice for all Lifelines.

So far we only tackled implicit guards. Several semantics do not handle explicit guards. For the

ones that do, a di�erence is how a false guard is interpreted. STAIRS processes guards similarly

to constraints; thus a trace with a false guard is invalid, while for the other approaches (Cavarra

& Filipe, Küster-Filipe P-UMLaut, Hammal, MSD, Knapp & Wuttke) a guarded choice cannot yield

invalid traces. For example, the trace given in Figure 3.16 is invalid for STAIRS, while for the others

it is not.

There are several options regarding who should evaluate the guard. The evaluation could be local

to one Lifeline (STAIRS, Küster-Filipe), all Lifelines could interpret the guard separately (Cavarra &

Filipe), or the guard could be evaluated globally (P-UMLaut, Hammal, MSD, Knapp & Wuttke). The

latter option is consistent with an explicit global time point for the choice.

sd c11

opt

par

a : A b : B

m2

m1

m3

[c12.d == 1]

On which Lifeline to 

place the guard?

What if m1 is 

changing the variable 

used in the guard 

after b evaluated it?

 Figure 3.17: Data used in guards

Evaluating the guards separately or referring to global data may lead us to scope and well-
de�nedness problems. As pointed out by Section 4.4 in [Eic+05] if Lifelines can evaluate the guards

at di�erent times, the value of the guard can change in the meantime. The UML 2 speci�cation pre-

scribes that the guard should be placed “on the lifeline where the �rst event occurrence will occur,

positioned above that event, in the containing Interaction or InteractionOperand”. However, as we

mentioned before, “the” �rst event in an operand is not well de�ned, e.g., as in Figure 3.17.

3.3.4 Introducing Gates

As recalled in Figure 3.5, Gates allow Messages to go inside and outside of Interactions (formalGate),
InteractionUses (actualGate) and CombinedFragments (cfragmentGate).
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No explicit time point for the choice

Explicit time points for the choice on each Lifeline

Explicit global time point for the choice
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a false guard
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Cannot yield invalid traces
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the guard

One Lifeline

Global evaluation of the guard

All Lifelines of the CombinedFragment 
interpret the guard separately

Handling 
guards

3.3.4.1 Gates on CombinedFragments

With the cfragmentGate type of Gate, messages can cross the boundaries of CombinedFragments (see

Figure 14.9 of [OMG11b]). Since cfragmentGate is allowed for any operator, it can yield problems.

As reported by Pickin in [Pic03], this will cause issues with loops. If a message goes into a loop,

then it will have one sending end, but multiple receiving ones (see Figure 3.18). The loop operator

is de�ned as a recursive application of the seq operator. Thus if the loop is unfolded, the result is a

Message which has more than one receiving MessageEnds, which violates its constraints.

sd c12

loop (0,2) 

a : A b : B

m2

c : C

m1

Here the sending 

MessageEnd of m1 

should be connected to 

multiple receiving ends.

!m1.?m1.!m2.?m2. 

?m1.!m2.?m2

 Figure 3.18: Message going into a loop

Most of the semantics do not consider cfragmentGates, or disallow it by their rede�ned abstract

syntax (STAIRS, Cengarle & Knapp, Knapp & Wuttke). Our recommendation is also to remove it from

the speci�cation or heavily restrict its use, e.g., only to critical regions and co-regions.

3.3.4.2 Formal and actual Gates

The other two types of Gates (formal and actual) introduce a convenient facility for expressing com-

plex scenarios: when a diagram includes a reference to another diagram (see Figure 3.19), Gates make

it possible to model the passing of mes-sages. The referenced diagram has formalGates placed on its

boundaries, allowing the representation of messages that come from, or go to, its environment. The

environment is determined by the including diagram, where actualGates are placed at the borders

of the ref box. Gates are MessageEnds that connect the Messages inside and outside the referenced

diagram.
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sd c13

a : A b : B

m1

c : C

ref

c14

sd c14

b : B

m1

c : C

m2

formalGateactualGate

m3

 

Figure 3.19: Formal and actual Gates

The surveyed semantics handle Gates in the following way. In STAIRS the set of Gates is de�ned as

a subset of Lifelines, and events are de�ned when Gates receive or send Messages. Küster-Filipe adds

symbolic events representing Gates, and extra orderings are added to the event structure accordingly.

In P-UMLaut the referenced fragments are inlined before processing the Interaction.

Formal and 
actual Gates

In-lining the referenced diagrams and matching messages on both side

Adding symbolic events representing Gates

3.3.5 Interpretation of conformance-related operators

The interpretation of conformance-related operators (see our classi�cation in Table 3.1) is a central

issue in the de�nition of the semantics. Many papers about UML 2 Sequence Diagrams deal with this

issue (or at least mention it). Indeed, quoting from [PJ04], “[assert/negate/ignore/consider] constructs

open up a veritable pandora’s box of expressions whose meaning is obscure.” We provide here an

overview of how the various semantics handle these constructs.

3.3.5.1 Assert and negate

The operators assert and neg allow the speci�cation of mandatory and forbidden behavior. Störrle

was the �rst to discuss their interpretation in a formal semantics, and he identi�ed several possible

meanings for both operators [Stö04]. Further discussion of the neg construct can be found in [CK04b;

RHS05a].

In practice, the chosen interpretation of assert is consistent in all the semantics we reviewed. Let

S be the fragment contained in an assert box.

• The expression assert(S) de�nes the same valid traces as S;

• Every trace that is not valid for S is invalid for assert(S).

The neg construct is more controversial, and several interpretations have been adopted. Table 3.6

illustrates some of the di�erences between them. They may be described as follows:

• For Störrle, the preferred interpretation is that neg(S) �ips the valid and invalid traces of S.

Inconclusive traces are left unchanged. This interpretation enjoys the property that neg ◦neg =
Id.
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sd c15

neg

a : A b : B
sd c16

neg

a : A b : B

m

 
Figure 3.20: Negative fragments

Table 3.6: Interpretation of negative fragments on Figure 3.20 (Σ∗ is the universe of traces)

c15 c16

Approach Valid Invalid Inconclusive Valid Invalid Inconclusive

Störrle ∅ {ε} Σ∗ − {ε} ∅ {!m.?m} Σ∗ − {!m.?m}
STAIRS {ε} {ε} Σ∗ − {ε} {ε} {!m.?m} Σ∗ − {ε, !m.?m}
Cengarle & Knapp {ε} ∅ Σ∗ − {ε} {ε} {!m.?m} Σ∗ − {ε, !m.?m}
Grosu & Smolka Σ∗ − {ε} {ε} ∅ Σ∗ − {!m.?m} {!m.?m} ∅
Cavarra & Filipe,

Küster-Filipe

∅ Σ∗ ∅ ∅ {!m.?m} Σ∗ − {!m.?m}

This table focuses on the interpretation of negative fragments, and ignores diagram-wide issues that will be

discussed in Section 3.3.5.3, such as whether an invalid pre�x always makes an invalid trace. Hence, an in-

valid trace !m.?m for the fragment may eventually yield a set of invalid traces !m.?m.Σ∗
for the diagram in

Figure 3.20

Table 3.7: Interpretation of alternative negation operators (assuming each neg in Figure 3.20 is re-

placed by this operator)

c15 c16

Approach Valid Invalid Inconclusive Valid Invalid Inconclusive

Refuse ∅ {ε} Σ∗ − {ε} ∅ {!m.?m} Σ∗ − {!m.?m}
Not Σ∗ − {ε} {ε} ∅ Σ∗ − {!m.?m} {!m.?m} ∅

Operator refuse(S) from STAIRS: all valid and invalid traces of S are invalid, there is no valid trace. Operator

not(S) from Cengarle & Knapp and Knapp & Wuttke: anything but S, there is no inconclusive trace.

• In STAIRS, the empty trace is the only valid trace of neg(S). Both valid and invalid traces of

S are invalid for neg(S). This interpretation ensures that neg is monotonic with respect to

the re�nement relation chosen by the authors: if S is re�ned by S′, then neg(S) is re�ned by

neg(S′). It is worth noting that neg is not primitive for this semantics. It is interpreted as a

choice between skip and refuse(S), where refuse is the primitive concept. The meaning of

refuse is shown in Table 3.7.

• For Cengarle & Knapp, the empty trace is also the only valid trace of neg(S). Non-empty traces

that are valid for S are invalid for neg(S). All other traces are inconclusive. This interpretation

enjoys the property that neg(skip) = skip, that is, an empty neg box is equivalent to no box.
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Like in STAIRS, monotonicity with respect to re�nement is considered, but with a di�erent

notion of re�nement (and a di�erent monotonicity property). Also, the semantics introduces a

new operator, not , that is more primitive than neg and upon which the meaning of neg is built

(see Table 3.7).

• For Grosu & Smolka, neg(S) is interpreted as “anything but S”
2
. All traces, but the valid traces

of S, are valid for neg(S). This interpretation is relevant to veri�cation purposes when the aim

is to check that a system never exhibits the forbidden behavior.

• In Küster-Filipe, Cavarra & Filipe and MSD, neg(S) is syntactic sugar for a global false predicate

put at the end of S. Table 3.6 shows the interpretation of Küster-Filipe and Cavarra & Filipe.

Note that the MSD interpretation would be di�erent because the diagrams would describe par-

tial traces (see Section 3.3.1.3). These three semantics are actually speci�c in their expression of

mandatory and forbidden behavior because they inherit from modalities previously de�ned for

LSCs. Inside a diagram, individual locations are assigned a hot (mandatory) or cold (possible)

temperature. The operator assert is syntactic sugar to turn all inside locations to hot, and neg
adds a (hot) false predicate. In our interpretation of Figure 3.20, we assumed that the locations

inside the neg have a cold temperature (otherwise, in the righthand diagram, the system would

be required to exhibit ?m.!m and reach the false predicate, so that all traces would be invalid

as in the empty neg).

To sum up, all semantics agree that neg(S) should turn valid traces of S to invalid. However,

there are di�erences in the way invalid traces of S are handled. Also, the empty trace is sometimes

assigned a speci�c treatment.

Interpretation 
of neg(S)

Valid 
traces

Invalid 
traces

Interpretation possibly based on more primitive 
constructs (not, refuse, temperature)  †

none

the empty trace

the invalid traces of S

all traces but the valid traces of S

the valid traces of S

the non-empty valid traces of S

both the valid and invalid traces of S

3.3.5.2 Ignore and consider

The operators ignore and consider a�ect the notion of conformance to a diagram, by changing the

alphabet from which the valid and invalid traces are built. They make it possible to account for the

sending and receiving of messages not explicitly represented in the diagram. The description of these

operators is unclear in the OMG speci�cation, and few semantics address them. For the ones that do,

the proposed interpretation depends on whether the semantics works with complete or partial traces.

Störrle, Cengarle & Knapp and Knapp & Wuttke fall in the �rst category, using an interpretation

with complete traces. For them, by default, a valid trace can only contain OccurrenceSpeci�cations

shown in the diagram. The operators ignore and consider both allow the extension of traces with

2

The neg is thus interpreted like the not operator mentioned just above.
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additional OccurrenceSpeci�cations. Ignoring a message m means that occurrences of ?m and !m
may interleave with the explicitly speci�ed behavior. Assume that S is a basic interaction fragment

involving a single message n and having one valid trace !n.?n. Then, ignore({m}, S) means that

all traces of the form (?m|!m)∗.!n.(?m|!m)∗.?n.(?m|!m)∗ are valid. Note that the set of ignored

messages could contain n, in which case we would accept traces with multiple occurrences of n. The

dual operator consider({m}, S) is interpreted as ignore(M − {m}, S), where M is the set of all

possible messages. Its intuitive meaning is thus “ignore everything but m”.

Semantics considering partial traces, like MSD, cannot have the same interpretation. Messages

not shown in a diagram are already “ignored” by default, and a system trace may contain an arbitrary

pre�x (resp. a su�x) before (resp. after) the shown behavior occurs. The ignore operator is useful

only in the case where we want to allow multiple occurrences of the shown messages, in the temporal

window of the shown behavior. If interaction S involves message n and does not involve messagem,

then

• ignore({m}, S) is equivalent to S;

• ignore({n}, S) has a larger set of valid traces than S.

As regards the consider operator, its interpretation departs from the one given by semantics

that work with complete traces. In MSD, consider is a means to reduce the set of valid traces. It is

useful when the “considered” messages would be ignored by default. Hence, if interaction S does not

involve message m, consider({m}, S) results in a more restrictive interaction than S: it no longer

allows occurrences of m in the temporal window of S.

MSD exhibits additional speci�cities in the way ignore and consider are handled. First, the opera-

tors are changed to specify interaction fragments (not just messages) to be ignored or considered. For

example, we may “consider” a fragment consisting of message m1 sent by lifeline la to lifeline lb, fol-

lowed by messagem2 from lb to la. This increases the expressiveness compared with just considering

m1 andm2. Second, the introduced fragments are assigned a temperature, o�ering an opportunity to

distinguish cold and hot violations when the “considered” behavior inopportunely occurs.

Ignore/consider

Interpretation with complete traces: both ignore 
and consider extend the set of valid traces

Interpretation
Interpretation with partial traces: ignore extends 
the set of valid traces, consider reduces it

Scope

interaction fragments †

messages

3.3.5.3 Conformance-related operators in complex diagrams

Up to now, we discussed the interpretation of each conformance-related operator taken in isolation.

But in complex diagrams, conformance-related operators can include, or be nested into, other con-

structs.

Let us consider the nesting of conformance-related operators into each other. This raises issues

such as the interpretation of multiple assertions, multiple negations, assertions of negations, negation

of fragments with considered and ignored messages, and messages that are both ignored and consid-

ered. Of course, the semantics dealing with these constructs will assign a precise meaning to such

cases. However, the assigned meaning may defeat intuition, with the risk of producing diagrams that

users do not properly understand. To illustrate this point, double negation is a good example (see
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Figure 3.21). It is striking that the various semantics o�er all possibilities for the categorization of

trace !m.?m:

• The trace is valid for Störrle;

• It is invalid for STAIRS and all interpretations adding a false global predicate (MSD, Küster-

Filipe, Cavarra & Filipe);

• It is inconclusive for Cengarle & Knapp.

Whatever the chosen semantics, care must be taken that it really captures the meaning intended

by the speci�er.

sd c17

neg

neg

a : A b : B

m

Meaning of double 

negation, how to 

categorize this trace?

!m.?m

 
Figure 3.21: Nesting conformance-related op-

erators

sd c18

neg

a : A b : B

m2

m1

When to start 

forbidding m2? Is the 

following trace invalid?

!m1.!m2.?m1.?m2

 
Figure 3.22: Borders of conformance-related oper-

ators

Syntactic restrictions may reduce the risk of counterintuitive interpretations. In [Stö04], Störrle

came to the conclusion that neg should not be used as an ordinary operator. It should be used only

at the top level of a diagram, to indicate that the diagram describes a forbidden scenario. This avoids

intriguing cases where neg is nested into other operators. Other authors (Knapp & Wuttke, Grosu &

Smolka) forbid the nesting of operators into a negation, so that negated fragments can only contain

basic interactions. Their motivation, however, is not to preserve intuition but to ease veri�cation

of conformance: they want the detection of invalid traces to be kept decidable. As a general rule,

one may put syntactic restrictions on conformance-related operators for either purpose, for keeping

diagrams intuitive or for facilitating their usage in veri�cation activities.

Apart from the case where the operator is used only at the top level (as recommended by Störrle

for the neg operator), an important semantic issue is how conformance-related operators are com-

bined with the rest of the diagram. The general decision on whether to synchronize or not on the

borders of boxes has an impact on the categorization of traces. In Figure 3.22, the shown trace is

not invalid if synchronization is enforced. This raises the issue of when to start requiring (assert ),

accepting (ignore) or forbidding (neg , and also consider in its interpretation using partial traces) the

communication events appearing in the operator.

Another issue is how to interpret sequencing (whether weak or strong) when the pre�x of a trace

completely traverses a negative region. Figure 3.23 exempli�es this issue. Will a trace starting with

pre�x !m1 .?m1 .!m2 .?m2 be categorized as invalid whatever the su�x? Almost all the semantics

answer by yes. This has the advantage of facilitating the identi�cation of invalid traces: decision can

be taken locally, independently of what will happen subsequently (see the discussion conducted in

[CK04b]). However, a di�erent interpretation is chosen in STAIRS: the trace is inconclusive if the

su�x does not match. Note that Figure 3.23 involves a neg , but a similar example could be built with

a trace pre�x violating an assert .

What about then the continuation of traces that do not completely traverse a negative region? For

example, in Figure 3.23, is the trace !m1 .?m1 .!m2 .!m3 .?m3 valid or inconclusive? In the semantics
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sd c19

neg

a : A b : B

m2

m1

A negative trace remains 

negative? Is this trace invalid?

!m1.?m1.!m2.!m2.!m4.?m4

m3

 
Figure 3.23: Negative trace remains negative?

sd c20
a : A b : B

nested

m4

c : C

m2

m1

m3

 
Figure 3.24: Nested operator in MSD

of Grosu & Smolka, the trace would be valid. For Cengarle & Knapp and STAIRS, the only valid traces

would be !m1 .?m1 .!m3 .?m3 and !m1 .!m3 .?m1 .?m3 . For semantics adding a global false predicate

(MSD, Küster-Filipe, Cavarra & Filipe), there can be no valid traces: only invalid or inconclusive ones.

Technically, for the latter three semantics, completely traversing the neg yields a hot violation,

while failing to traverse the neg is a cold violation. In both cases, the local violation determines the

categorization of the overall trace (invalid, inconclusive) whatever the su�x. Hence, the scope of the

local violation is actually global. The authors of MSD have proposed a new operator, nested , allowing

them to restrict the scope of cold violations. It is then possible to have valid continuations of traces

that do not completely traverse a fragment. Let us recall that in MSD, the primitive concept to express

mandatory/forbidden behavior is the temperature. In Figure 3.24, message m2 is cold (indicated by a

dotted line) while message m3 is hot (indicated by a solid line). It means that m2 may occur, and if it

does, then m3 is required. Since MSD only considers synchronous messages, we do not distinguish

the sending and receiving of messages. In a nested fragment, a cold violation is con�ned: the trace

continues in the enclosing fragment. In Figure 3.24, the trace m1 .m4 is indeed valid. It would be

inconclusive if m2 and m3 were in the plain fragment.

Conformance-
related operators in 
complex diagrams

Syntactic 
restrictions †

operator used only at the top level of a diagram

operator cannot contain arbitrary operators

Composition with 
sequencing

Traces having 
an invalid prefix

the trace is invalid

the trace can turn 
inconclusive

Traces encountering a 
negative region without 
making an invalid prefix

the trace is 
inconclusive

the trace can 
turn valid

3.3.5.4 Traces being both valid and invalid

Ambiguous diagram can be constructed, where a given trace is both valid and invalid. In the exam-

ple of Figure 3.25, this is due to non-determinism. A given event in the trace can be considered as

occurring either inside or outside the scope of the conformance-related operator, depending on some

non-deterministic choice. Parallel constructs come with similar ambiguities.

It may seem that the problem comes with the nesting of conformance-related operators into non-

deterministic constructs. But the example of Figure 3.26, borrowed from [CK04b], only involves weak

sequencing. Intuitively, it is not clear whether the occurrence of m1 in the trace falls into the scope of
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neg , or may be considered as posterior to the neg . Note that the interpretations given by the various

semantics are not necessarily ambiguous. For semantics adding a false predicate at the end of the neg
fragment, trace !m1 .?m1 is clearly invalid. For STAIRS, it is valid (only a double occurrence of m1
would be invalid). However, for Cengarle & Knapp, the trace is both valid and invalid.

sd c21

alt

neg

a : A b : B

m1
Is the following trace 

valid or invalid?

!m1.?m1

m1

 
Figure 3.25: Ambiguity due to non-determinism

sd c22

neg

a : A b : B

m1

Is the following trace 

valid, invalid or 

inconclusive?

!m1.?m1

m1

 
Figure 3.26: Ambiguous scope of a

conformance-related operator

Figure 3.27 illustrates yet another possibility for introducing ambiguity. Here, the ambiguous

case comes from the consideration for the values of message parameters, in a diagram where the two

occurrences of message m cannot be distinguished. The shown trace may be categorized as valid or

invalid, depending on whether the �nal assertion is 2 > 1 or 1 > 2.

sd c23

assert

par

a : A b : B

m(x1)

m(x2)

x2 > x1

Is the following 

trace valid, invalid 

or inconclusive?

!m(1).?m(1). 

!m(2).?m(2)

 
Figure 3.27: Ambiguous cases due to the consideration of data values

These various examples show that it is extremely di�cult to get rid of ambiguous cases. We may

put syntactic restrictions to avoid some of the cases (e.g., use only a deterministic if-then-else form of

alt constructs, or use neg only at the top level of the diagram), but avoiding all of them by construc-

tion would probably require us to sacri�ce too much in terms of language expressiveness. Indeed,

from our analysis of work dealing with conformance-related operators, all surveyed approaches face

cases where a trace can be both valid and invalid. In general, checking whether a diagram is am-

biguous is an undecidable problem. From previous work on MSCs [MP05], we know that language

complementation and intersection are not decidable for graphical scenarios. Then, if ambiguous cases

are to be avoided, it is probably wise not only to put syntactic restrictions, but also to adopt an inter-

pretation that brings the semantics of diagrams to a regular language (synchronize on entering and

exiting fragments, encode the partial orders into an automaton). In this way, the ambiguous cases not

covered by the syntactic restrictions can be detected and reported to the user.
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Not all authors explicitly mention the existence of ambiguous diagrams. For the ones who do

[CK04b; LS06; Stö04], this is not necessarily considered as a problem. In [CK04b], ambiguous dia-

grams are called overspeci�ed interactions. There may exist re�nements that remove the ambiguity,

so that an overspeci�ed interaction may indeed have an implementation. For example, both Fig-

ure 3.25 and Figure 3.26 are overspeci�ed interactions according to Cengarle & Knapp. Figure 3.26 is

not implementable, but Figure 3.25 is implementable by the skip process.

Traces being both 
valid and invalid

Avoid ambiguous cases as much as possible by putting syntactic 
restrictions †

Ambiguous cases are the price to pay for expressive specification 
languages, refinement may possibly remove the ambiguity.

3.4 Summary

Due to the variety of usage for scenarios, there is nothing such as “the” semantics of UML 2 Sequence

Diagrams. The OMG group has always insisted on the fact that the standard enables specialization of

parts of UML for a particular situation or domain. As regards Sequence Diagrams, it would probably

be an impossible task to exhibit an “all-in-one” semantics �tting purposes as diverse as the description

of example interactions, of test cases, or of checkable properties.

Flexibility to assign di�erent interpretations to diagrams leaves UML practitioners with a di�cult

problem: the one of selecting a semantics well suited for their purpose. There is a lack of a clear

picture of available options. Since the pioneering work of Störrle for giving a formal meaning to UML

2 Sequence Diagrams, a number of alternative semantics have �ourished, and the research presented

in this chapter is an attempt to gain a synthetic view of the choices that underlie them.

Semantic choices in UML 2 Sequence Diagrams

Characteristics

Research question

Contributions

Numerous subtle 
semantic variants

What semantic choices are in UML 2 Sequence Diagrams?

Overview of proposed formal semantics

Categorization of choices and collection of different options

Lack of official 
formal semantics

Several new, 
complex elements

Figure 3.28: Summary of research question and contributions

Figure 3.28 summarizes the research problem and our contributions. Our approach was to select

a sample of 13 semantics and to systematically identify the points in which they di�er. We took

care to include widely referenced work, as well as less-referenced one that may be representative of

more specialized concerns. We created a categorization of choices, ranging from the interpretation of

basic diagrams to the interpretation of advanced constructs such as conformance-related operators.
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For each choice, we listed the options encountered in the analyzed sample. Our discussion of options

tried to be very practical, by showing their concrete consequence on examples of diagrams. We ended

up with a structured representation of the various choices and options, inspired by feature models. We

selected a simple, visual notation on purpose; in this way a deep background in theoretical computer

science is not required to use the results in practical projects (which is often a barrier in other works

on formal semantics).

The next chapter presents how we used the categorization of semantics choices for developing

a new language and designing its syntax and formal semantics. Our hope is that this categorization

will help others similarly in interpreting or adapting Sequence Diagrams in their own application

domain.



Chapter 4

A test language and framework for
mobile systems

Mobile ad-hoc networks propose new challenges for software development and veri�cation and vali-

dation activities. In addition to the issues found in �xed distributed systems, fresh ones are introduced

in the new environment: high dynamicity and context awareness. New nodes are constantly joining

and leaving, the application running on the host has to be aware of these changes. Nodes are moving

out of each other’s communication range frequently, hence the failure of sending a message is not a

rare event any more. The state of an application depends not only on the messages it receives from

the others, it should also take into account its context, e.g., its current location coordinates supplied

by a GPS unit or other information from the environment. Thus the test approach of these systems

should take into account these speci�cities.

A common test approach used in traditional distributed systems is some form of passive testing,

i.e., when the tester can only monitor the behavior of the system under test (SUT) through its execu-

tion traces, but cannot directly interact with it. In such cases instead of de�ning test cases with exact

inputs and expected output (which would not be useful, as the tester could not directly feed input

into the SUT), the logs of the messages in the system are checked against some invariant properties.

These properties are expressing test requirements, e.g., that whenever the SUT receives a request

it shall send the requested data or an error code. But even if all the requirements are satis�ed in

the collected execution traces, it does not guarantee that all the important behaviors were observed.

Therefore test purposes can be speci�ed that express partial behaviors that should be covered during

the executions. The goal of testing is then to execute the SUT in di�erent situations until all test

purposes are covered and all the requirements are satis�ed.

Test language and framework for mobile systems

Characteristics

Research question

Context awareness
Communication with 

local broadcast

How can dynamic communication structures be specified in testing artifacts?

Dynamic, evolving 
environment

Figure 4.1: Research question of the chapter

73
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Test purposes and test requirements can be conveniently speci�ed using scenario languages.

However, current modeling languages have to be adapted to the characteristics of mobile systems,

as we will see that they do not o�er intuitive notations to capture frequent changes in the topology

or conditions on the context of the system. Thus the goal of the research presented in this chapter

was to (i) extend existing modeling languages to cope with mobile settings, and (ii) to propose a test

framework that uses these extensions to test mobile systems.

The structure of the chapter is the following. Section 4.1 reviews existing languages, and presents

our case study on a mobile group membership protocol to identify missing language features. Sec-

tion 4.2 describes (i) our extensions for scenario languages to model mobile systems, (ii) our test

approach that uses requirements expressed as graphical scenarios to check execution traces, and (iii)

the components of our test framework. Section 4.3 de�nes the syntax and semantics of our modeling

language called TERMOS. Section 4.4 illustrates the tools developed for the test framework. Finally,

Section 4.5 summarizes the contributions of the chapter.

4.1 Testing mobile systems

Testing of distributed systems o�ers several challenges, e.g., the behavior of the system is highly

asynchronous or the �nal verdict has to be assigned using the partial verdicts returned by the di�erent

test components. However, ad-hoc mobile networks introduce further issues to test development

and execution. Ad-hoc networks are by nature very dynamic, which implies that (i) test modeling

notations have to cover scenarios where nodes are appearing or disappearing, (ii) test platforms should

be able to simulate the specialties of mobile networks (e.g., frequent disconnects or high latencies).

4.1.1 Modeling notations for mobile systems

According to our research, currently there is no standard for modeling mobile systems yet, but in

the recent years several approaches have emerged. A number of publications focus on logical mo-

bility, i.e., when code moves between devices. One example of logical mobility is a mobile agent, a

software component that executes speci�c tasks on behalf of someone with some autonomy. Mobile

Ambients [CG00] is a low-level formalism based on process calculus, which o�ers mobility primitives.

Mobile Agent Modeling with UML is a UML pro�le recommended by Belloni and Marcos in [BM04].

The stereotypes and tagged values of the pro�le are organized into views that describe the di�erent

aspects of the mobile agent. In [AMS03] a modeling notation called Mobicharts is proposed for ap-

plications in mobile environments. Mobicharts describe state changes of a task using services like

migration to a new host or disconnected operations. Some approaches o�er mechanisms to express

some form of basic physical mobility also, i.e., when the host moves from one location to the other.

Usually in this cases locations are prede�ned, hierarchical places with some attributes, e.g., wireless

towers or access points with di�erent outbound connections, a home or an o�ce network with di�er-

ent �rewall rules, or rooms in a house with di�erent local resources. Grassi et al. proposed an UML

pro�le to support physical mobility of the computing nodes and the logical mobility of software ele-

ments [GMS04]. The behavior of mobility was expressed on so-called mobility manager statecharts.

The paper included examples to show how the pro�le can be applied to describe basic mobile code

paradigms. In [Bau+03] a UML extension called Mobile UML was proposed to model mobile systems

in global computing. The extensions consisted of (i) a UML pro�le to express mobility concepts (lo-

cation, mobile, mobile location) and (ii) new diagram types. According to the authors, the problem

with UML Sequence diagrams when modeling mobile scenarios is that movement of an entity can
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be expressed only indirectly by adding a new object box. Thus, to overcome the complexity of this

approach, a new diagram type Sequence Diagram for Mobility (SDM) was recommended.

The protocol testing community reported several case studies of analyzing mobile protocols. In

[NV05], the authors study MIPv6, a protocol enabling nodes to remain reachable while moving around

in the IPv6 Internet. In [Cav+04], the studied protocol is in the ad hoc domain: the Dynamic Source

Routing protocol (DSR) that allows routes to be discovered and maintained in multi-hop wireless ad

hoc networks. Both [NV05] and [Cav+04] had to tackle the problem of not having mobility-related

concepts in the protocol modeling language SDL. They had to add speci�c components (one for each

node, plus a centralized controller) to capture the notion of communication with neighbors.

Several approaches have been proposed, that contain many similar elements, however, each of

them are specialized for a speci�c aspect of mobile systems, and no general standard is available at

the moment. Moreover, these extensions mainly consider logical mobility or physical mobility from

one infrastructure point to the other, and they do not o�er a solution to ad-hoc networks.

4.1.2 Test platforms for mobile systems

Several test platforms have been proposed for mobile systems. Some approaches try to recreate re-

alistic environments. For example, in [LNY04], a telephony application is tested by having human

operators carrying handsets in an urban area. In [Bru+04], testing a car-to-car application involves

three prototype vehicles driven on a road. Although this type of testing is useful in validation exer-

cises, its high cost and restricted controllability or observability limits its application. In practice, a

major part of the testing activities will preferably be performed using emulation or simulation facili-

ties.

For mobile computing systems a usual approach is to simulate wireless communication (in both

infrastructure and ad hoc modes) by integrating a network simulator as a part of the test platform.

Such simulators have been originally developed to support networking research, but they are now

also used to experiment with the application level. For example, the ns-2 simulator is used in [MD04]

to evaluate a health-monitoring application, and in [Sch+05] to evaluate a car-to-car messaging sys-

tem. In both cases, the network simulator is only part of the complete platform, which also includes

a context controller. The context controller is used to simulate contextual information in mobile set-

tings, like location-based data. The context controller typically uses a mobility model, like random

waypoint or pathway model, to obtain location data.

There have been several toolkits for simulating contexts in recent years. Car-to-car applications

may use tra�c simulators that simulate the movement of vehicles along roads. For example, TraNS

[Pió+08] connects the ns-2 network and the SUMO tra�c simulator, STRAW [CB05] uses a Java event-

based simulator, and GrooveNet [Man+06] even o�ers to connect simulated and real cars.

All these tools, network simulators and context controllers, were mainly developed for evaluation

purposes, but they may serve veri�cation purposes as well. However, they have to be usually be

customized to the actual application domain and test framework, e.g., typically adapters have to be

written to drive the controllers according to the test inputs and collect the logs for test evaluation.

4.1.3 A detailed case study: mobile GMP

To better understand the new testing related challenges we performed a detailed case study [13][24],

the analysis of a mobile Group Membership Protocol (GMP) [HJR04]. This case study was performed

in the framework of the HIDENETS project (Highly dependable IP-based networks and services)

[HID09], which analyzed end-to-end resilience solutions for mobile-based applications and services.
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One intended application domain for Hidenets was the automotive one, emphasis being put on car-to-

car communication scenarios. Hence, we chose a case study exemplifying ad hoc networking issues

between mobile entities. The protocol is used to form groups from mobile nodes (which are close

enough that they communicate with each other), and provide a consistent view of the actual members

of the group to everyone. The nodes periodically broadcast discovery messages with their positions

to inform others. Each group has a leader, which decides whether the group should be merged with

a nearby, newly discovered group or it should be split if some node is moving away from the other

members. The protocol calculates a so called safe distance from the velocity and communication

range of the nodes, and uses this metric to decide whether a merge or a split should be started. The

analysis of the protocol was conducted by (1) reviewing the speci�cation, (2) creating a UML model

for the implementation of the protocol, (3) comparing the speci�cation to the implementation, and

(4) performing test experiments with nodes moving randomly.

The protocol speci�ed 8 safety and progress properties. We reverse-engineered a detailed UML

model from the implementation (static structure diagrams, state machines and sequence diagrams),

and tried to capture these properties in UML’s recommended constraint language (OCL). However,

some of the properties could not be captured as constraints on the classes and objects (e.g., the con-
ditional eventual integration property stating that two nearby groups should merge if they remain at

safe distance long enough). Next, we tried to express the properties as graphical scenarios in UML,

but we faced again several challenges (e.g., a scenario could not easily refer to the state of the topol-

ogy or global constraints could not be expressed in UML SD). We created several variants of these

scenarios with alternative notations, but the results were not satisfactory. Finally, the testing of the

implementation revealed scenarios that violate the safety properties of the protocol.

The insights gained from this case study can be summarized as follows. Standard UML was appro-

priate to model the structure and behavior of one node, but it was inconvenient for modeling complex

scenarios including several nodes. For example, Figure 4.2 illustrates how modeling broadcast mes-

sages or topology changes is problematic in pure UML.

sd split

assert

1: 2: 3:
Topology changes, 

2 leaves safe 

distance

hello

hello

SPGroupChange

SPGroupChange

SPGroupChange

Local broadcast to 

all nodes in range

Local broadcast to 

all nodes in range

Figure 4.2: An example complex scenario from the GMP case study

The analysis showed general challenges that are relevant for any mobile application dealing with

mobility and cooperation of hosts.

• Services and applications in mobile settings rely heavily not just on user input but also on

context information, like current location data.

• It is not easy to model mobile system instances. Without a suitable notation and modeling

methodology serious design defects could be introduced.
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• The de�nition of properties containing spatial and temporal information is a complex task, but

the correct formulation is essential to the later veri�cation steps.

• Moreover, a test execution engine should be able to feed the SUT not only the test messages,

but also these contextual data.

The detailed properties and requirements from the GMP protocol, as well as the fail scenarios

we observed, served as examples for the typical concepts that should be expressed in context-aware

mobile systems. The GMP study helped us to identify the challenges that had to be solved, and served

as a testbed for the new test language and framework we have developed.

4.2 Test approach and framework

As Section 4.1 showed some extensions are needed in UML to model mobile scenarios conveniently.

To solve this issue, we propose to integrate the description of spatial relationship between nodes into

UML 2 Sequence Diagrams. This section presents these extensions, how they can be used in test

artifacts, and the components of a test framework that uses these artifacts to test mobile systems.

4.2.1 The test approach for mobile systems

The extended Sequence Diagrams include two connected views, the spatial view (describing the topo-

logical con�gurations of the system nodes, as well as some contextual information) and the event view

(describing communication events, and their causal dependencies on con�guration change events).

More precisely:

• The spatial view consists of a set of labeled graphs, corresponding to the various con�gurations

that occur in the scenario. For a given con�guration, the labels attached to vertices and edges

represent relevant attributes of system nodes and of communication links between nodes.

• The event view makes it explicit which communication event occurs in which spatial con�gu-

ration, and con�guration changes are introduced as global events.

C1

1 : Node 2 : Node

3 : Node
<<safe>> <<safe>>

C2

1 : Node 2 : Node

3 : Node
<<safe>>

<<notSafe>>

(a) Spatial view

sd split

assert

1: 2: <<leader>> 3:

INITIALCONFIG = C1

<<broadcast>> hello
<<broadcast>> hello

SPGroupChange

SPGroupChange

SPGroupChange

CHANGE(C2)

<<broadcast>> hello

{id = 1}

{id = 1}

{id = 1}

(b) Event view

Figure 4.3: Example requirement scenario for a mobile system

Figure 4.3 exempli�es how these two views can be applied to the scenario presented previously

on Figure 4.2. The scenario says that whenever the leader detects that a node in the group is not
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at safe distance anymore, it has to split the group and notify the other nodes. In the event view,

note the global con�guration change event that identi�es the actual con�guration for each message.

Moreover, the introduction of a special «broadcast» stereotype helps to express local broadcast in the

hello messages. In the spatial view, it is the responsibility of the designer to determine convenient

abstractions for the concrete con�gurations, depending on the target application. Here, the GMP

behavior is governed being at safe distance or not. This explains the chosen edge labels. Nodes are

merely characterized by their symbolic identi�ers (see label variables 1 and 2), but tuple of labels are

allowed for applications needing a richer representation of node attributes.

The three proposed mobility-related extensions can be used in scenarios expressing di�erent test

artifacts. Figure 4.4 shows examples for test requirements and a test purpose. The leftmost �gure

presents a positive requirement capturing an invariant property, e.g. whenever a given behavior

happens in the trace, then something, which is contained in the assert fragment, always follows. The

middle scenario depicts a negative requirements, i.e. forbidden behaviors that should never occur in

the trace. The rightmost �gure is a test purpose; it describe behaviors to be covered by testing, that

is, we would like these behaviors to occur at least once in the trace.

sd positive_req

assert

a b

INITIALCONFIG = T1

m1

m2

sd negative_req

assert

a b

INITIALCONFIG = T1

m2

sd purpose

assert

a b

INITIALCONFIG = T1

m1

CHANGE(T2)

{ TRUE }{ FALSE }

Figure 4.4: Requirement and test purpose scenarios (event view)

Using these extensions we developed (i) a test requirement language (called TERMOS, TEst Re-

quirement language for Mobile Setting) and (ii) a test framework, which focuses on specifying appli-

cation requirements as graphical scenarios and evaluates actual execution traces with respect to these

requirements.

4.2.2 The test framework for mobile systems

The developed test framework is depicted on Figure 4.5. Its primary purpose is to check the require-

ments captured as graphical scenarios against traces coming from an execution environment, where

the SUT is exercised in various, complex situations. Thus the framework can be seen as a form of

passive testing, where requirements represent invariants. The components of the test framework are

the followings.

Requirements Requirements are captured using the proposed TERMOS language, which includes

the mobility related extensions presented in the previous section. The syntax of the language

includes elements for representing spatial con�gurations, changes in the communication struc-

ture and broadcast messages.

Execution environment In order to exercise the mobility-related behavior of the SUT, the usual test

components that drive the interfaces of the SUT have to be combined with a network simulator
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Requirements

TERMOS language

- event view: messages
- spatial view: configurations

Execution environment

Network 
simulator

Context 
controller

Application execution

SUT
Test 

components

Execution trace

Trace evaluation Verdict

GraphSeq tool

Configuration matching

Figure 4.5: The test framework for mobile systems

and a context controller. The network simulator could simulate delays or communication errors

on wireless or �xed links. The context controller based on mobility patterns can adjust the

communication topology in the network simulator dynamically, and it can provide location-

based data, like actual position, to the application execution component.

Execution traces During the runs in the execution environment detailed execution traces are col-

lected. These include the messages exchanged between the SUT and its environment, the

changes in the communication topology, and the evolution of the relevant context, e.g., the

actual positions of the nodes periodically.

Con�guration matching There is a gap between the abstract con�gurations de�ned in the require-

ment scenarios and the con�gurations observed in the trace. It should be decided which node

from the execution environment can play the roles represented in the scenarios. Based on their

types and connections the abstract nodes have to be mapped to the concrete ones found in the

trace. However, usually there are several possible matching possible. Moreover, the matching

should take into account not only one con�guration, but the changes in a series of con�gura-

tions. To solve this task, a method and a tool called GraphSeq [NWR10] was developed, which

can reason on a series of abstract and concrete con�guration graphs, and can return the set of

possible matching and valuations.

Trace evaluation The obtained traces can be evaluated with respect to the requirements. Using the

set of con�guration matching the messages in the trace have to be analyzed, whether their types,

parameters and order conform to the ones speci�ed in the scenarios. This requires a precise

formal semantics for the event view of TERMOS, one that makes checking traces possible. As

we could see in Chapter 3 there are many semantics choices in UML 2 Sequence Diagrams, a

consistent set of options have to be carefully selected that assigns an unambiguous meaning to

diagrams. Finally, pass, fail or inconclusive verdicts are be assigned to the (trace, requirement,
matching) combinations. Note that to evaluate a trace both the con�guration matching and the

processing of the scenario is needed.
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From this test framework my contributions focused on the TERMOS language, thus the rest of

the section presents the new language in detail.

4.3 The TERMOS language

This section discusses (i) the design choices of the language, (ii) its abstract and concrete syntax, (iii)

its automaton-based formal operational semantics, and (iv) the developed tool support.

4.3.1 Design choices for the language

The most important design goal of TERMOS was that it shall allow the evaluation of traces. Every

decision about the syntax and semantics supported this goal. Moreover, in order to make TERMOS

an easily usable test requirement language, we made the following high-level design decisions:

• the language should help to capture only those details that are relevant to the given requirement;

• a requirement is preferred to be simple, complex properties should be decomposed into smaller

ones;

• a scenario represents an independent, self-contained check, no hierarchical description or ref-

erencing is recommended.

Using these guidelines we selected the syntactic and semantic options summarized in Table 4.1

for TERMOS from the choices presented in Chapter 3. The rational behind each of the decisions is

the following.

Interpretation of a basic Interaction Our purpose with the language is to evaluate traces against

partial behavior fragments captured in the requirement scenarios, thus the interpretation of a basic

Interaction is the following.

• What is a trace? Because real execution traces should be checked, it should be made possi-

ble to exactly identify the sending and receiving events of all messages; thus the de�nition of

a trace contains unique identi�ers. Accordingly, a concrete trace will be a tuple containing

(?m, receiver , id) or (!m, sender , id), where m is the name of the message sent or received,

and id is an identi�er generated by execution environment of the test framework. Note, that

a send event may be aimed to several receivers (e.g., in the case of a broadcast message), but a

receive event involves only one receiver. The id serves the purpose to match the sending and

receiving events of a given message.

• Categorizing traces Not all traces are relevant for a requirement; hence the trace universe is

partitioned into three classes (valid, invalid and inconclusive traces).

• Complete or partial traces A test requirement scenario is a partial description because it captures

just a fragment of the system’s behavior (subset of nodes, subset of messages). We wanted a

very �exible language; thus in TERMOS both a pre�x and su�x are allowed, messages not

depicted on the diagram can interleave, and the weak interpretation is used.

Introducing CombinedFragments Recall, that in the UML speci�cation there is no synchroniza-

tion mechanism amongst lifelines when entering or exiting fragments. This could present several

challenges when verifying traces (e.g., there is no common point to evaluate guards or the scope of

the operator is unclear). For this reason, in TERMOS, entering and exiting a CombinedFragment is

treated as a synchronization point in order to make checking a trace easier.
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Table 4.1: Design choices for the TERMOS language

Interpretation of a basic

Interaction

What is a trace? De�nition of a trace contains unique mes-

sage Ids

Categorizing traces Valid, invalid, inconclusive

Complete or partial traces Partial traces (pre�x/su�x allowed, extra

messages can interleave, weak interpreta-

tion for duplicates)

Introducing

CombinedFragments

Combining fragments Synchronization on entering or exiting a

CombinedFragment

Computing partial orders

Processing the diagram Process the diagram as a whole using lo-

cations

Underlying formalisms Interleaving semantics, encode the partial

orders into a �nite automaton

Choices and predicates Explicit global time point for the choice, a

false guard does not yield an invalid trace,

guards are evaluated globally

Introducing Gates

Gates on Combined-

Fragments

Gates were disallowed completely

Formal and actual Gates

Interpretation of

conformance-related

operators

Assert and negate Instead of neg as an operator, a global false

predicate can be put at the end of the dia-

gram

Ignore and consider Using partial traces and the weak interpre-

tation makes ignore redundant, consider
reduces the set of valid traces

Conformance-related oper-

ators in complex diagrams

Nesting is restricted, traces having an in-

valid pre�x are invalid

Traces being both valid and

invalid

Syntactic restrictions avoid some of the

ambiguous cases

Computing partial orders The de�ned formal semantics was inspired by LSC’s semantics, as the

goals of TERMOS are similar to LSC (like expressing requirements or depicting partial traces).

• Processing the diagram TERMOS uses also the location concept and processes the diagram as a

whole.

• Underlying formalism A state-based formalism was chosen because it makes checking of a given

trace feasible. An automaton is built for the whole diagram, which represents all lifelines.

• Choices and predicates In TERMOS, to make veri�cation possible, there is a global time point

when all the participating lifelines evaluate the guards and choose one alternative (this will be

represented by a common transition in the formal semantics). If the choice is guarded, the ex-

plicit guards appear as transition labels. Moreover, only a deterministic form of guarded choice

is allowed (similar to an if-then-else construct). Finally, variables in guards and state invariants

can only refer to message parameters previously sent or received and to node attributes in the
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current con�guration. This guarantees that unrepresented nodes and messages cannot change

the valuation of a predicate.

Introducing Gates Requirement scenarios should be kept simple; thus all types of Gates were

disallowed. This means, that scenarios cannot reference each other, every requirement scenario is

analyzed independently.

Interpretation of conformance-related operators The conformance-related operators (assert,

neg, consider, ignore) modify the categorization of a trace as valid, invalid or inconclusive. Their

usage is heavily restricted in order to make the checking of a trace feasible.

• Assert and negate The diagram can have only one assert box at the end of the diagram, which

should cover all lifelines. Handling theneg operator combined the approaches from MSD (using

a global false predicate instead of neg as an operator) and Störrle (negation is for the whole

Interaction, it can appear only at the end of the top-level fragment).

• Ignore and consider Because of partial traces and weak interpretation the ignore operator is not

needed. The operator consider is used to reduce the set of valid traces, i.e., to indicate that

some of the extra messages are not allowed.

• Conformance-related operators in complex diagrams To ease the detection of valid traces the

nesting of operators is heavily restricted. Only one level of nesting is allowed for conformance-

related operators (e.g., assert into a top-level consider ). Table 4.2 summarizes the allowed com-

binations of nested operators. However, when using nesting, the containing operator should

be at the main level of the diagram.

• Traces being both valid and invalid We want to avoid ambiguous cases as much as possible.

Thus apart from the syntactic restrictions presented before, further checks are de�ned on the

generated automaton, to detect some remaining cases of non-deterministic categorization into

valid and invalid traces.

Table 4.2: Can the operator in the row be nested in the operator in the column?

alt opt par assert consider

assert •
consider •

Summary The collection of the semantic choices from Chapter 3 helped to identify what should

be decided for the new language. As can be seen from this example, the categorization of choices

provides a structured framework to consider the various options and to make design decisions that

suit the purpose of the newly de�ned language.

However, it should be noted that these design decisions in�uenced the expressiveness of the new

language. As the usage of several elements were forbidden or heavily restricted (e.g., using gates

or nesting operators), several UML 2 SD scenarios cannot be expressed in TERMOS. We think that

this is the price one have to pay to have a language that can be later used for veri�cation purposes.

Nevertheless we took care to have su�cient expressiveness to be able to represent the GMP scenarios.

We also took inspiration from the language elements o�ered by other formalisms for requirement

scenarios in (non mobile) distributed systems, like LSC [HM03] and its adaptation to UML 2 [HM08].
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4.3.2 Syntax of the language

In the description of the language’s syntax, we put emphasis on the new elements we propose to

allow description of scenarios in mobile settings. The new elements concern (i) the introduction of a

spatial view for the scenario, (ii) the accounting for spatial con�gurations in the event view, (iii) and

the representation of broadcast communication. The rest of the section then provides an overview of

the syntax of the event view, recapitulating the syntactic constraints put on the core UML elements

to facilitate the de�nition of the semantics.

4.3.2.1 Syntax of the spatial view

The spatial view may contain several spatial con�gurations. Each con�guration is given a name, e.g.,

Figure 4.6 shows a con�guration named C3 .

C3

l2 = v1

l3 = *

x

l2 = 1

l3 = 2

y

l2 = v1

l3 = *

z
*

<<safeDistance>>

Figure 4.6: Example of spatial con�guration

Abstract syntax A con�guration is a labeled graph, where vertices represent system nodes and

edges represent di�erent kinds of connection between nodes. Each node has a symbolic identi�er.

For example, Figure 4.6 shows three nodes having identi�ers x, y and z. This means that any scenario

referring to C3 must involve lifelines for nodes x, y and z. In order to allow for a richer represen-

tation of con�gurations, nodes can have two additional attributes of integral types (i.e., integers or

enumeration types). The corresponding vertex labels in the graph can take di�erent forms:

• A constant value from the integral type. For example, in Figure 4.6, the two attributes of node

y have constant values 1 and 2.

• A variable name, denoting a value from the type. For example, the �rst attribute of nodes x
and z must be identical, but their precise value is let unspeci�ed (variable v1 ). This value is

intended to remain stable in the con�guration. Moreover, if a scenario involves several graph

con�gurations containing label variable v1 , it must be substituted for a single value. Thus, v1
can be seen as a symbolic global constant for the scenario.

• A wildcard indicating a don’t care value, e.g., the second attribute of node x. Don’t care values

do not need to remain stable in the given con�guration.

Edges can be labeled by constant values or wildcards. In Figure 4.6, it is assumed that the connec-

tion type is an enumerated type safeDistance, communicationDistanceOnly, like in the GMP testing

case study. Nodes x and y have a safeDistance connection, nodes y and z are disconnected, and we do

not care about the connection of nodes x and z, they may exhibit unstable connections/disconnections

during the con�guration.
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Concrete syntax To be as compatible with the original UML speci�cation as possible, a spatial con-

�guration is depicted using object diagrams. A package with the name of the con�guration contains

all elements. Nodes are represented as instances, slots named l2 and l3 contain the additional labels

de�ned for the given node. Labels for edges are represented as stereotypes, because they characterize

the given connection between the two nodes.

4.3.2.2 Spatial elements in the event view

The event view of a scenario uses UML 2.0 Sequence Diagrams, with some extensions to explicitly

account for the spatial con�gurations de�ned in the spatial view.

Abstract syntax An Interaction can be tagged with the termosScenario stereotype (Figure 4.7) to

show that it is a requirement scenario in TERMOS. The termosScenario stereotype has an association

named initialCon�guration giving the initial con�guration of the Interaction.

<<stereotype>>

termosScenario

<<metaclass>>

BasicInteractions::Interaction

<<metaclass>>

Kernel::Package

1

*

initialConfiguration

Figure 4.7: The termosScenario stereotype

Con�guration changes are represented by global events of the form CHANGE(newConfigName)
that induce a global synchronization for all lifelines. Con�guration changes cannot be nested into op-

erators, except into a consider operator that is at the main level. Con�guration changes are “decided”

by the environment. Con�guration changes arise deterministically and involve all lifelines at the same

time. In this way, the diagram can be decomposed into fragments, where each fragment takes place

in a well-de�ned spatial con�guration. This makes it explicit which communication event occurs in

which con�guration. Predicates (guards of alt operands, state invariants) may refer to variables of

their current or past con�gurations (i.e., node label variables).

Concrete syntax Representing the initial con�guration with a stereotype’s tagged value �ts well

into the UML framework, the only drawback is that because Interactions are the abstract concepts

representing scenarios, they visually do not appear on a Sequence Diagram. In most of the modeling

tools, assigning a stereotype to an Interaction is only re�ected in the textual properties view, but not

on the diagram itself. For this reason, in the examples used in this chapter the initial con�gurations of

the diagrams are depicted in a comment box containing the text INITIALCONFIG. These comments

are not part of the semantic model, rather they ease the readability of the examples.

For the graphical element of a con�guration change the symbol of Continuation was reused. The

original Continuation element is not allowed in TERMOS, thus it could not cause a misunderstanding.

The con�guration changes may involve the dynamic creation, shutdown and restart of nodes. For

example, a scenario may have three successive con�gurations C4 , C5 , C6 (see Figure 4.8(a)), where:

• C4 contains a node with identi�er x;
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• C5 does not contain a node with identi�er x, but contains a node with identi�er y that was not

present in C4;

• C6 contains both nodes x and y.

There is no convenient way to illustrate such a dynamic structure in sequence diagrams. For

example, a lifeline can be stopped, but then it is not possible to restart it. Also, dynamic creation can

only occur as the result of an action performed by an existing lifeline. To solve this problem, we take

the convention that the spatial con�guration determines which node is alive/dead at some point of

the scenario. There is a lifeline for every nodes mentioned in any one of the con�gurations.

Well-formedness rules If a node is not active at some point of the scenario, then it is not supposed

to participate to any communication interaction. Figure 4.8(b) shows an example for such invalid

messages. Checks can be provided to warn the scenario speci�er whenever communication is not

compatible with the spatial view:

• dead nodes sending and receiving messages;

• active nodes exchanging messages while there is no path connecting them in the current con-

�guration.

C4

x

C5

y

C6

x y

(a) Spatial con�gu-

rations

sd change

assert

x : Node y : Node

m1

CHANGE(C5)

m3

CHANGE(C6)

This message is 

not valid 

according to the 

actual spatial 

configuration

INITIALCONFIG = C4

m2

These messages 

are not valid 

according to the 

actual spatial 

configuration

This message 

can be sent 

according to the 

spatial 

configuration

(b) Con�guration changes and messages

Figure 4.8: Combining the spatial and event view

4.3.2.3 Broadcast communication

UML 2 Sequence Diagrams focus on point to point communication. There is no element dedicated

to the representation of broadcasts or multicasts. This is a serious drawback for representing local

broadcasts, i.e., communication with unknown partners in local vicinity.

Abstract syntax We propose to use the concepts of lost and found messages to represent such

broadcasts. Lost messages are messages with no explicit receiver. Similarly, found messages do not

have an explicit sender. Lost and found messages o�er �exibility to represent partial behavior, where
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not all lifelines and not all communication events are of interest. Such �exibility is quite useful when

specifying requirement scenarios; hence we need lost and found messages independently of our con-

sideration for local broadcasts.

id: integer

<<stereotype>>

broadcast <<metaclass>>

BasicInteractions::Message

Figure 4.9: The broadcast stereotype

In order to distinguish broadcasts from “usual” lost/found messages, we assign them the «broad-
cast» stereotype. A broadcast involves one send event followed by zero or more receive events. A

tagged value is attached to the corresponding lost/found messages, so that each receive event of the

diagram can be paired to the send event that caused it. Figure 4.9 presents the de�nition of the broad-

cast stereotype.

Concrete syntax For representing local broadcast the usual notation of lost and found messages is

used. Figure 4.10 shows an example how this can be combined with the broadcast stereotype. There

are two broadcast messages on the diagram, one sent by node x (identi�ed by id = 1) and one by

node z (identi�ed by id = 2). Every other node receives the broadcasts messages, as depicted by the

found messages.

sd broadcast

par

x : Node y : Node

<<broadcast>> hello

<<broadcast>> hello

{id = 1}

{id = 1}

z : Node

<<broadcast>> hello

{id = 1}

<<broadcast>> hello

{id = 2}

<<broadcast>> hello

{id = 2}

<<broadcast>> hello

{id = 2}

Figure 4.10: Example of broadcast messages

4.3.2.4 Syntax of event view

Abstract syntax The abstract of the event view is derived from the syntax of UML 2.0 Sequence

Diagrams. According to the decisions described in Section 4.3.1, some of the elements were removed

and some additional constraints were added to adopt it our environment.

Appendix C.1 contains the complete abstract syntax of TERMOS given with a metamodel. The

changes to the original abstract syntax are collected in Table 4.3.

Concrete syntax Apart from the con�guration change and the global StateInvariant no changes

were made to the concrete syntax. This should help using existing UML modeling tools to create

TERMOS scenarios.
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Table 4.3: Changes to the original Sequence Diagram syntax

Type Description of change

Remove Removed elements: Events, Gate, PartDecomposition, GeneralOrdering, Con-

tinuation, ExecutionSpeci�cation.

Remove The following operators were removed: seq , strict , loop, ignore , neg , break ,

critical .
Change Changed the multiplicity for the association going from StateInvariant to Life-

line from 1 to 1..* to allow global predicates. The concrete syntax remains the

same, just now StateInvariants can span to multiple Lifelines.

Constraint Only the following operators can have guards: alt , opt .

Constraint The following operators have only one operand: opt , assert , consider .

Constraint The assert and consider operators should cover all Lifelines.

Constraint There should be an assert fragment at the bottom of the diagram.

Constraint If a FALSE global predicate is used, it is the only element in the assert , and

covers all lifelines.

Constraint The nesting of conformance operators is only allowed as in Table 4.2

Constraint The con�guration change can only be in the main fragment of the diagram

or nested in a consider , provided that the consider is at the main fragment

of the diagram.

Constraint The diagram should contain a note with the initial con�guration in it.

Well-formedness rules Apart from the simple constraints presented in Table 4.3, there are other,

more complex checks that could be done to validate whether a requirement scenario is also semanti-

cally well-formed.

• Check, whether messages depicted on the diagram can be sent and received in the current

spatial con�guration.

• Check, whether predicates refer only to message parameters received so far and to con�guration

labels from the current or past con�gurations.

Automated checks can be implemented to verify that a diagram conforms to the above changes

and constraints, which will be presented later in this section.

4.3.3 Semantics of the language

We de�ned an automaton-based operational semantics for the TERMOS language. The semantics has

been inspired by the semantics proposed for LSC, more speci�cally the one de�ned by Klose [Klo03].

The approach builds an automaton from the diagram, the states of the automaton being determined

by the valid cuts of the diagram. Informally, a cut is intended to represent a consistent global state

characterized by the events occurred so far, and it is meaningful to reason about the past or the future

of this state. The automaton’s transitions then stand for the successor relation among the cuts. Klose’s

approach has been extended (i) to incorporate UML SD elements not present in LSC, e.g., alt or par
combined fragments, and (ii) to handle the mobile settings related elements, e.g., broadcast messages

and con�guration changes. Also, the details of the construction of the automaton di�er in several

aspects:
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• Klose builds a Büchi automaton to accommodate in�nite traces. Since we are dealing with �nite

test traces, we are building a standard automaton.

• Klose has a separate treatment for the pre-chart (for us, the analogous would be everything

before the assert fragment) and chart (for us, would be the content of the assert fragment). Our

semantics builds a single automaton for the whole diagram.

• We have an interleaving semantics, while Klose allows several events to occur at the same time.

As regards the last two points, our choices are similar to the ones made for MSD, which also has

an interleaving semantics captured in one automaton. However, as LSC does not have a concept of

compound fragments and MSD was de�ned only for synchronous messages, their semantics have to

be extended and adapted.

Our de�nition of the semantics consists of the following steps.

1. Pre-processing: the diagram is parsed, its basic building blocks and the orderings between them

are identi�ed.

2. Unwinding: the automaton is constructed using the structures built in the �rst step.

3. Checking well-formedness: as stated in Section 4.3.2.4 the diagram has to conform also to com-

plex well-formedness rules, which can be checked based on the formal semantics.

4. Connecting to the spatial view: the automaton built for the event view has to be connected to

the spatial view.

The next sections will describe each step. The details of the semantics will be illustrated by taking

example scenarios and de�ning their semantics.

4.3.3.1 Pre-processing the diagram

To create an automaton capturing the semantics of a diagram, �rst the elements of the diagram are

identi�ed.

De�nition 1 (Atom) The basic building block of a TERMOS diagram is called an atom. The follow-

ing elements are atoms:

• Lifeline heads, denoted by ⊥l for Lifeline l;

• Lifeline ends, denoted by >l for Lifeline l;

• MessageOccurrenceSpeci�cations, i.e., sending a message or receiving a message;

• StateInvariants (for global StateInvariants every Lifeline has a separate StateInvariant atom);

• con�guration changes;

• entering a CombinedFragment;

• exiting a CombinedFragment;

• guards. 2

The orderings of the atoms on one Lifeline are de�ned by their position. Klose uses an integer as

the position of atoms, however this is not su�cient in our case. In the case of parallel or alternate

fragments, the visual positioning of atoms does not necessarily mean a temporal relation between

them, i.e., the elements inside the second operand of a par fragment are drawn below the elements

inside the �rst operand, but they should not necessarily happen after the atoms in the �rst operand.
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sd atoms

par

x : Node y : Node

m1

par

m2

m3

m4

{y.k > 4}

0

1

2.par(1).0

2.par(2).0

2.par(2).1.par(1).0

2.par(2).1.par(2).0

2.par(2).2

2.par(2).3

3

4

sd atoms

par

x : Node y : Node

m1

par

m2

m3

m4

{y.k > 4}

0

1

2.par(1).0

2.par(2).0

2.par(2).2.par(1).0

2.par(2).2.par(2).0

2.par(2).3

2.par(2).4

3

4

2.par(2).1

Figure 4.11: Example for assigning atom position to par fragments

To solve this issue, instead of an integer value a path expression is assigned to each atom, similarly

to the approach used in [Küs06]. The method is illustrated by the following example.

The left side of Figure 4.11 contains the example diagram, while the right side is annotated with

the atom positions. The idea is that for the elements inside the main fragment or for the elements

inside one operand, every atom is assigned a number according to their visual position starting from

zero. If we enter a CombinedFragment, then a path expression is added to the position quantifying

in which operand the current atom resides. In the current example this translates to the following

positions.

• The head of Lifeline x is assigned position 0.

• The atom for entering the �rst par fragment still belongs to the main fragment, thus it gets

position 1.

• The par gets the next position, which is 2.

• Elements inside the par inherit the position of the par fragment (namely 2 in the current ex-

ample), and an expression describing in which operand of the par they reside. Thus, sending

m1 on x gets 2.par(1).0, meaning that it is in the par identi�ed by position 2, it is in the �rst

operand of the par , and it is the �rst atom of that operand.

• Entering the second par fragment is in the second operand of the outer par , thus it is as-

signed 2.par(2).0. Sending of m2 is inside the nested par , its position re�ects this nesting:

2.par(2).1.par(1).0. The second par has the position 2.par(2).1, this position is pre�xed to

every elements inside that fragment.

• Exiting a fragment belongs to the same level as the fragment itself, thus exiting the �rst par
gets the position 3, showing that it is at the main diagram fragment.

• Atom positions are only unique per lifelines, and atoms representing the same event (e.g., en-

tering the same fragment), can have di�erent positions assigned. This is illustrated with the

help of positions on lifeline y.
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Thus the de�nition of the atom position is the following.

De�nition 2 (Position) The atom position identi�es the position of an atom on one lifeline. It has

the form [path]id, where path is a string identifying in which CombinedFragment the atom is, and id is

an integer giving the order of the atom compared to the other atoms inside that fragment. The string

path is empty if the atom is in the main fragment of the diagram, otherwise it is in the form p.opr(op).,
where p is the position of the CombinedFragment the atom is in, opr is name of the operator of the

fragment, and op is the number of the operand the atom is in. 2

The example on Figure 4.12 shows how atom positions can be assigned to an alt fragment. Notice,

that for all guards an atom is assigned on the Lifeline, where the guard is placed.

Guards of operands are grouped to the next atom on the Lifeline, forming a cluster with that atom.

However, care must be taken, because sometimes there is no next atom inside the guard’s operand

(e.g., in an empty [else] operand coming from an opt fragment). In this case, the cluster contains only

the guard. In the original UML speci�cation, there can be several immediate successor of an atom

also (e.g., if the atom is right before a par with several operands). With the introduction of a separate

atom for the beginning of a fragment, this is not the case in TERMOS.

sd alt-par

alt

x : Node y : Node

par
m1

m2

m3

[x.l > 5]

[else]

sd alt-par

alt

x : Node y : Node

par
m1

m2

m3

[x.l > 5]

[else]

0

1

2.alt(1).0

2.alt(1).2.par(1).0

2.alt(2).0

2.alt(2).1

3

4

2.alt(1).3

2.alt(1).1

2.alt(1).2.par(2).0

0

1

2.alt(1).1.par(1).0

2.alt(2).0

3

4

2.alt(1).2

2.alt(1).0

2.alt(1).1.par(2).0

Figure 4.12: Example for assigning atom position to alt fragments

De�nition 3 (Cluster) If the a atom is a guard with a position p.i and there exists an atom with a

position p.(i+1), then the two form a cluster. Every other atom forms a cluster with only that atom

in it. 2

The Clusters(l) function returns all the clusters on the lifeline l. To handle the positions of clusters

with multiple elements, the concept of location is de�ned.

De�nition 4 (Location) The Location(cl) function returns the minimum of the positions of the

atoms inside the cluster, where min(p.i, p.(i+ 1)) = p.i. 2
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Several elements provide synchronization across Lifelines, e.g., con�guration changes or entering

a fragment, the clusters corresponding to these elements have to be mapped together. Simultaneous

classes, SimClasses, serve this purpose.

De�nition 5 (SimClass) A simultaneous class is a set of clusters from separate lifelines. The clusters

representing the following elements form a SimClass together, every other cluster forms a SimClass

with only that cluster as its member:

• the beginning of the same CombinedFragment;

• the end of the same CombinedFragment;

• the same con�guration change;

• the same global StateInvariant. 2

Figure 4.13 illustrates how atoms, clusters and SimClasses are de�ned for a diagram. To sum up:

atoms are “points” on lifelines; clusters are used to group simultaneous atoms on a given lifeline; Sim-

Classes group clusters that are simultaneous at a diagram-wide level, that is, non singleton Simclasses

represent synchronization of several lifelines.

sd SimClass

alt

x : Node y : Node

par
m1

m2

m3

[x.l > 5]

[else]

Atom

Cluster

SimClass

Figure 4.13: Atoms, clusters and Simclasses on a diagram

Two relations are de�ned between clusters on one lifeline. Causality, denoted by ≺, de�nes a

partial order between clusters. Con�ict, denoted by #, de�nes which events cannot appear in the

same trace, e.g., atoms from di�erent operands of an alt .

De�nition 6 (Local causality) Let cl1, cl2 be two clusters on lifeline l with their location in the

form: Location(cl1) = p1.i.p2 and Location(cl2) = p1.j.p3, where if p1 is the empty string then the

p1. pre�x, if p2 or p3 is the empty string, then the .p2 or .p3 post�x is removed respectively. Local

causality is de�ned then as

cl1≺ cl2 i� j > i. 2
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De�nition 7 (Local con�ict) Let cl1, cl2 be two clusters on Lifeline lwith their location in the form:

Location(cl1) = p1.alt(i).p2 and Location(cl2) = p1.alt(j).p3, then local con�ict is de�ned as

cl1 # cl2 i� i 6= j. 2

De�nition 8 (Predecessors) The predecessors function calculates the immediate predecessor(s) of

a cluster cl on its Lifeline l:

Predecessors(cl)
def
=
{
cl′ ∈ Clusters(l) | cl′≺ cl ∧ @cl′′ ∈ Clusters(l) : cl′≺ cl′′≺ cl

}
. 2

For example, on Figure 4.12, the predecessor of the cluster with location 2.alt(1).0 is 1, while the

predecessors of the cluster 2.alt(1).3 are 2.alt(1).2.par(1).0 and 2.alt(1).2.par(2).0.

For handling the causality between clusters on di�erent lifelines, the message sending and receiv-

ing events have to be mapped. To achieve this, every message is assigned a unique symbolic identi�er

in the form $i, where i is an integer. Let ID be the set of identi�ers generated that way, and let

MessageSends(sd) and MessageReceives(sd) be the sets of all message sending and receiving atoms

of the diagram sd .

De�nition 9 (MessageID) The MessageID: MessageSends(sd) ∪ MessageReceives(sd) → ID
function returns, for each sending or receiving atom, the identi�er of the corresponding message. 2

The Predecessors function can be extended to SimClasses to contain also the causality relations

implied by the connection between message sending and receiving. Let SimClasses(sd) represent

the set of all SimClasses of diagram sd .

De�nition 10 (Prerequisites) The immediate predecessors of a SimClass scl in the diagram sd are

given by the Prerequisites function:

Prerequisites(scl)
def
=
{
scl′ ∈ SimClasses(sd) |

∃cl ∈ scl,∃cl′ ∈ scl′ : cl′ ∈ Predecessors(cl)∨(
∃a ∈ cl ∩MessageReceives(sd),∃a′ ∈ cl′∩

MessageSends(sd) : MessageID(a) = MessageID(a′)
)}
. 2

The con�ict relation is extended to SimClasses using the Conflicts function.

De�nition 11 (Con�icts) The Conflicts(scl) : SimClass → P(SimClass) function returns the

SimClasses which have clusters that are in di�erent operands of an alt fragment than the operand in

which the clusters of scl are. 2

We then have scl2 ∈ Conflicts(scl1) if and only if the two SimClasses respectively contain a

cluster cl1 and a cluster cl2 such that:

• the location of cl1 on its lifeline l1 has a form prefix 1.k1.alt(i).suffix 1 (i.e., cl1 is in an alt
operand)

• the location of cl2 on its lifeline l2 has a form prefix 2.k2.alt(j).suffix 2 with j 6= i (i.e., cl1 is in

an alt operand having a di�erent number)

• the alt coincide, that is, the following clusters ()representing the beginning of the fragment)

belong to the same SimClass:
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– cl′1 ∈ Clusters(l1) having location prefix1.(k1 − 1)

– cl′2 ∈ Clusters(l2) having location prefix2.(k2 − 1)

Note that the local con�ict relation (#) corresponds to a special case of the global con�ict, when

l1 = l2.

4.3.3.2 Unwinding algorithm

The aim of the unwinding algorithm is to build a symbolic automaton that characterizes traces as valid

or invalid according to the requirement scenario. Inspired from [Klo03], the principle is to gradually

unwind the SimClasses of the diagram, until all of them have been processed.

A state of the automaton is a global state of the scenario, capturing the progress of all lifelines. The

algorithm starts in an initial state with the lifelines heads unwound. Then, it uses the precedence and

con�ict relations to search for the enabled classes of atoms and to compute the successor states. Each

transition is labeled according to the currently unwound class. A label can be an event expression,

consuming a trace event that matches it, or a predicate to be evaluated without consuming an event.

Both kinds of labels may involve variables, and event consumption may trigger update actions. If

the trace analysis reaches a state where no transition can be �red, the automaton exits and returns a

verdict that depends on the category of the state.

The automaton has three categories of states. Trivial accept states are used to categorize traces

that do not exhibit the potential behavior before the assert . Reject states represent traces that are

invalid (e.g., something in the assert is violated), and stringent accept states denote traces successfully

reaching the end of the assert .

The de�nition of a symbolic automaton and the unwinding algorithm is detailed in Appendix C.2.

The example on Figure 4.14 is used to illustrate the unwinding algorithm. On Figure 4.14(a) the

two con�gurations referenced in the scenario, while on Figure 4.14(b) the event view is presented.

Figure 4.15 depicts the generated symbolic automaton. Trivial accept states are marked with double

circles, reject states with single circles and stringent accept traces with triple circles. The example

shows how a simple diagram with con�guration changes and messages is handled.

A more complex example with an alt and a par fragment can be found in Appendix C.3.

T1

a : A b : B

T2

a : A b : B

(a) Spatial view

sd example

assert

a b

CHANGE(T2)

INITIALCONFIG = T1

m1

m2

(b) Event view

Figure 4.14: Example scenario used for generating automaton
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0 {b, a} ~CHANGE(-)

1 {b, a}

CHANGE(T2)

~CHANGE(-) ^ ~(!m1(),a,$1)

2 {b, a, $1}

(!m1(),a,$1) [update($1)]

~CHANGE(-) ^ ~(?m1(),b,$1)

3 {b, a, $1}

(?m1(),b,$1)

4 {b, a, $1}

true

~CHANGE(-) ^ ~(!m2(),b,$2)

5 {b, a, $1, $2}

(!m2(),b,$2) [update($2)]

~CHANGE(-) ^ ~(?m2(),a,$2)

6 {b, a, $1, $2}

(?m2(),a,$2)

7 {b, a, $1, $2}

true

Figure 4.15: Automaton generated from the scenario on Figure 4.14

4.3.3.3 Well-formed scenarios

Well-formedness is not a purely syntactic issue. Some checks depend on the semantics. At the end of

Section 4.3.2.4, two checks were mentioned:

• Check, whether messages depicted on the diagram can be sent and received in the current

spatial con�guration.

• Check, whether predicates refer only to message parameters received so far and to con�guration

labels from the current or past con�gurations.

The �rst check can be performed as soon as the preprocessing step, when the orderings are com-

puted. Using the positions it is straightforward to determine the current spatial con�guration for a

communication atom. Moreover, the message identi�er allows us to identify the sender of receiving

events. It su�ces then to verify that for each lifeline l:

• Each communication atom of l occurs in a con�guration where l exists, i.e., there is a vertex

with symbolic identi�er l in the con�guration graph.
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• If the atom is a receive event and lifeline l′ of the diagram was the sender, then there is a path

connecting l and l′ in the current con�guration graph such that all edge labels in the path have

constant values.

The second check can only be performed on the automaton. It su�ces to verify that, for each state

q, the predicates appearing on the outgoing transitions do not refer to free variables that are unde�ned

in q. The implementation is straightforward since, by construction, we know which variables are

de�ned for which state. The check could be integrated into the unwinding algorithm, i.e., when the

transition labels for guard and state invariant atoms are computed.

4.3.3.4 Combining the spatial and event view

The analysis of the event view of a TERMOS scenario produces a symbolic automaton with variables

that depend on the spatial con�guration. The automaton must be instantiated in the framework of

the concrete con�gurations that occurs during system execution. Checking whether a system trace

satis�es or violates the scenario is done under the following conditions:

• Analysis is started in a state where the system is in a concrete con�guration that matches the

initial con�guration of the scenario.

• The concrete values for the con�guration variables, including the concrete identi�ers of nodes

participating to the scenario, are known.

• The trace includes con�guration change events.

Such conditions are ful�lled by using the GraphSeq tool. It returns a set of matches for the de-

sired sequence of spatial con�gurations where a match includes: (i) a valuation for all con�guration

variables, (ii) the temporal window for each individual con�guration. This allows the veri�cation of

the trace against the scenario requirement.

4.4 Tools for the test framework

The following prototype tools have been developed to demonstrate and analyze the TERMOS lan-

guage and the test framework.

The GraphSeq tool was developed at LAAS by Minh Duc Nguyen [Ngu09]. The tool searches for

the matches of spatial con�gurations in an execution trace. GraphSeq uses a graph matching tool and

reasons on sequences of graphs. It returns the possible matches of the con�gurations de�ned in the

spatial view of the scenario to the concrete con�gurations found in the execution traces.

The �rst prototype for TERMOS, developed at LAAS by Irina Nitu, focused on the study of the un-

winding algorithm itself. It served as a quick feedback on the algorithm, as e.g., the tool could provide

a graphical visualization of the generated automaton structure using the Graphviz open source pack-

age. The graphical visualization allowed to manually check the result of the algorithm for a sample

of diagrams, illustrating the various TERMOS constructs.

The second prototype for TERMOS, developed at BME as the Master thesis of Áron Hamvas

[Ham10]
1
, focused on integrating TERMOS in a UML tool. The tool is implemented as an Eclipse

plug-in, as the Eclipse platform has extensive built-in support to manipulate UML models. The plug-

in loads an Eclipse UML2 compliant model, and operates on the UML elements directly. The tool

performs the following tasks on UML 2 models tagged with the TERMOS pro�le stereotypes de�ned

in Section 4.3.2:

1

I was the advisor for the Master thesis, thus gave directions and feedback, but Áron Hamvas implemented the tool.
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• checks whether the scenario conforms to the syntactic constraints speci�ed in Section 4.3;

• checks whether the messages in the scenario conform to the semantic restrictions in Sec-

tion 4.3.3.3;

• builds an automaton from a scenario and the accompanying con�gurations;

• can evaluate traces with respect to the generated automaton.

Figure 4.16 shows the TERMOS plug-in in action. The left side shows a successful check, while

on the right side the scenario is not well-formed, one of the messages is not allowed according to the

actual spatial con�guration. Once the checks are successful and an automaton is generated, traces

can be evaluated with the TERMOS plug-in.

(a) Successful check (b) Check failed

Figure 4.16: Syntactic and semantic checks in the TERMOS plug-in

Note, that integration of these tools was not completed initially (it was only completed just re-

cently in 2013 at LAAS [AWR13]). Thus at �rst the components of the framework were analyzed

separately, e.g., the mapping returned by GraphSeq had to be manually speci�ed in the input �le of

the TERMOS plug-in.

GraphSeq was evaluated using the traces from the GMP case study and by connecting it to a

mobility simulator [NWR10]. The TERMOS language and plug-in was mainly demonstrated using

scenarios created for the GMP protocol. The �nal deliverable of the Hidenets project [HW08] added

a few illustrative scenarios inspired from other uses cases (a blackboard application, a platooning

application and a distributed black box system).

Moreover, an important lesson learned from implementing the TERMOS plug-in was that there

are issues regarding the conformance and interoperability of UML modeling tools.

Conformance to the standard We have not found a tool, which conforms 100% to the UML 2.x

Sequence Diagrams speci�cation. For example, the graphical symbol of Continuation, which

was chosen for representing con�guration changes, were not available in several tools; some
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tools placed guards always on the �rst Lifelines; or an empty guard was displayed even for an

assert .

Import/export Most of the tools support exporting to XMI, but because of version incompatibilities

and interoperability issues they are often not able to import each other’s output. This makes

it hard do create the models in one tool, and then process them separately in Eclipse UML2

(which has a limited, tree-view based user interface for manipulating models). Recently, the

Model Interchange Working Group (MIWG) of OMG has started to work on this issue [EL12],

but it takes time until all the issues will be resolved.

Handling pro�les Some of the TERMOS extensions were de�ned as a UML pro�le, as this is the

recommended extension mechanism for UML. However, the modeling tools handle pro�les in

various ways, which makes it again di�cult to reuse pro�les in di�erent tools or even in dif-

ferent major versions of the same tool.

For this reason, the XML representation of some of the example scenarios had to be manually

modi�ed before they could be processed by the TERMOS plug-in.

4.5 Summary

This chapter presented an approach for testing context-aware mobile systems with dynamic commu-

nication structures (Figure 4.17).

Test language and framework for mobile systems

Characteristics

Research question

Languages

Test framework

Test oracle

Context awareness
Communication with 

local broadcast

How can dynamic communication structures be specified in testing artifacts?

TERMOS — TEst Requirement language for Mobile Setting

- TERMOS scenarios

Requirements

Dynamic, evolving 
environment

Checking traces against requirements

- network, context simulators

Execution environment

- execution traces

Configuration matching

Figure 4.17: Summary of problem, languages and framework for mobile system testing

We proposed to extend classical graphical scenario languages with a spatial view, and represent

explicitly the connection between the messages and the actual context and communication topology

in which the messages were sent. The proposed extensions could be incorporated in several test ar-

tifacts, e.g. test purposes or requirements. Using these extensions we developed a test requirement

languages called TERMOS. TERMOS is based on UML 2 Sequence Diagrams, and it was carefully de-

signed to have several syntactic restrictions to avoid ambiguity and make checking of execution traces

possible. The structured categorization of semantic choices and options presented in Chapter 3 was
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used to design the semantics of TERMOS. We de�ned an automaton-based operational semantics for

the language, and implemented two tools when developing the proposed algorithms. The tools were

tested with scenarios from a mobile group membership protocol, exemplifying ad hoc networking

issues. The tools showed that the language is capable of expressing requirements for mobile systems,

the operational semantics is working, however, there are still issues with the model interchange and

interoperability in current modeling tools.



Chapter 5

Conclusion and future work

5.1 Summary of the research results

To close the dissertation this section revisits the initial open research questions in the identi�ed new

challenges (Section 1.3), and discusses the achieved results and their applications.

Challenge 1: Adapting robustness testing to HA middleware. How can relevant test inputs for
a HA middeware be speci�ed in test artifacts to support the automated testing of the robustness of such
systems?

Chapter 2 presented the developed languages and robustness test approach for HA middleware.

We identi�ed the possible inputs to activate robustness faults and based on this information designed

a robustness test framework that uses the combination of type-speci�c testing, mutation-based testing

and OS call diversion. The framework was developed by identifying the required test artifacts, next

creating the necessary languages, and �nally implementing tools that generate the test artifacts. The

robustness test suite was executed in several case studies on three di�erent middleware implementa-

tions: on OpenAIS, on OpenSAF, and on Fujitsu-Siemens’ SAFE4TRY. The faults identi�ed in OpenAIS

were reported to the open source community, and the whole robustness test suite was made publicly

available [BME07]. The robustness testing results for OpenAIS and OpenSAF were uploaded to the

public AMBER Data Repository (ADR) [AMM10]. ADR is an open repository for storing, analyzing

and sharing benchmark and measurement data. Our robustness testing results can be downloaded

or analyzed in ADR. (Note, the test results were prepared for the ADR repository and uploaded by

András Kövi.)

Challenge 2: Specifying mobile systems in test artifacts. How can dynamic, frequently chang-
ing communication structures and unknown partners be speci�ed in test artifacts in a way that such
systems can be later evaluated?

Chapter 4 introduced the recommended language extensions for representing dynamic, frequently

changing communication structures and unknown partners. Using these extensions we de�ned a test

requirement language based on UML 2 Sequence Diagrams called TERMOS, and a test framework that

can check test traces with respect to TERMOS requirements. The TERMOS language was developed

based on the analysis of a mobile group membership protocol (GMP). The syntax and semantics of

the language was carefully designed to support evaluation of traces. Prototype tools were created

to validate the recommended semantics and test approach, and they were tested using the scenarios

from the GMP.

99
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Challenge 3: Analyzing the semantics of UML 2 Sequence Diagrams. What semantic choices
are available in UML 2 Sequence Diagrams, and what options can be chosen when the language is ex-
tended to a speci�c application domain?

Chapter 3 presented the work on the semantics of UML 2 Sequence Diagrams. Based on an analysis

of 13 proposed formal semantics we identi�ed the possible semantic choices in UML 2 Sequence

Diagrams, and presented the di�erent options using a notation inspired by feature models. This

presentation illustrates alternative, con�icting or non-standard choices. The detailed discussions of

the choices highlight the consequences of the di�erent options and recommend one or the other

for di�erent purposes. This categorization of semantic choices was used to de�ne the syntax and

semantics of TERMOS.

5.2 Future work

The last section lists for each of the major chapters the remaining open questions, which can direct

future work.

5.2.1 Robustness testing of HA middleware

The case studies showed that the developed tools and test framework can uncover robustness failures

in HA middleware systems, and qualitative observations can be made about the di�erent implementa-

tions. However, tracing back the robustness failures to the robustness faults, and in this way obtaining

a quantitative metric, was only performed in the �rst case study. This case study showed that with

the help of data analysis techniques identifying the possible root causes is possible; however, the

automatic processing of the robustness testing results is still an open question.

The robustness framework was designed for AIS-based HA middleware, however results of the

research can be exploited in other similar systems. On one hand, if the new target environment

resembles the current one (e.g., C language API or POSIX-compliant OS), then even the tools can be

reused as they can be extensively con�gured. For type-speci�c testing, all the templates and metadata

�les have to be redeveloped, however the generator tool can be utilized. The mutation tool can work

on other C sources, but possibly new operators should be implemented to cover the important fault

types of the new system. The OS wrapper does not depend on the HA middleware, when using with

a di�erent system only the OS calls to divert should be reselected. On the other hand, even if the tools

cannot be used directly for some reason, then the presented methodology – �rst identifying inputs

to activate robustness faults and required test artifacts, next designing the necessary languages and

automatic tools – could serve as guidance.

5.2.2 Semantic choices in UML 2 Sequence Diagrams

Our work may admittedly need future extensions, to account for the large number of semantics ex-

isting today or the ones that will continue to emerge in the next years. Moreover, there is currently

signi�cant work in progress inside the OMG with respect to UML. On one hand, a formal semantics

for a base subset of UML, called fUML [BC11], was proposed. It does not cover high-level constructs

like Interactions yet, but hopefully it will evolve. On the other hand, the 2.5 version of UML is under-

way, with the main goal to simplify and restructure the speci�cation [Coo12]. This activity can make

the semantic variations more visible.

Nevertheless, we believe that the feature-model-like representation o�ers a convenient support

for documenting the semantic variants, and for updating the existing categorization. In the long run,
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it could be imagined that the OMG standard for Sequence Diagrams includes a model similar to ours,

so as to make the semantic variation points more explicit. If such is the case, we would recommend

that some of the options marked as non-standard (like working with partial traces, considering a

categorization into valid/other or invalid/other, or synchronizing on the borders of fragments) be

explicitly mentioned in the speci�cation. We repeatedly found them in several of the surveyed se-

mantics, and feel that they are very useful to address some recurring needs related to veri�cation and

testing purposes.

5.2.3 A test language and framework for mobile systems

The work on testing mobile systems concentrated more on the language side than the framework.

For example, connecting the GraphSeq tool and the TERMOS plug-in or implementing the execution

environment fully functionally was not performed initially (however, it was just recently �nished in

LAAS). Regarding the language, the combination of a spatial and event view proved to be a viable

idea. Implementing the operational semantics in automatic tools made it possible to experiment with

various example scenarios, which helped to re�ne algorithms of the semantics. However, as it is

common with research prototype tools, the thorough and systematic testing of the construction of

the automaton was not carried out. The validation of the language and the framework in an end-to-

end case study is now possible and will be done in the next future.

The work on TERMOS focused on the change in the communication structure. Some context

information could be speci�ed with label variables, however the examples concentrated on the state

of the communication links. In other application domains, e.g., autonomous systems, the context is

more detailed, and the objects in the environment have more attributes and relations that should be

taken into account in the scenarios. In the context of the R3-COP research project [R3C11] we are

working currently on testing autonomous systems [6], which will extend the results of TERMOS. For

example, a more �ne-grained context model including inheritance or complex attributes is used, and

test setups used in the execution environment are now systematically generated based on combining

the di�erent scenarios. The lessons learned with TERMOS will in�uence the tooling also, e.g., UML

pro�les will not be used.

Finally, the contributions of the dissertation can be combined, e.g., robustness could be also an

important characteristics of mobile systems. The mutation-based testing approach can utilize the

scenarios de�ned in TERMOS to reach important states, where the invalid values or messages can be

submitted to the system under test. In a recently started national research project one of our subtasks’

topic is validation of distributed, mobile middleware systems, which o�ers a natural opportunity to

unite the results of the dissertation.





Appendix A

Details on the robustness test
framework

A.1 XML Schema of the type-speci�c tool’s con�guration

A.1.1 XML Schema of the types’ metadata

<?xml version="1.0" encoding="utf-8"?>

<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified" xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="Types">
<xs:complexType>
<xs:sequence>
<xs:element maxOccurs="unbounded" name="Module">

<xs:complexType>
<xs:sequence>
<xs:element maxOccurs="unbounded" name="Type">
<xs:complexType>

<xs:sequence>
<xs:element name="Name" type="xs:string" />
<xs:element name="ValidValueMethod" minOccurs="0" maxOccurs="1">

<xs:complexType>
<xs:attribute name="generate" type="xs:boolean" use="required" />
<xs:attribute name="validValueIndex" type="xs:unsignedByte" use="optional" />

</xs:complexType>
</xs:element>
<xs:element name="PointerMethod" nillable="false">

<xs:complexType>
<xs:attribute name="generate" type="xs:boolean" use="required" />

</xs:complexType>
</xs:element>
<xs:element name="ParentName" minOccurs="0" maxOccurs="1">

<xs:complexType>
<xs:attribute name="value" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>
<xs:element name="IncludeFile" minOccurs="0" maxOccurs="1">

<xs:complexType>
<xs:attribute name="fileName" type="xs:string" use="required" />

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute name="name" type="xs:string" use="required" />

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>
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A.1.2 XML Schema of the functions’ metadata
<?xml version="1.0" encoding="utf-8"?>

<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified" xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="functions">
<xs:complexType>
<xs:sequence>
<xs:element maxOccurs="unbounded" name="module">
<xs:complexType mixed="true">
<xs:sequence minOccurs="0">
<xs:element maxOccurs="unbounded" name="function">
<xs:complexType>
<xs:sequence>

<xs:element name="returnType" type="xs:string" />
<xs:element name="parameters">

<xs:complexType>
<xs:sequence>

<xs:element maxOccurs="unbounded" name="parameter">
<xs:complexType>

<xs:sequence>
<xs:element name="parameterOrder" type="xs:unsignedByte" />
<xs:element name="parameterName" type="xs:string" />
<xs:element name="parameterType" type="xs:string" />
<xs:element name="isPointer" type="xs:boolean" />
<xs:element name="type" maxOccurs="1" minOccurs="0">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration value="in"/>
<xs:enumeration value="out"/>
<xs:enumeration value="in/out"/>

</xs:restriction>
</xs:simpleType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute name="name" type="xs:string" use="required" />

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="name" type="xs:string" use="required" />

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

A.2 XML Schema of the mutant generator tool’s con�guration
<?xml version="1.0" encoding="utf-8"?>

<xs:schema elementFormDefault="qualified" xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="Inputs">
<xs:complexType>
<xs:sequence>
<xs:element maxOccurs="unbounded" name="Input">
<xs:complexType>
<xs:sequence>
<xs:element name="Location" type="xs:string" />
<xs:element name="Mutations">
<xs:complexType>
<xs:sequence>
<xs:element name="NumberOfMutants" type="xs:unsignedByte" />
<xs:element name="NumberOfOperatorToApply" type="xs:unsignedByte" />
<xs:element name="Operators">

<xs:complexType>
<xs:choice maxOccurs="unbounded">

<xs:element minOccurs="0" maxOccurs="unbounded" name="SwapCalls">
<xs:complexType>

<xs:attribute name="call1" type="xs:string" use="required" />
<xs:attribute name="call2" type="xs:string" use="required" />

</xs:complexType>
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</xs:element>
<xs:element minOccurs="0" maxOccurs="unbounded" name="RelocateCall">

<xs:complexType>
<xs:attribute name="call" type="xs:string" use="required" />
<xs:attribute name="inFunction" type="xs:string" use="required" />

</xs:complexType>
</xs:element>
<xs:element minOccurs="0" maxOccurs="unbounded" name="ReplaceParameterWithNull">

<xs:complexType>
<xs:attribute name="call" type="xs:string" use="required" />
<xs:attribute name="parameterNumber" type="xs:unsignedByte" use="required" />
<xs:attribute name="inFunction" type="xs:string" use="required" />

</xs:complexType>
</xs:element>
<xs:element minOccurs="0" maxOccurs="unbounded" name="OmitCall">

<xs:complexType>
<xs:attribute name="call" type="xs:string" use="required" />
<xs:attribute name="inFunction" type="xs:string" use="required" />

</xs:complexType>
</xs:element>
<xs:element minOccurs="0" maxOccurs="unbounded" name="ModifyIfCondition">

<xs:complexType>
<xs:attribute name="inFunction" type="xs:string" use="required" />

</xs:complexType>
</xs:element>

</xs:choice>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="type" use="required">

<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="file"></xs:enumeration>
<xs:enumeration value="directory"></xs:enumeration>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:schema>

A.3 XML Schema of the OS call wrappers tool’s con�guration
<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
<xs:element name="functions">
<xs:complexType>
<xs:sequence>
<xs:element maxOccurs="unbounded" ref="function"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="function">
<xs:complexType>
<xs:sequence>
<xs:element ref="signature"/>
<xs:element ref="interception"/>

</xs:sequence>
<xs:attribute name="name" use="required" type="xs:string"/>

</xs:complexType>
</xs:element>
<xs:element name="signature">
<xs:complexType>
<xs:sequence>
<xs:element name="returnType" type="xs:string"/>
<xs:element ref="standardErrors"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="standardErrors">
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<xs:complexType>
<xs:sequence>
<xs:element maxOccurs="unbounded" minOccurs="1" ref="error"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="error">
<xs:complexType>
<xs:attribute name="type" use="required" type="xs:string"/>
<xs:attribute name="value" use="required" type="xs:string"/>

</xs:complexType>
</xs:element>
<xs:element name="interception">
<xs:complexType>
<xs:sequence>
<xs:element name="logCall" type="xs:boolean"/>
<xs:element name="forwardCall" type="xs:boolean"/>
<xs:element ref="detourChance"/>
<xs:element ref="returnValue"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="detourChance">
<xs:simpleType>
<xs:restriction base="xs:integer">
<xs:minInclusive value="0"/>
<xs:maxInclusive value="100"/>

</xs:restriction>
</xs:simpleType>

</xs:element>
<xs:element name="returnValue">
<xs:complexType>
<xs:sequence>
<xs:element ref="mode"/>
<xs:element name="delay" type="xs:nonNegativeInteger"/>
<xs:element ref="desiredReturn" minOccurs="0" maxOccurs="1"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="mode">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="normal"/>
<xs:enumeration value="desiredReturn"/>
<xs:enumeration value="standardError"/>

</xs:restriction>
</xs:simpleType>

</xs:element>
<xs:element name="desiredReturn">
<xs:complexType>
<xs:attribute name="type" use="required" type="xs:string"/>
<xs:attribute name="value" use="required" type="xs:string"/>

</xs:complexType>
</xs:element>

</xs:schema>
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Details on UML 2 Sequence Diagrams

B.1 XMI of an example Interaction

<packagedElement xmi:type="uml:Collaboration" xmi:id="collaboration_id" name="Collaboration1">

<ownedBehavior xmi:type="uml:Interaction" xmi:id="sd1_id" name="sd1">

<ownedConnector xmi:type="uml:Connector" xmi:id="connector_id">

<end xmi:type="uml:ConnectorEnd" xmi:id="connectorend-1_id" role="a_id" />

<end xmi:type="uml:ConnectorEnd" xmi:id="connectorend-2_id" role="b_id" />

</ownedConnector>

<lifeline xmi:type="uml:Lifeline" xmi:id="a-ll_id" name="a"

represents="a_id" coveredBy="opt-cf_id r-m2_id" />

<lifeline xmi:type="uml:Lifeline" xmi:id="b-ll_id" name="b"

represents="b_id" coveredBy="opt-cf_id s-m2_id" />

<fragment xmi:type="uml:CombinedFragment" xmi:id="opt-cf_id"

covered="b-ll_id a-ll_id" interactionOperator="opt">

<operand xmi:type="uml:InteractionOperand" xmi:id="opt-op_id">

<guard xmi:type="uml:InteractionConstraint" xmi:id="guard_id">

<specification xmi:type="uml:OpaqueExpression" xmi:id="guard-expression_id">

<body>b.d > 5</body>

</specification>

</guard>

<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="s-m2_id"

covered="b-ll_id" event="sendEvent_id" message="m2_id" />

<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="r-m2_id"

covered="a-ll_id" event="receiveEvent_id" message="m2_id" />

</operand>

</fragment>

<message xmi:type="uml:Message" xmi:id="m2_id" name="m2" messageSort="asynchCall"

receiveEvent="r-m2_id" sendEvent="s-m2_id" connector="connector_id" />

</ownedBehavior>

<ownedAttribute xmi:type="uml:Property" xmi:id="a_id" name="a" type="A_id" end="connectorend-1_id"/>

<ownedAttribute xmi:type="uml:Property" xmi:id="b_id" name="b" type="B_id" end="connectorend-2_id"/>

</packagedElement>

<packagedElement xmi:type="uml:SendOperationEvent" xmi:id="sendEvent_id"

name="SendOperationEvent3" operation="m2-operation_id"/>

<packagedElement xmi:type="uml:ReceiveOperationEvent" xmi:id="receiveEvent_id"

name="ReceiveOperationEvent3" operation="m2-operation_id"/>

<packagedElement xmi:type="uml:Class" xmi:id="A_id" name="A">

<ownedOperation xmi:type="uml:Operation" xmi:id="m2-operation_id" name="m2"/>

</packagedElement>

<packagedElement xmi:type="uml:Class" xmi:id="B_id" name="B"/>
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Appendix C

Details on the TERMOS language

C.1 Abstract syntax of the event view

C.2 The unwinding algorithm

In the de�nition of the operational semantics of TERMOS, the unwinding algorithm builds the sym-

bolic automaton by gradually unwinding the classes of atoms, until all of them have been processed.

De�nition 12 (Symbolic automaton) A symbolic automaton can be de�ned with a tuple

(Σ, Q, q0, FT , FS ,→,Var ,Def ), where:

• Σ is a set of transition labels with possibly symbolic variables in Var ,

• Q is the set of states,

• q0 is the initial state,
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• FT ⊆ Q and FS ⊆ Q are two disjoint subsets of accept states. They are used to distinguish triv-

ial satisfaction of the requirements (the trigger before the assert did not match) and stringent

satisfaction (the content of the both the assert and the trigger did match),

• →⊆ Q× Σ×Q is the set of transitions,

• Var is the set of variables extracted from the TERMOS scenario. It includes all variables appear-

ing in the spatial view (symbolic labels of vertices), in the event view (message parameters, free

variables in OCL expression of guards and state invariants), and all symbolic message identi�ers

$i produced by the preprocessing of the diagram.

• Def ⊆ Q × P(Variables) gives the subset of variables that are de�ned for each state. If

(q, {v1, v2}) belongs to Def , then variables v1, v2 have a value in q, and all other variables are

unde�ned in q. 2

The unwinding algorithm is based on the notion of phase. The computed phases will correspond

to automaton states.

De�nition 13 (Phase) A phase is a tuple (History ,Ready ,Cut ,Variables), where:

• History is the set of SimClasses which have already been unwound,

• Ready is the set of SimClasses which are currently enabled to be unwound,

• Cut is a tuple (cl1, . . . , cln), where n is the number of Lifelines in the diagram and each clj is a

cluster from Lifeline j. The current cut is intended to represent the borderline between already

unwound elements and those that are currently enabled.

• Variables is the set of variables which are currently valuated. 2

Like Klose, we assume that there is a function State : phase → Q assigning a unique state name

for a phase. Note that if the same phase is encountered several times, the function is able to return

the name already assigned at the previous steps of the unwinding algorithm.

Initialization The unwinding algorithm begins with an initialization step (see Algorithm C.1 for

the de�nition).

De�nition 14 (Initial phase) The initial phase considered by the algorithm is

(History0 ,Ready0 ,Cut0 ,Variables0 ) de�ned as follows:

• History0 =
{
{{⊥1}}, {{⊥2}}, . . . , {{⊥n}}

}
1
,

• Ready0 = {scl ∈ SimClasses(sd) | Prerequisites(scl) ⊆ History0},
• Cut0 = ({⊥1}, {⊥2}, . . . , {⊥n}),

• V ariables0 set of variables appearing in the initial spatial con�guration of the scenario (this

includes the symbolic identi�ers of the nodes participating to the scenario). 2

That is, at the initial phase, only the lifeline heads have been unwound. We also assume that we

start analysis in a state where the system is in the initial spatial con�guration. This is ensured by

connecting the GraphSeq graph matching tool to the TERMOS scenario. The graph matching tool

also supplies concrete values for the identi�ers of nodes and all other variables de�ned by the initial

con�guration, which are then marked as valuated. Finally, State(Phase0) is added to the set Q of

the automaton states and to the FT trivial satisfaction subset.

1History is a set of SimClasses, a SimClass is a set of clusters, a cluster is a set of atoms; hence this notation.
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Unwinding From the initial phase, the algorithm proceeds by computing successor phases. Given

a phase, the Step function returns the next phase obtained by �ring a ready SimClass.

De�nition 15 (STEP function) Given a ph = (History i,Ready i,Cut i,Variables i) phase

and an scl SimClass to �re, the Step(ph, scl) function returns a new phase ph′ =
(History i+1,Ready i+1,Cut i+1, V ariablesi+1) de�ned as follows:

• History i+1 = History i ∪ scl ∪ Conflicts(scl), that is, both the �red scl and its con�icting

SimClasses are considered unwound,

• Ready i+1 =
{
scl′ ∈

(
SimClasses(sd) \

{
{{>1}}, . . . , {{>n}}

})
| Prerequisites(scl′) ⊆

History i+1 ∧ scl′ /∈ History i+1

}
• Cut i+1 = {cl′1, . . . , cl′n} is produced from Cut i = {cl1, . . . , cln} by letting cl′j = clj if lifeline

j is not concerned by any cluster of the unwound SimClass. Other elements cl′k are replaced by

the corresponding cluster of the unwound SimClass, for each involved lifeline k.

• Variablei+1 is the union of Variables i and of the set of newly valuated variables. Note that

there are newly valuated variables only if ph contains communication events or con�guration

change events. 2

Moreover, the unwinding algorithm performs the following tasks (see Algorithm C.2 for the def-

inition).

Mode The new phase may, or not, correspond to an accept state. In the algorithm, this is governed by

the CurrentMode variable. While the trigger is being matched, current mode is AcceptTrivial
and the produced states are put in FT . When the entering of an assert is unwound, current

mode switches to Reject. It switches to AcceptStringent when the assert is exited, and the

successor is put in the set FS .

Transition labels Roughly speaking, transition labels are obtained by conjoining the individual la-

bels obtained from the atoms (of the clusters) of the unwound SimClass. If there are newly val-

uated variables, then the transition label also contains an explicit update action. For example,

let us assume that we are currently unwinding a guard x > 3 and a send event (!m(x), n1, $4).

Let us also assume that the values for x and n1 are currently de�ned; but the symbolic mes-

sage identi�er $4 have not been assigned by the preliminary analysis. Then, the corresponding

transition will be labeled: x > 3 ∧ (!m(x), n1, $4)[update($4)], which can be interpreted as

follows: if x > 3 holds with the current valuation, and the next event of the trace can match

(!m(x), n1, $4) with an appropriate assignment of $4, then the transition can be taken. Taking

the transition consumes the event of the trace, and the current valuation is updated with the

concrete message identi�er of this event.

CombinedFragments Entering and exiting boxes is simply represented by a true transition. Note

that there could be further optimization to remove the unnecessary states.

Self loops Because TERMOS uses an interpretation with partial traces, self loops must be added as

soon as at least one of the exiting transitions contains a trace event, be it a communication

event or a con�guration change event. For example, if the next event of the trace does not

match (!m(x), n1, $4), are we allowed to consume this event and remain in the same state?

Conversely if it matches, do we still have the choice to remain in the same state? The answer to

the latter question is negative, hence the self-loop is labeled ¬(!m(x), n1, $4). The answer to

the former question is generally positive according to the partial traces interpretation, but can
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be negative if the event is in the scope of a consider . Let us also remind that our interpretation

of consider{m} is: the sending of m is forbidden for all lifelines, but it is allowed to receive a

messagem, if its sending was not forbidden. Accordingly, the self-loop is concerned by sending

events only. Finally, note that unexpected con�gurations change events are always forbidden,

hence the self-loop label always contains ¬CHANGE(−).

C.3 A more complex example for the unwinding

Figure C.1 contains a complex scenario example. In the T3 con�guration all nodes are connected.

Notice that the �rst m1 and m3 messages are only ordered partially. The scenario contains a par and

an alt fragment, moreover, the par is nested inside the alt . The generated automaton can be seen on

Figure C.2. The automaton was created by the TERMOS plug-in and it is visualized with the help of

Graphviz.

sd example3

assert

a b

INITIALCONFIG = T3

m1

m1

c

m3

[a.p > 5]
alt

[else]

m1

par m1

m4

Figure C.1: A complex example scenario
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Algorithm C.1: Unwinding algorithm

// Initialization

Phases ··= {Phase0}, Q ··= {Phase0}, q0 ··= State(Phase0)
FT ··= {State(Phase0)}, FS ··= ∅
CurrentMode ··= AcceptTrivial
SelfLoopLabel ··= "¬ CHANGE(-)" // no unexpected config changes

// Unwinding loop

while Phases 6= ∅ do
Extract ph = (History i,Ready i,Cut i,Variables i) from Phases
if Ready i 6= ∅ then

SelfLoop ··= false, AddedSelfLabel ··= ""

foreach sc ∈ Ready i do
sucessor ··= Step(ph, sc)
// Compute the label of the triggered transition

UpdatedVariables ··= ∅, Label ··= ""

foreach cl ∈ sc do // process clusters

foreach a ∈ cl do // process atoms

ProcessAtom(a)

// Update the transition set

if UpdatedVariables 6= ∅ then
Build a label ll of the form [list of updated variables]

Append ll to Label

→··=→ ∪{(State(ph),Label , State(successor))}
// Put successor in automaton states

Q ··= Q ∪ {State(sucessor)}
if CurrentMode = AcceptTrivial then

FT ··= FT ∪ {State(sucessor)}
else if CurrentMode = AcceptStringent then

FS ··= FS ∪ {State(sucessor)}
// Put successor in phases

Put successor in Phases

// Add a self-loop if needed

if SelfLoop = true then
if AddedSelfLabel is not empty then

Build label ll conjoining AddedSelfLabel and SelfLoopLabel
else

ll ··= SelfLoopLabel

→··=→ ∪{(State(ph), ll, State(ph))}
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Algorithm C.2: ProcessAtom(a): Processing atoms in the unwinding loop

Input: a atom to process

switch a do
case entering an assert

if Label = "" then
CurrentMode ··= Reject
Label ··= "true"

case exiting an assert
if Label = "" then

CurrentMode ··= AcceptStringent
Label ··= "true"

case entering a consider
if Label = "" then

foreach considered message namem do
foreach symbolic node id li in the current valuation do

build label ll of the form: ¬(!m(−), li,−)
SelfLoopLabel ··= SelfLoopLabel conjoined with ll

Label ··= "true"

case exiting a consider
if Label = "" then

SelfLoopLabel ··= "¬ CHANGE(-)"

Label ··= "true"

case exiting an alt or a par
if Label = "" then

Label ··= "true"

case guard or StateInvariant
Make a label ll with the predicate

if ll does not already appear in Label then
Label ··= Label conjoined with ll

case con�guration change
if Label = "" then

UpdatedVariables ··= {variables in new con�g Ci} \Variables i
SelfLoop ··= true
Make a label ll of the form "CHANGE(Ci)"

Label ··= ll

case send or receive event
UpdatedVariables ··= {variables in message parameters or message id} \Variables i
SelfLoop ··= true
Make a label ll of the event

Label ··= Label conjoined with ll
if (the atom is a receive event) ∨ (the atom is a send event that does not appear under the
form ¬(!m(−), li,−) in SelfLoopLabel ) then

AddedSelfLabel ··= AddedSelfLabel conjoined with ¬ll
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