
ROBUSTNESS TESTING OF HIGH AVAILABILITY MIDDLEWARE 

SOLUTIONS 

Zoltán MICSKEI 

Advisor: István MAJZIK 

I. Introduction 

Lately dependability became a key factor even in common off-the shelf computing platforms. 

High availability (HA) can be achieved by introducing manageable redundancy in the system. The 

common techniques to achieve minimal system outage can be implemented independently from the 

application, and can be exposed as a HA middleware. Recently the standardization of the 

functionality of such middleware systems has begun (for example the AIS [1] specification, and its 

open source implementation, OpenAIS). The benefit of an open specification would be for example 

the easier integration of different off-the shelf components.  

With multiple products developed from the same specification the demand to compare the various 

implementations naturally arises. The most frequently examined properties are performance and 

functionality, but especially in case of a HA solution the dependability is also, or even more 

important. This paper outlines an approach to compare the robustness of HA middleware systems. 

II. Related work 

Robustness is defined as the degree to which a system operates correctly in the presence of 

exceptional inputs or stressful environmental conditions. In the past ten years several research 

projects examined the robustness of different kinds of applications. 

Earliest works used software implemented fault injector tools to simulate hardware faults. Console 

applications were tested using randomly generated streams searching for input combinations that can 

crash the system under test. In Ballista [2] the POSIX API was examined, and the robustness of 

fifteen POSIX operating systems was compared. The method used in Ballista was to develop for 

each type in the API a test generator that can produce valid and exceptional values. The API 

functions were called with the combinations of the values returned by the generators. The goal of the 

European Commission project DBench [3] was to define a general framework for dependability 

benchmarking. The procedure of the benchmarking is to characterize a workload representing normal 

operation and a faultload with injected faults. 

III. Robustness testing of HA middleware systems 

One of the earliest phases of developing a test strategy is to identify potential places where faults 

can occur in the system, i.e. develop the fault model of the system. Figure 1 illustrates a typical node 

in a HA distributed system and the identified specific fault types. 

1. External errors: These errors are application-specific, thus they are not included in our tests. 

2. Operator errors: In general, operator errors mainly appear as erroneous configuration of the 

middleware and erroneous calls using the specific management interface. 

3. API calls: The calls of the components using the public interfaces of the middleware can lead 

to failures if they use exceptional values, e.g. NULL or improperly initialized structures. 

4. OS calls: the robustness of a system is also characterized by how it handles the exceptions 

returned by the services it uses, in this case the operating system errors.  

5. Hardware failures: The most significant HW failures in a HA middleware-based systems are 



host and communication failures (that has to be tolerated in the normal operating mode) and 

lack of system resources.  

  

Figure 1: HA middleware fault model Figure 2: Architecture of the test environment 

According to the fault model described above we developed the method illustrated in Figure 2 to 

test the robustness of a HA middleware. The method can be implemented in two separate phases. 

• Phase I: testing exceptional inputs in API calls with the following techniques (1): 

• Generic input generators using fixed domain of input for all types. 

• Type-specific exceptional input generators using the knowledge of the specific types. 

• Scenario-based testing using the sequence diagrams in the specification to reach such 

system states in which exceptional inputs can be provided. 

• Phase II: testing stressful environment conditions. The steps needed for this are the following. 

• Defining a workload according to the normal operation (2). 

• Constructing a faultload representing various faults from the environment (3, 4, 5). 

To demonstrate the feasibility and efficiency of this method we developed tests for the OpenAIS 

middleware. Code examples were created with generic and type-specific input generators, and 

robustness test cases were generated from the available functional test cases and sequence diagram 

specifications using mutation techniques. The tests found several robustness failures, mostly related 

to improper pointer handling (e.g. null pointers). The generation of test cases with generic testing 

was partially automated using templates. 

IV. Conclusion 

In this paper we examined methods used for robustness testing of different implementations of the 

same specification of a HA middleware. We presented the fault model and proposed a process to test 

the robustness of the middleware at different layers. The implementation of the test programs has 

been started based on OpenAIS with promising preliminary results. 

References 

[1] Service Availability Forum, URL: http://www.saforum.org/ 

[2] P. Koopman et al, “Automated Robustness Testing of Off-the-Shelf Software Components,” in Proc. of Fault 

Tolerant Computing Symposium, pp. 230-239, Munich, Germany, June 23-25, 1998. 

[3] K. Kanoun et al, “Benchmarking Operating System Dependability: Windows 2000 as a Case Study,” in Proc. of 

10th Pacific Rim Int. Symposium on Dependable Computing, Papeete, French Polynesia, 2004. 


