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Abstract: We propose two machine learning methods based on Bayesian networks 
to discover automatically real world causal relations from scientific publications. The 
first method assumes that the occurrence of causal mechanisms (and the 
corresponding entities) in the publications follows a transitive scheme, the second 
method assumes that the causal mechanisms occur independently. We perform an 
evaluation of these methods in the ovarian cancer domain, because of the availability 
of an expert causal model as gold-standard reference and various collections of 
scientific publications as source. The evaluation shows that the fully observable 
transitive model and the intransitive model with hidden variables perform comparable 
to the performance of a human expert and the second, computationally more 
complex method allowing hidden variables proved to be slightly better. 

Keywords: Bayesian network, Literature data, Learning 

Introduction 
In biomedical sciences the emergence of the web-based collective electronic 
knowledge has posed new challenges for many disciplines such as for knowledge 
engineering to make available the voluminous, uncertain and frequently inconsistent 
knowledge fragments, for machine learning to cope with high-dimensional data and 
to incorporate a priori knowledge in various learning and discovery algorithms, for 
natural language processing to retrieve relevant raw information and to extract 
relevant implicit information [1], for philosophy of science to understand the nature of 
this new collective, distributed research, and for biomedical sciences themselves to 
investigate high dimensional and more complex hypotheses and on the other hand to 
integrate this frequently manually curated and constantly updated knowledge in 
medical practice also (e.g. in online decision support). Despite recent trends related 
to the concept of semantic web aiming to broaden the scope of formal knowledge 
bases in biomedical domains [2], even to advocate the use of a formal 
supplementary abstract for research articles, the free text electronic literature is still 
the central part of the web-based collective knowledge, and this central role probably 
remains in the near future, because of (1) the rapidly expanding frontiers, (2) the 
integration of separated levels such as of biochemical, biological, medical and clinical 
level, (3) the related refinement of current knowledge by specialization and 
conditionalization and finally (4) because of the spread of free access to full 
electronic papers (for the relation of classical free text and web-based knowledge, 
see [3, 4, 5, 6, 7, 8]. 

Fig. 1 shows our assumption that various measurement and experimental methods, 
statistical approaches and the subsequent analysis and publication methods behind 
publications can be modeled as a collection of binary Bayesian networks (see 



Section “Bayesian belief networks”) reflecting different aspects (fragments) of domain 
causality with different noise and bias (for an overview of a related fragmentation by 
levels, see [9]). For a detailed derivation and interpretation see Section “Literature 
mining with Bayesian networks”, in short the interpretation of such a binary network 
basically stems from the generative view of causal relevance patterns in the domain 
literature, such as e.g. the report of a (tentatively) causally related set of entities or 
the report of a (tentatively) causally related chain of entities. Note that the transitivity 
of dependencies is satisfied in binary networks [10], fitting to an expectation about 
the transitivity of causal explanation. Another interesting property that such a binary 
network on one hand expresses decomposed uncertainty over domain mechanisms, 
and on the other hand expresses beliefs about the overall application of the method, 
including the design of the application (i.e. interventionist setups of variables) and 
even the habits of publishing results from the method. Such a binary network is a 
biased and noisy representation of the causal structure of the real domain. This later 
causal interpretation of the dependency model over the literature providing the 
generative (interventionist) interpretation is only an approximation, as there are 
certainly many factors outside the domain variables, e.g. describing general, domain 
independent constraints on publications. 

Moreover, we assume that the generative mechanism of the discussion, citation or 
partial overview of the more authenticated domain knowledge similarly can be 
represented by a binary network representing the uncertainties over causal 
mechanisms in the domain, i.e. that this network can be similarly interpreted as a 
noisy and biased representation of the more or less explored causal mechanisms in 
the domain (shown in the lowest level in Fig. 1). 
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Figure 1: The overview of typical fragmentation of knowledge in biomedicine and a 
possible integration through literature data. Arrows A1, …, An indicate generative 
causal models of report of causal relevancies from various point of views, such as 
different experimental setup, analysis method and publication style. These biased, 
noisy, fragmentary, consequently uncertain domain theories are represented by a 
special binary belief network, expressing beliefs over causal mechanisms from the 



corresponding point of view, with respect to the current state-of-the-art of the domain 
theory. Arrow B shows the appearance of mechanisms in scientific publications. 
Arrow C indicates the usage of the overall publications to integrate the various 
fragments into a combined causal domain model through literature data. Arrow D 
indicates a not covered part here, when the accepted domain theories are 
represented in knowledge bases, which are later transformed into a priori distribution 
for the subsequent Bayesian learning. Arrow E shows the potential use of real data in 
the Bayesian learning. 

 

Though to our knowledge this assumption has not been formalized earlier (for an 
overview of the biological rationale of a shallow statistical cooccurrence analysis see 
[11]), it was probably always tacitly assumed in the usage of the associative analysis 
of domain literature, such as in cooccurrence analysis or in clustering [11, 12, 13, 14, 
15]. 

We propose two Bayesian network models to discover automatically real world 
dependency relations from scientific publications. The first method assumes that the 
reporting activity of causal mechanisms follows a transitive scheme, the second 
method assumes that the causal mechanisms in the domain are reported 
autonomously (i.e. more or less independently). 

The application domain: ovarian cancer 
We perform an evaluation of these methods in the ovarian cancer domain, in which 
various collections of scientific publications are available as source and an expert 
causal model as gold-standard reference. In the experiments we used a total of 
sixteen variables, which had been previously evaluated as highly relevant domain 
variables. Furthermore, a leading expert in the ultrasonography of ovarian tumors 
constructed a  model with ‘highly' and ‘moderately relevant' relations, shown in Fig. 2 
and provided a causal ordering of the variables used  in this paper. 
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Figure 2: The expert model: edges occurring in the highly relevant model are 
indicated by dashed lines, edges in the moderately relevant model are indicated by 
dotted lines. 

 



We asked medical experts to select the most relevant journals for the domain and 
performed the query ‘ovarian cancer' in the PubMed database1 between 1998 and 
2002 which resulted 500 papers. These publications were converted to a vectorial 
representation providing the literature data used in the paper (for the description of 
the domain, model construction and conversion steps of literature, see [16]). 

Bayesian belief networks 
A belief network represents a joint probability distribution over a set of variables [10]. 
We assume that these are discrete variables. The model consists of a qualitative part 
(a directed graph) and quantitative parts (dependency models). The vertices Vi of the 
graph represent the random variables Xi and the edges define the direct 
dependencies (each variable is probabilistically independent of its non-descendants 
given its parents [10]). There is a probabilistic dependency model for each variable 
that describes its dependency on its parents. 

Beside the parametric aspects of Bayesian network representation (i.e. providing an 
efficient representation of high dimensional joint distributions), it has further 
advantages with respect to the structure of the domain variables. It provides an 
efficient and graphical representation of the conditional independencies in the 
domain with standard probabilistic semantics and enables inferences on conditional 
independencies irrespectively of the underlying parametrization [10]. Furthermore, it 
provides a representation of causal domain models and enables causal inferences 
[17]. In the paper we follow a causal interpretation, and we use the single causal 
ordering over the variables to ensure the validity of this interpretation, because (1) 
the selected variables are high-level clinical variables, (2) only the sixteen most 
important variables are used out of the fifty-six from the study, (3) there are logical 
dependencies between certain values, e.g. exclusions (for a full fledged causal 
discovery and causal interpretation of Bayesian networks see also [18, 19]). By the 
careful selection of variables and definition of a causal order, we ensure the 
interpretation of the dependencies as autonomous, causal mechanisms in the 
domain. 

In the Bayesian framework the uncertainty over the structure of the domain model is 
represented by a distribution over the space of directed graphs. Assuming structure 
independence [20, 21], the probability of a domain model can be decomposed into 
the product of probabilities of the dependencies in the domain, which fits in the 
causal interpretation of the structure. Additionally, it is frequently assumed that the 
belief in substructures (i.e. in parental sets) can be further decomposed into a 
product of probabilities corresponding to the belief that an individual parent is a 
member of the parental set (i.e. is a direct cause). Later, discussing the application of 
the noisy-OR canonical local dependency model in generative models of 
publications, we refer to this assumption as edge independence. 

The existence of a closed-form formula for the structure reduces the structure 
learning to a discrete search. On the contrary, the learning from incomplete data is 
computationally more demanding as there is no closed formula for the score of a 
structure, consequently an embedded parameter optimization is necessary to 
determine a fittness score for each structure [22].  

                                            
1 http://www.ncbi.nlm.nih.gov/PubMed/



Literature mining with Bayesian networks 
The first step in the investigation of possible Bayesian network models to analyze the 
literature is to consider the types of the variables and their values and interpretation. 
Our goal is to analyze the pattern of occurrences to discover latent causal domain 
models (c.f. information extraction, see [1]), so the literature is converted into a 
vectorial representation preserving only the occurrence of the variables in each 
scientific paper. 

Adopting the centrality of causal understanding and explanation in scientific research 
[23, 24], we also assume respectively the centrality of causal explanations in 
scientific publications. We accept ‘causal relevance' as possible interpretation, more 
specifically the ‘explained' (explanandum) and ‘explanatory' (explanans), additionally, 
we allow the ‘described' status. This implicitly means that we assume that 
publications either contain descriptions of domain concepts without considering their 
relations or occurrences of entities participating in known or unknown (latent) causal 
relations (c.f. Causal Markov Condition [18, 17, 19]). 

Now we consider the types of variables, local dependency models and structures to 
model the occurrence pattern of the accepted three roles of domain variables, as of 
causal relevance (explanatory and explained) and descriptional. Of course, this is a 
particularly ambitious attempt and serious simplifications have to be accepted, 
because a probabilistic or causal model over these roles of the domain variables 
means a generative model of scientific explanation in publications, with certain 
implications to scientific research itself (consider that research and publication can be 
modeled as governed by the discrepancy between the published and believed 
“truth"). Furthermore, beside the ‘description', we should model the transitive nature 
of causal explanation over mechanisms, e.g. that causal mechanisms with a common 
cause or with a common effects are surveyed in an article, or that chains of causal 
mechanisms are tracked to demonstrate a causal path. On the other hand, we have 
to model the lack of transitivity, i.e. the incompleteness of causal explanations, e.g. 
that certain variables are assumed as explanatory, others as potentially explained, 
except in survey articles that describe an overall domain model. 

The simplest, atomistic approach is to assume complete independence of the report 
of the causal mechanisms and univariate descriptions. Indeed, this is the currently 
prevailing assumption, because all the information extraction methods that extract, 
analyze and provide result separately for the singular relations rely on this 
assumption. These methods also assume that the singular reports of the causal 
mechanisms and univariate descriptions can be sufficiently identified as shown in 
Fig. 3. Note that these methods are not intended to discover new latent 
dependencies or mechanisms that are conjectured and loosely articulated or 
indicated by only associative patterns. 
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Figure 3: The separated extraction and analysis of the singular relations with the 
underlying assumption of complete independence of the report of the causal 
mechanisms and univariate descriptions. We assume that the belief in the (hidden 
sub-)mechanism (HSM) is an important factor influencing the publication, i.e. this 
factor establishes the link between a belief in real world mechanism and the 
frequency of occurrence in the literature world. 

 

If the explanatory, explained and descriptive roles are not known and mainly 
unstructured causal relevance associations or tentative relations are reported, which 
cannot be identified sufficiently with linguistic methods, then the domain wide 
discovery methods can support the construction of consistent identification of 
relations from the simplified vectorial text representation. In the construction of a 
corresponding model, we maintain the assumption that the reporting of the causal 
mechanisms and univariate descriptions are independent, i.e. in the exploratory 
interpretation it means that we assume that a fragmentary domain theory 
corresponding to a given experimental, analytical and publication method results in 
such independent causal relevance associations. 

We propose a two-layered Bayesian network structure. The upper layer contains 
variables corresponding to the possible causal roles of the entities, such as 
described, explained or explanatory (we treat explanatory as cause and explained as 
effect). In the explanatory interpretation these represent the authors' intentions, which 
are externalized possibly as occurrences of the entities in the publication. In the 
exploratory interpretation these represent the bias and incompleteness of a given 
experimental technique with respect to the causal relevance and causal roles. 

The lower, external (textual) layer contains the observable occurrence of the entities. 
An external variable depends only on the variables denoting the causal roles related 
to the corresponding causal mechanism (i.e. it is independent of other external 
variables, such as the number of reported domain entities in the paper and it is 
independent of other non-external variables  of neighboring causal mechanisms). 
The steps of derivation from the first atomistic model to this more entity oriented 
model are shown in Fig. 4. This model extends the individual mechanism oriented 
information extraction methods with supporting the domain wide, consistent 
interpretation of causal roles, but still cannot model dependencies (e.g. transitivity) 
between the reporting of the mechanisms (c.f. causation on the 



experimental/intentional level). 
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Figure 4: The steps of derivation of the intransitive model with noisy-OR local 
dependencies from the first atomistic model. 

 

A further assumption, mainly motivated by the explanatory interpretation, is that the 
parental sets are composed of independent factors, in other words  that the belief in 
a mechanism is the product of the individual beliefs in causes. Consequently we use 
noisy-OR canonic distributions for the children in the lower layer and interpret the 
occurrence of a variable in a paper as described or explanatory or explained. In a 
noisy-OR local dependency [17]), the edges can be labeled with an inhibitor 
parameter, inhibiting the OR function (i.e. the probability of an implicative edge). We 
set this parameter to zero for the ‘explained to occurrence' edges, i.e. we assume 
that if the intended function is explained, then the variable is mentioned. 

To devise a model more advanced with respect to the explanatory and exploratory 
interpretation, we relax the assumption of independence between the variables in the 
upper layer representing causal roles, but maintain that an external variable depends 
only from the variables in the upper layer that participate within the same causal 
mechanism. First we consider if the reporting of causal mechanisms is dependent in 
a causally transitive way, i.e. if we allow dependencies between the explained and 
the explanatory roles of the variables. In the explanatory interpretation this means, 
i.e. if a variable is explained, then it influences its explanatory role for other variables. 
In the exploratory interpretation, if a variable arises as an effected variable, then it 
influences its arise as cause. If this transitivity dependency (explained to explanatory) 
is uniform in each pairwise context, i.e. the explanatory role is not pairwise context 
dependent, then a single explanatory variable can represent this role (earlier we 
merged the multiparental contextualization, now the pairwise contextualization for the 
explanatory variables). Full transitivity means that this is an equivalence. In the 
explanatory interpretation this means, if a variable is explained, then it can be 
explanatory for any other variable. In the exploratory interpretation, that variables 
arise in general as causally relevant, both as an effective and causative variable. In 
full transitive case the variables representing various causal roles such as the status 
of being explained and being explanatory for another variable can be merged into 
one variable. Furthermore we assume full transparency, i.e. the full observability of 



causal relevance. Fig. 5 shows these steps. 
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Figure 5: The steps of derivation of the transitive model from the first atomistic 
model. 

 

A consequence of the full transparency is e.g., that under this interpretation the lack 
of occurrence of an entity in a paper means causal irrelevance and not a neutral 
omission, in other words there are no missing values. With full transitivity assumption 
this would also imply that we model only full survey papers, but the general, 
unconstrained multinomial dependency model used in the transitive Bayesian 
network provides enough freedom to avoid this as discussed below. A possible 
semantics of the parameters of the binary, transitive Bayesian network 
P(Xi|Parents(Xi)) can be derived from our causal stance that the presence of an entity 
Xi is influenced only by the presence of its potential explanatory entities, i.e. its 
parents. Consequently, P(Xi=1|Parents(Xi)=xi) can be interpreted as the belief that 
the parental variables that are present can explain the entity Xi as causes. A more 
strict interpretation requires necessity beside sufficiency, in which 
P(Xi=1|Parents(Xi)=xi) denotes a belief that the parental variables that are present 
are the sufficient and necessary causes. The multinomial model allows that at each 
node there are entity specific constants combined into the parameters that are not 
dependent on other variables, permitting the deviation from this interpretation and 
modelling (1) the description of the entities, (2) the initation of the transitive scheme 
of the causal explanation (the assumption of causally not explained entities) and (3) 
the reverse effect of not continuing the transitive scheme. The detailed discussion of 
this model is outside the scope of this paper, so we conclude here that this model 
allows partial explanations also. Note that a “backward" model using an effect-to-
cause orientation is similarly an interesting model of publications (c.f. means-ends 
analysis), in which the noisy-OR dependency model can be also used as in the 
intransitive model. 



Independently of the selected model, the result of learning of Bayesian networks from 
literature data can be manifold, e.g. an a posteriori distribution over the structures or 
substsructures (‘features', see [25]) or a maximum a posteriori network structure and 
the corresponding parameters. Note that in the later parametric case, because of the 
special structural interpretation of the binary network (i.e. ‘causal relevance') the 
parameters and the standard parametric inference in such a network can be 
interpreted structurally and can be converted into an a priori distribution for a 
subsequent learning. Another approach is to use the a posteriori distribution over the 
structures of the binary Bayesian literature networks as an a priori distribution over 
the structures of the real Bayesian networks with possibly multivalued or continuous 
variables. 

Results 
The structure learning of the transitive model is achieved by an exhaustive evaluation 
of parental sets using BDeu score [26] up to maximum three parents, which was a 
technical choice to be compatible with the learning of the intransitive model with 
hidden variables. The final network is shown in Fig. 6. 
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Figure 6: The transitive Bayesian 
network model with multinomial 
conditional tables. 
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Figure 7: The intransitive Bayesian 
network with noisy-OR local conditional 
dependency models (Note that this is 
the conversion of the two-layered 
Bayesian network with hidden 
variables). 

 

The structure learning of the two-layered model is computationally more complex, 
because the evaluation of a structure requires the optimization of parameters, which 
can be performed e.g. by a gradient-descent algorithm. The possible (examined) 
structures have to meet that (1) variables have less than a fixed number of parents, 
limited to four in this experiment, because of the computational complexity (2) only 
those variables in the upper layer can be the parents of an external variable that 
precede it in the causal order. Note that beside the optional three parental edges for 
the the external variables, we always force a deterministic edge from the 
corresponding non-external variable. During the parameter learning of a fixed 
network structure the non-zero inhibitory parameters of the lower layer variables are 



adjusted according to a gradient descent method to maximize the likelihood of the 
data (see [22]). After the best structure is found, it has to be converted into the 
ordinary real world model by merging the corresponding pairs of nodes in lower and 
upper layer. The final network is shown in Fig. 7. 

We compared the trained models to the expert model using a quantitative score i.e. 
based on the comparison of the types of the pairwise relations in the models. 
Exploiting the causal interpretation of the structure we use the following types of 
pairwise relations: 

• Causal path (P): There is a directed path from one of the nodes to the other. 
• Causal edge (E): There is an edge between the nodes. 
• (Pure) Confounded (Conf): The two nodes have a common ancestor. The 

relation is said to be pure, if there is no edge or path between the nodes. 
• Independent (I): None of the previous (i.e. there is no causal connection 

between the nodes). 
The difference of two model structures can be represented in a matrix containing the 
number of relations with a fixed type in the expert model and in the trained model 
(the type of the relation in the expert model is the row index and the type in the 
trained model is the column index). E.g. the element (I, Conf) shows the number of 
those pairs, which are independent in the reference model and are confounded in the 
examined. These matrices (i.e. the comparison of the transitive and the intransitive 
models to the expert's) are shown in Tables 1 and 2 respectively. 

Table 1: Causal comparison of expert 
(row) and transitive (column) domain 
models 

 I Conf P E 

I 14 14 12 12 

Conf 6 14 0 2 

P 44 48 24 14 

E 14 6 4 12 

Table 2: Causal comparison of expert 
(row) and intransitive (column) domain 
models 

 I Conf P E 

I 44 0 0 8 

Conf 14 8 0 0 

P 82 18 20 10 

E 8 4 2 22 

 

Scalar scores to evaluate the goodness of the trained model can be derived from this 
matrix, e.g. a standard choice is to sum the elements with different weights. One 
possibility e.g. if we take the sum of the diagonal elements as a measurement of 
similarity. By this comparison, the intransitive model achieves 94 points, while the 
transitive only 64, so the intransitive preserves more faithfully the pairwise relations. 
Particularly important is the (E,E) element according to which 22 of the 36 edges of 
the expert model remains in the two-layered model, on the contrary the transitive 
model preserves only 12 edges. 

Another penalizing score, which penalizes only the incorrect identification of 
independence (i.e. those and only those weights have a value of 1 which belong to 
the elements (I,.) or (.,I), the others are zero), gives a score 102 and 112 for the 
transitive model and the intransitive respectively, suggesting that the intransitive 
model is too conservative and results overly sparse models. 



Conclusion 
We investigated the applicability of Bayesian network learning methods to discover a 
causal domain model. We proposed two machine learning methods based on 
Bayesian networks, the first method assumes that the reporting activity of causal 
mechanisms follows a transitive scheme, the second method assumes that the 
causal mechanisms in the domain are reported autonomously (i.e. more or less 
independently). We performed an evaluation of these methods in the ovarian cancer 
domain. The evaluation shows that the fully observable transitive model and the 
intransitive model with hidden variables performs comparable to the performance of a 
human expert and the second, computationally more complex method proved to be 
slightly better than the first one. In future, we plan to test more complex transitive 
models and extend these methods to incorporate more information extracted by 
linguistic techniques. 
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