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Abstract – In this paper sine fitting algorithms are 
investigated for the purpose of ADC testing. The aim 
is to decide whether the minimum of the cost function 
(CF) has been reached. For this, two different types of 
algorithms, the conventional Levenberg-Marquardt 
and the genetic-type Differential Evolution methods 
are investigated in order to compare their optima. It is 
shown that due to roundoff errors the bottom of the 
cost function is fairly uneven for conventional number 
representations for the Maximum Likelihood method, 
hence the minimum can only be determined with 
decreased precision. Finally, a band is calculated in 
which solutions can be considered equivalent, since 
their CF difference is smaller than roundoff errors. 
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 I. INTRODUCTION 

Analog-digital converters transform the signals of the 
analogue world into values which are discrete in time and 
amplitude. The precision of the conversion is crucial 
since it determines the quality of the signal processing 
which follows. IEEE Standard 1241 specifies the Four-
Parameter Least Squares (LS) method as the testing 
process. This method determines sine wave parameters 
(amplitudes of cosine and sine, offset and frequency) for 
the sinusoidal input data so that Noise and Distortion 
(NAD) is minimal [1]: 

 �[�] = � ∙ cos(2����) + � ∙ sin(2����) + C (1) 
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�
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where x[n] is the nth sample of the fitted sine wave, A,B, 
C  and f0  are the parameters of the fitted wave: 
amplitudes of the cosine and sine components, offset and 
frequency, respectively. Finally, y[n] is the nth sample in 
the digitized sample set. The Effective Number of Bits 
(ENOB) of a converter, driven to its full input range can 
be calculated by: 

 ���� = � − ����
���

���/√��
, (3) 

where N is the bit number of the ADC under test [1]. The 
choice of LS method seems to be justified, since it 
maximizes the value of ENOB by minimizing the value of 
NAD, thus supplying the most attractive result for the 
manufacturers. However, it was shown in [2] that the 
Maximum Likelihood (ML) method may yield more 
precise estimators than the LS method. The ML process 
tries to fit a sine wave on the input data so that the 
logarithmic likelihood function 

 lnL(p) = ∑ ln�P�Y(k) = y(k)���
�� �  (4) 

is maximal, where �(�(�) = �) is the probability, that the 
kth value of random variable vector Y has the digital code 
of l, y(k) is the kth element of the (digital) sample set and 
M is the number of samples [2]. The optimum is searched 
in a five-dimensional parameter space (A, B, C, f0, σ), 
with σ being the standard deviation of the modelled noise 
at the input of the ADC. Similarly to the LS method, 
amplitudes of the cosine and the sine, offset and 
frequency are the parameters optimized, and the standard 
deviation of the input noise is also added to the parameter 
vector.  

The optimum of the ML cost function can be calculated 
by numerical methods. For this purpose, a MATLAB 
toolbox has been developed [3],[4],[5]. In this tool the 
cost function (which is the negative log-likelihood 
function) is being optimized numerically by the 
Levenberg-Marquardt method. However, it cannot be 
reliably decided whether the minimum of the function has 
been reached. In order to verify the results, a different 
minimizing algorithm is to be implemented, thus the 
Differential Evolution algorithm, defined in [6], has also 
been evaluated.  
 

 II. INVESTIGATED METHODS 

 A. Description 

The Levenberg-Marquardt (LM) method is a standard 
minimizing algorithm that makes use of the parameters’ 
gradient vector and of the Hessian matrix which contains 
the second derivatives of the parameters. This can be 
considered as a modified version of Gauss-Newton 



minimizer, which finds the optimum of a second order 
cost function in one step. However, when the cost 
function is not precisely of second order, or the 
derivatives can only be calculated with an error, this may 
lead us to an incorrect result. For this reason, a scaling 
factor  is also introduced. If equals 0, the method is 
equivalent with the Gauss-Newton method, while if 

tends to ∞, we get the steepest descent method. 
The other method investigated is the Differential 

Evolution (DE), which is a genetic-type, population 
based, stochastic function optimizer. For this algorithm it 
is not necessary to have any information about 
derivatives of the cost function. Usually it is able to find 
the optimum value [6]. 

 B. Results of the algorithms 

The cost function of the ML method has been evaluated 
with the two different algorithms for 100,000 samples. 
DE has found lower cost function value, the relative 
difference between the results was, however, in the order 
of magnitude 10-13, which might seem negligible but it 
has to be stated that it is much higher than the LSB (eps) 
of the double floating point number representation 
(≈ 2 ∙ 10���). In order to be able to determine which 
parameter causes this difference, the parameter space 
between the two optimum vectors has been divided into 
1000 parts. Taking the two solution vectors, we selected 
one parameter and kept the other parameters constant, 
while the values of the cost function have been evaluated.  

 

 
Figure 1: Cost function values in the vicinity of the Differential 

Evolution (DE) and the Levenberg-Marquardt (LM) optima 
along the parameters, holding the others constant(a-e) and 

along the straight line between the two parameter vectors (f) 

In addition, the cost function was calculated along the 
straight line between the two  parameter vectors. Since 
the difference between the two optima is fairly small, the 
results are plotted so that they represent the deviation 
from the DE optimum. The LSB on the horizontal axis is 
the LSB of the ADC, while on the vertical axis LSB is the 
resolution of the floating-point number representation 
(also known as eps) of the DE optimal cost function 

value. It can be seen from Fig. 1 that the difference is 
mostly caused by the frequency component. Furthermore, 
the bottom of the cost function seems to be rather noisy 
(Fig. 1d).  

 III. ERROR ANALYSIS 

 A. Enhanced-precision evaluation 

In Eq. (1) the phase is calculated by � [�] = 2����. 
MATLAB guarantees that the evaluation error of sine 
computation is between ± ���. However, if the phase 
itself is already calculated with roundoff error, the value 
of its sine will also be in error. Due to floating-point 
number representation, with increasing n, the roundoff 
error also increases, since the value of LSB (for double 
precision) is 

  ���(�) = 2����⌊����|�|⌋, (5) 

where ⌊�⌋ is roundig x towards negative infinity. This 
means that for 100,000 samples the value of LSB(� ) for 
the last sample is 216 or 217 times (����⌊100 000 = 16⌋) 
greater than the LSB(� ) of the first value – depending on 

the value of 2���.  
To illustrate the effect of the roundoff error, values of a 

sine wave has been calculated in 100,000 points both 
with double and single precision. Since the mantissa of 
the double precision is much longer, than that of the 
single precision (53 vs. 24 bits), the result of it may be 
considered precise, as reference value. The error of sine 
calculation for single precision is shown in Fig. 2. 

 
Figure 2: Illustration of roundoff error for single precision 

number representation 

If the error, illustrated in Fig. 1, is also caused by 
roundoff, it can significantly be reduced by using 
increased-number representation precision. Therefore, for 
the phase evaluation, multiplication and addition have 
been implemented in MATLAB for 75-bit mantissa 
floating point numbers.  



 

 

Figure 3: Cost function value changes in the vicinity of the 
optima with different mantissa precisions 

Exploiting the periodicity of the sine, integer multiples of 
2has been subtracted from each phase. Although sine 
calculation itself has not been written for the extended 
mantissa, by evaluating the phases more precisely and 
mapping into [-,), sine calculation can also be executed 
with the required precision. Fig. 3 clearly shows that the 
error (the ‘noise’) can be significantly reduced. What is 
more, the LM method is shown to yield a result closer to 
the real optimum. It is an interesting issue, however, how 
the LM could find the minimum under these conditions. 
In Fig. 4 it can be seen that the derivative with respect to 
the frequency which caused the main difference, is 
straight in the vicinity of the LM optimum and equals to 
zero only close to the optimum. Thus, the algorithm 
"knows" that there is a possibility to decrease, although  
the evaluation of the CF is in error. In this way, the LM 
algorithm can easier find the real optimum, while the DE 
did not make any use of the gradient information.  

 
Figure 4: Cost function derivative values with respect to 

frequency in the vicinity of the two optima 

However, it has to be mentioned that in case the LM 
method had reached a noisy local minimum, it would 
have stuck there, since the algorithm was written so that it 

prevents from increasing the cost function. As a 
consequence we can say that finding the optimum was 
slightly ‘lucky’ since it did not get stuck anywhere before 
reaching the minimum. Another interesting question is 
how we can determine if two solutions are equivalent, 
since it is clear from Fig. 1 (f) that for double 
representation solutions between the two optima found by 
DE and LM cannot be distinguished.  

 B. Worst-case analysis 

Let us assume that the error of phase determination is 
. In this case the error of the instantaneous amplitude – 
using notations of Eq. (1) – is 

 
∆� = � ∙ ���� + � ∙ ���� − � ∙ ���(� + ∆� ) −  
       − � ∙ ���(� + ∆� ) =  � ∙ ���� + � ∙ ���� −  
       − � ∙ ���� ∙ ���(∆� ) + � ∙ ���� ∙ ���(∆� ) −  

       − � ∙ ���� ∙ ���(∆� ) − � ∙ ���� ∙ ���(∆� ) (6) 
 
If  is small (<10-10), then ���(∆� ) ≈ 1 and ���(∆� ) ≈
∆�  (using double representation they cannot be 
represented more precisely, either), so Eq. (6) can be 
further transformed: 
 

∆� = � ∙ ���� + � ∙ ���� − � ∙ ���� ∙ 1 + 
   +� ∙ ���� ∙ (∆� ) − � ∙ ���� ∙ 1 − � ∙ ���� ∙ (∆� ) = 

     = ∆� ∙ [� ∙ ���(� ) − � ∙ ���(� )] (7) 
 
Δφ is the calculation error, i.e., maximum ± 0,5 ∙ ���(� ). 
 

|∆����| = |0,5 ∙ ���(� ) ∙ [� ∙ ���(� ) − � ∙ ���(� )]| (8) 

 
Maximum and minimum values for x can be given: 

���� = � + |∆����| 

 ���� = � − |∆����| (9) 

 

 

Figure 5: Roundoff error in the amplitude of the sine wave (a), 
and its comparison with the worst case limits (b) 

DE LM
-4

-3

-2

-1

0

1

2
x 10

7

D
e
ri
v
a

ti
v
e

Cost function derivative with respect to frequency



The roundoff error is represented in Fig. 5. Real values 
were calculated using the 75-bit mantissa evaluation, 
which can be considered precise when compared to 
double precision. It can be seen that the real errors are 
lower, than ± ∆���� . Each probability in Eq. (4) can be 
calculated for x, ����  and ����. From these the 
maximum and minimum values can be chosen for each 
time instant. By this way the theoretical maximum and 
the minimum value of the cost function can be calculated. 
For the given sample set the worst case deviation band 
was ����� − ����� = 2.31 ∙ 10��. The maximum 
deviation of the 53-bit evaluation was 
5.37 ∙ 10��(~18 000 ���) (see Fig. 3), which is about 
45 times lower than this worst case deviation band. 

 C. Probability analysis 

Although the maximum deviation in the measurement 
is in the band given by the worst case analysis, the result 
cannot be utilized in practice, since the tolerance band is 
too wide, allowing too large deviations. As Fig. 6 shows, 
the true computation error can be modelled as stochastic, 
hence it could be treated as random variable. The cost 
function is a result of several computation steps, whose 
error can be regarded as independent, so according to the 
Central Limit Theorem, the distribution of the cost 
function is approximately normal. Fig. 6 shows the 
histogram of the evaluation error in the vicinity of the 
optima (assuming that the 75-bit mantissa evaluation is 
precise). If a 2 goodness-of-fit test is executed for 700 
bins, the null-hypothesis that the samples are from 
normal distribution cannot be rejected at 5% significance 
level. 

 

Figure 6: Histogram of the evaluation errors in the vicinity of 
the DE and LM optima 

In Section III/A it was shown that the error was mostly 
caused by imprecise phase evaluation. It can be assumed 
that the roundoff noise of the evaluation is uniformly 
distributed between ± ���(� )/2, according to the 
Pseudo Quantization Noise (PQN) model [7]. The 

variance of the evaluation can be calculated as 

 ���{� } =
[���(�)]�

��
 (10) 

We can assume that errors are small, hence in further 
calculations operating-point linearization can be used:  

 �(� + ∆�) = �(�) + �′(�) ∙  ∆�, (11) 

so the error is �′(�) ∙  ∆�, and the variance of it is  

 ��� ��′(�) ∙ ∆�� = ��′(�)�
�

∙ ���{�}. (12) 

As an approximation, the computational errors for 
neighbouring samples can be treated as independent, 
resulting that their variances can be added. The estimator 
of the cost function variance is 6.98 ∙ 10���, so the 
standard deviation is ���� = 8.35 ∙ 10��, while the 
standard deviation of the errors in the vicinity of the 
optima is ����� = 6.19 ∙ 10��. It can be seen that the 
estimator is really close to the real value.  

For random variables of normal distribution, the 
probability of the event that the value of the variable is 
between ± 2� is 95.4%, and that it is between ± 3� is 
99.7%. For practical measurements, the latter limit is 
acceptable. It can be mentioned that for the given 
measurement, the maximal deviation was outside the 2� 
tolerance band, but inside the 3� band. Using the latter 
one we can say that the optima of the LM and the DE 
cannot be distinguished. 

 IV. CONCLUSIONS 

In this paper properties of sine wave fitting algorithms 
were investigated in the vicinity of the optima of their 
cost function. For Maximum Likelihood (ML) estimation 
the optimum was searched with the Levenberg-Marquardt 
(LM) and the Differential Evolution (DE) methods. Their 
results were close, but slightly different, indicating that 
the optimum could not be found with arbitrary precision 
due to roundoff errors. In order to see the real properties, 
the ML function was evaluated with enhanced precision. 
The evaluation showed that the true cost function is much 
less ragged than calculated with double precision number 
representation. Worst case and probability analysis were 
evaluated for ML cost function evaluation in order to 
define a tolerance band within which results can be 
considered equivalent. Probability analysis showed that 
for the given measurement, the optima of the LM and the 
DE algorithms are indeed equivalent. 

REFERENCES 

[1] Standard IEEE-1241-2010, “IEEE Standard for 
Terminology and Test Methods for Analog-to-Digital 
Converters”, 2010 



http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?p
unumber=5692954 

[2] Šaliga, J., Kollár, I., Michaeli, L., Buša, J., Lipták, J., 
Virosztek, T., “A Comparison of Least Squares and 
Maximum Likelihood Based Sine Fittings in ADC 
Testing,” MEASUREMENT 46: pp. 4362-4368. 
(2013). DOI: 10.1016/j.measurement.2013.05.004  

[3] I. Kollár, T. Virosztek, V. Pálfi, B. Renczes, 
“ADCTest Project”, URL (Aug. 22, 2014): 
http://www.mit.bme.hu/projects/adctest 

[4] T. Virosztek, I. Kollár, “User-Friendly Matlab Tool for 
Easy ADC Testing”, 19th IMEKO TC4 Symposium, 
Barcelona, Spain, 18-19 July, 2013, paper 133. pp. 
561-568. http://www.imeko.org/publications/tc4-
2013/IMEKO-TC4-2013-133.pdf 

[5] T. Virosztek, I. Kollár, ADC Testing in Standardized 

and Non-standardized Ways, Executed in a Unified 
Framework. In: 20th IMEKO TC4 International 
Symposium and 18th International Workshop on 
ADC Modelling and Testing. Benevento, Italy, Sep. 
15-17, 2014. 6 p. Paper 232. URL: 
https://vm.mtmt.hu/www/index.php?mode=html&D
ocumentID=2720264&url_on=1&st_on=1&lang=1   

[6] K. Price, R. Storn, “Differential Evolution (DE)” URL 
(Aug. 22, 2014): 
http://www1.icsi.berkeley.edu/~storn/code.html 

[7] B. Widrow, I. Kollár, “Quantization Noise: Roundoff 
Error in Digital Computation, Signal Processing, 
Control, and Communications”, Cambridge 
University Press, Cambridge, UK, 2008. 
http://www.mit.bme.hu/books/quantization/ 

 


