
Recursive Graph Pattern Matching ?

With Magic Sets and Global Search Plans

Gergely Varŕo1, Ákos Horv́ath2, and D́aniel Varŕo2

1 Department of Computer Science and Information Theory
Budapest University of Technology and Economics

gervarro@cs.bme.hu
2 Department of Measurement and Information Systems

Budapest University of Technology and Economics
[ahorvath,varro]@mit.bme.hu

Abstract. We present core data structures and algorithms for matching graph
patterns with general recursion. Our approach uses magic sets, a well-known
technique from deductive databases, which combines fixpoint-based bottom-up
query evaluation with top-down handling of input parameters. Furthermore, this
technique is enhanced with the global search plans, thus non-recursive calls are
always flattened before elementary pattern matching operations are initiated in
order to improve performance. Our approach is exemplified using VIATRA 2.

1 Introduction

Graph transformation (GT) [1] is a frequently used means to capture model transfor-
mations in the context of model-driven software development. Graph transformation
rules provide a declarative, rule and pattern-based language for specifying both inter-
language and intra-language model manipulations for model analysis, refactoring or
simulation.

GT rules consist of a left-hand side (LHS) and a right-hand side (RHS) graph pat-
tern. The LHS specifies contextual conditions which should hold as a precondition for
applying the rule, which is checked by graph pattern matching. Then the model is ma-
nipulated by calculating the difference of the RHS and the LHS in the model.

However, in order to design complex transformations, the core GT formalism has
been extended to address reusability or maintainability. For instance, graph transforma-
tion units [2], modules [3] or programs [4, 5] have been introduced where elementary
GT rules are enriched with control structures.

An alternate, and more declarative way for reusability has also been introduced (in
systems like VIATRA 2 [6] or Tefkat [7]) where graph patterns are stand-alone con-
cepts, which can be assembled into more complex patterns and/or transformation rules
by pattern composition (or pattern call). This concept is quite similar to other popular

? This work was partially supported by the SENSORIA European IP (IST-3-016004), the Hun-
garian National Research Fund and the National Office for Research and Technology (grant
No. 67651, OTKA), and the János Bolyai scholarship



2

declarative formalisms in logic programming or deductive database systems (like Pro-
log or Datalog), where basic facts and complex predicates are treated identically when
evaluating a query. A key performance issue when matching graph patterns in case of
pattern composition is to generate a single global search plan for the flattened pattern,
which is discussed in [8].

A natural extension for pattern-level reuse is to allow recursive calls in case of pat-
tern composition, i.e., when a predefined graph pattern may call itself or other patterns
recursively. Investigating recursion in graph transformation rules has recently become
very popular with several approaches [9, 10] targeting mainly its specification aspects.
However, these approaches mostly assume simple recursion where a pattern may call
itself only once in a single execution branch.

In the current paper, we make only a single, very general assumption on recursion,
namely, parameters of negative application conditions must be bound at the time of their
invocation , but otherwise arbitrary recursive calls are allowed. As the main contribu-
tion, we define data structures and sketch core algorithms how recursive graph patterns
can be matched based uponmagic sets[11], a well-known technique from deductive
databases, which combines fixpoint-based bottom-up query evaluation with top-down
handling of input parameters. Furthermore, this technique is enhanced with the global
search plans of [8, 12] thus non-recursive calls are always flattened before elementary
pattern matching operations are initiated to improve performance.

The remainder is structured as follows. First, Section 2 briefly introduces a com-
bined graph-based representation for models and metamodels used in the paper (and
in the VIATRA 2 framework). Then Section 3 describes the overview of our approach,
while Section 4 and Section 5 propose our data structures and algorithms used in the
compile and run-time phases of the recursive pattern matcher, respectively. Related
work is discussed in Section 6, while Section 7 concludes our paper.

2 Background

First we informally introduce models, metamodels and graph patterns used in the paper,
using the object-relational mapping defined in the model transformation contest of [13]
as a running example. This transformation was captured by graph transformation rules
using recursive patterns in [7,14].

2.1 VIATRA Models and Metamodels

Metamodeling provides the structural definition (i.e., abstract syntax) of modeling lan-
guages.

In the paper, we use a unified directed graph representation [6] which stores meta-
models and models in a combined model space. Intuitively, the morphisms from in-
stance nodes (and edges) to their respective node (edge) types are stored explicitly in
our graph model. As a summary, nodes represent basic concepts of a (modeling) do-
main, while edges represent the relationships between model elements. This unified
graph representation serves as the underlying model of the VIATRA 2 framework.



3

This way, graph nodes (called entities in VIATRA 2, depicted as a rectangle in Fig. 1)
uniformly represent MOF packages, classes, or objects on different metalevels, while
graph edges with identities (called relations in VIATRA 2, depicted as a solid line in
Fig. 1) denote MOF association ends, attributes, link ends, and slots in a uniform way.
Nodes are arranged into a strict containment hierarchy to denote model element con-
tainment either on the metamodel or model-level.

Example 1.Figure 1 presents the joint representation of a simplified UML metamodel
and an instance model. The metamodel is depicted on the right side. Both the classes of
the metamodel (such ascls , assoc , etc.) and the objects of the instance model (such
ascar , plt ) uniformly appear as nodes (entities), while relations between nodes are
illustrated by solid edges.

Fig. 1.Sample instance model and metamodel

2.2 Graph Patterns

Graph transformation (GT) is a rule and pattern-based paradigm frequently used for de-
scribing model transformations. A graph transformation rule contains a left-hand side
graph LHS (or graph pattern) and a right-hand side graph RHS, and (one or more) neg-
ative application condition graphs (NAC) connected to LHS. Graph patterns (precon-
dition pattern) consist of the LHS pattern, the NAC pattern, and the mapping between
them. They are describe by pattern bodies consist of a set of constraints that have to
be fulfilled by a model to apply graph transformation rule. In order to define recursive
pattern we allow alternate (OR)pattern bodiesfor a pattern, with a meaning that the
pattern is fulfilled if at least one of its bodies is fulfilled.

As different graph transformation languages allow different language constraints
(e.g., containment between model elements), in the following we use the constraints of
the VIATRA 2 framework containing (i)structural constraintsprescribing the existence
of nodes and edges of a given type, (ii)check constraintscapturing term evaluation



4

over the attributes of the matched elements (using thecheck keyword), and (iii)pat-
tern invocation constraintsallowing pattern composition (invocation) of other patterns
supported in a declarative way (using thefind keyword). The semantics of this refer-
ence is similar to that of the declarative Horn clauses, where the caller pattern can be
fulfilled only if their local constructs can be matched, and if the pattern invoked with
theactual parametersis also fulfilled.

Example 2.The graphical and VIATRA 2 textual representation of the graph patterns of
the object-relational mapping are depicted in Fig. 2, 3, and 4. BothclassHasAttr
andclassHasIncludedAttr contain all recursive features offered by VIATRA 2,
from which we useclassHasAttr as our running example. The meaning and pur-
pose of theclassHasAttr that aCls ”has” anAttr for the purpose of the mapping
if, (i) it is directly owned and a primitive type, or (ii) a referencedCls (via anAttr
or anAssoc ) ”has” theAttr , or (iii) the children of theCls ”have” theAttr . In-
formally the meaning of theclassHasIncludedAttr to map additional attributes
along references and inheritance, whileclassHasReference is a helper pattern for
matching ”references” (attributes and associations) between classes.

The pattern classHasAttr contains threeformal parameters: Cls , Attr
and Key, and it consists of three pattern bodies. The first body prescribes that
there exists aCls class with anAttr attribute, which has aBoolean value
Key denoting whether attributeAttr is a primary key. The second prescribes the
classHasIncludedAttr pattern invocation with formal parameters (Cls , Attr ,
Key) of the caller pattern as actual parameters (depicted by grey boxes on the invoked
pattern). The last body prescribes three constraints: (i) there exists two classesSubCls
andCls with a parent relation between them, (ii) theclassHasAttr pattern invoca-
tion where the first parameter is the localSubCls element (depicted by dashed line),
while the two other (Attr andKey) are the formal parameters of the caller pattern,
and (iii) that the value ofKey is false.

2.3 Graph Pattern Matching

The most critical step of graph transformation is graph pattern matching, i.e., to find
a matching of the LHS pattern in the model, that is not invalidated by a matching of
the negative application condition graph NAC, which prohibits the presence of certain
combinations of nodes and edges. Thus we restrict our investigations only to graph
patterns and graph pattern matching for the current paper.

During pattern matching each variable of a graph pattern is bound to a node in the
model such that this matching (binding) is consistent with edge labels, and source and
target nodes of the model.

Traditional model transformation approaches handle recursive invocation in a top-
down imperative way, usually integrated into the control flow rather than the patterns
themselves. We propose a fixpoint-based bottom-up evaluation approach combined
with a top-down handling of input parameters following deductive database techniques.
As [11] states, such a technique benefits from the advantages (e.g., convergence de-
tection, strong focus on relevant facts) of both the semi-naive bottom-up and the tradi-
tional top-down style, queue-based rule/goal tree expansion methods. Furthermore, it



5

pattern classHasIncludedAttr(Cls, Attr, Key) =
{cls(Cls);

find classHasReference(Cls, Type);
find classHasAttr(Type,Attr, KeyForType);
cls(Type);
cls.persistent(Type, B);
Boolean(B);
Boolean(Key);
Boolean(KeyForType);
check(value(B) == "true" &&
value(Key) == "true" &&
value(KeyForType) == "false");

}or{
cls(Cls);
find classHasReference(Cls, Type);
find classHasAttr(Type, Attr, KeyForType);
cls(Type);
cls.persistent(Type, B);
Boolean(B);
check(value(B) == "false");
Boolean(Key);
Boolean(KeyForType);
Key = KeyForType;

}

Fig. 2.classHasIncludedAttr pattern

pattern classHasAttr(Cls, Attr, Key) =
{cls(Cls);

cls.attrs(Cls, Attr);
attrib(Attr);
attrib.primary(Attr, Key);
datatypes.Boolean(Key);

}or{
find classHasIncludedAttr(Cls, Attr, Key);
}or{

cls(SubCls);
cls.parent(SubCls, Cls);
cls(Cls);
find classHasAttr(SubCls, Attr, Key);
datatypes.Boolean(Key);
check(value(Key) == "false");

}

Fig. 3.classHasAttr pattern

pattern classHasReference(SrcC, DstC) =
{cls(SrcC);

cls.attrs(SrcC, A);
attrib(A);
attrib.type(A, DstC);
cls(DstC);

}or{
assoc(Assoc);
cls(SrcC);
assoc.src(Assoc, SrcC);
cls(DstC);
assoc.dest(Assoc, DstC);

}

Fig. 4.classHasReference pattern



6

terminates after the same number of iterations (up to a constant factor), and it provenly
produces [11] the same results as the others.

3 Overview of the Approach

The proposed workflow of implementing recursive graph pattern matching is summa-
rized in Fig. 5.

Fig. 5.Overview of the recursive pattern matching approach

We separate compile time parts from run-time parts, where each part consists of the
following steps:

– At compile time each step is calculated once for each pattern description.
• First, for each pattern description acall treeis generated capturing how patterns

call other patterns.
• Then for eachcall tree flattened patternsare generated. The use of flattened

patterns allows the optimization of pattern matching in a global scope (e.g.,
edges that are defined in different patterns can be traversed one after the other).

• For eachflattened patterna correspondingsearch graphis generated. The
search graph is glued from the patterns of the flattened pattern body accord-
ing to the passed parameters of the calls.

– After initializing the previous data structures at compile time, run-time steps have
to be calculated for each separate pattern invocation.
• Search planis generated from thesearch graphbased on the parameter binding

to drive the pattern matching process.
• Then matchings are calculated by an iterative bottom-up recursion evaluation

using magic sets, helping the pattern matcher to focus only on matches relevant
to the input parameter binding.

4 Compile Time Steps of the Recursive Pattern Matcher

In this section we briefly introduce the data structures and algorithms needed for the
compile time tasks of the recursive pattern matcher.



7

4.1 Call Tree

A call tree is a directed bipartite tree

Fig. 6. Call tree of theclassHasAttr graph
pattern

describing the structural dependencies
of a given pattern. It is constructed by
a traversal process, which explores the
possible body alternatives of a pattern
and all the pattern invocations in a depth
first manner.

Nodes on the odd levels of the call
tree representpattern heads(denoted as
simple rectangles) and (pattern)refer-
ences (illustrated by grey rectangles),
while nodes on the even levels denote

(pattern)bodies(symbolized with numbered circles). The fact that abodyis a disjunc-
tive alternative of apattern headis expressed by an edge connecting the corresponding
pattern headto thebody. Edges connecting bodies to pattern heads and references rep-
resent non-recursive and recursive pattern invocations, respectively.
Example 3.The call tree of patternclassHasAttr of Fig. 3 is illustrated in Fig. 6.

The classHasAttr pattern (head) has three pattern bodies depicted by circles
with numbers1, 2 and 3. Pattern body2 invokes theclassHasIncludedAttr
pattern head which has pattern bodies4 and5. Both of these bodies have similar sub-
trees, as they differ only in the check constraint. TheclassHasReference contains
two pattern bodies, and contained twice in thecall treeas it is invoked separately from
4 and5.

4.2 Flattening

In order to provide better performance for pattern matching, we use search plan op-
timization techniques, where optimization can be considered as a process that orders
constraints to provide an efficient evaluation plan for their run-time execution.

As current optimization techniques [4,8,12] have been developed for non-recursive
use, they operate on the scope of pattern bodies, which means that a separate opti-
mization procedure is executed for the set of constraints defined by a given body. This
approach often results in poor search plans for a recursive pattern matcher due to the
lack of global view for the optimizer on the overall set of structural constraints.

In order to get better search plans, the operation scope of the optimizer module
is increased by flattening the call tree and by merging pattern bodies and recursive
invocations resulting in a larger set of constraints to be processed by the optimizer.

In the flattening process each pattern body or pattern reference node is recursively
merged to the closest ancestor pattern body and mapped toflattened pattern bodies
(FPB). As a result, aflattened call treeis obtained in which the new flattened pattern
bodies are direct children of the root pattern head node.

Example 4.The flattened version of the call tree of Fig. 3 is depicted in Fig. 7. The
classHasAttr pattern has six flattened pattern bodies denoted by vectors, contain-
ing the numbers of the constituting body nodes. The flattened pattern bodies (#246O,



8

#247O, #258O, #259O and#3O) are recursive as depicted by grey square with circle,
while flattened pattern body#1 is non-recursive.

For example the #246O flattened pattern is

Fig. 7.Flattened patterns

constructed by starting from the root (disjunc-
tive) node selecting the pattern body2. From 2 the
classHasIncludedAttr pattern head is traversed
and the pattern body4 is selected. The traversal continues
on both branches of body4 adding pattern body6 and
classHasAttr pattern call to the flattened pattern.

4.3 Search Graph

Informally a search graphis a common representation of constraints (e.g., there is a
relation between two elements) that drives the pattern matching process. For each flat-
tened pattern body a separatesearch graphis generated, where a search graph is built by
merging the constraint of the contained pattern bodies of a flattened pattern body, i.e.,
all formal parameters of the invoked pattern head are substituted with the corresponding
actual parameters of the caller.

Example 5.For easier readability an extract of the search graph — without all con-
straints — of#246O from Fig. 7 is depicted on the left side of Fig. 8, with the simplified
V IATRA 2 textual representation on the right hand side.

The search graph created from the combination of pattern bodies2, 4, 6 and
the pattern referenceclassHasAttr contains 7 entities all denoted as rectangles.
Relations are captured by solid lines (e.g.,attrs relation source isCls ), while
binding between the actual and formal parameters of the recursive invocation are high-
lighted by dashed lines between the corresponding elements (e.g.,Type is the actual
parameter of theCls formal parameter). While passing the formal parameterAttr of
the caller pattern is denoted by a dotted box.

classHasAttr_2460(Cls,Attr,Key) ={
//Local goal
Boolean(Key);
Boolean(KTF);
Boolean(B);
cls(Cls); cls.attrs(Cls,A);
attrib(A); attrib.type(A,Type);
cls(Type); cls.persistent(Type, B);
check(value(Key) == "true" &&
value(B) == "true" &&
value(IKTF) == "true"); //TERM
//Remote goal
find classHasAttr(Cls,Attr,KTF); }

Fig. 8.Search graph ofclassHasAttr flattened pattern#246O

In order to present our concepts, we use an intuitive database like notation, where
search graphsare defined as a set of natural joins over tables formed by the structural



9

and invocation constraints of the FPB, while check constraints are mapped to filters on
matching candidates. Tables defined for entities and relations (structural constraints)
are illustrated with tables of one and two columns, respectively, while pattern refer-
ences and heads are captured by tables containing a column for each formal and actual
parameter of the pattern. Note that, pattern references and heads of the same pattern are
mapped to the same table.

This representation allows to define the matching process as a least-fix point evalua-
tion (tableofmatchings = lfp(structuralconstraints on patternreference)) over
the joined tables, where thetableofmatchings holds the matchings of the invoked
pattern head.

As a result this representation pin-points the crucial parts of recursive pattern match-
ing, namely (i) optimized ordering of natural joins, and (ii) effective evaluation of least-
fix points for which our solutions are introduced in Sec. 5.

Example 6.The extract database like representation of Fig. 8 is depicted in Fig. 9.
Structured constraints (boxed in dashed line) are illustrated by tables of one and two
columns, where the first row holds the type of the element, while the second represents
the corresponding name of the involved search graph elements (e.g., theattrs table
with two columns represent theattrs relation between theCls andA entities). While
theclassHasAttr pattern recursive invocation is captured by a table of rowsType ,
Attr , andKFT. Finally, the search graph described as a least-fix point evaluation is
classHasAttr = lfp(structuralconstraints on classHasAtrr).

Fig. 9.Natural join representation of theclassHasAttr pattern

5 Run-time behavior of the Recursive Pattern Matcher

After calculating and initializing the previous data structures at compile time, the rest
of the recursive pattern matching process is carried out at run-time.

5.1 Ordering constraints of the flattened pattern body

When a pattern matching process is initiated for a given pattern at run-time, a user may
supply input parameters. Depending on the binding of the formal parameters of the
pattern head we define anadornmentwhich denotes if the pattern parameter isbound
(B) or free (F).

For an efficient query evaluation process, the execution order of natural joins should
be determined by sequencing its constituting constraints. This sequence of constraints
in a flattened pattern body is called asearch plan, and it is produced by the algorithms
of [8,12], which also use the adornment information during the generation process.



10

5.2 Recursion evaluation techniques

Approaches for efficiently calculating the fix-point for the table of matchings can be
categorized as follows.

The queue-based top-down recursion evaluation technique performs a breadth-first
traversal for collecting matchings by alternately using the flattened call tree and nav-
igating along pattern invocation constraints to explore the recursion in depth. As an
advantage, this technique is able to focus only on exactly those “relevant” matchings
that can provide solution for the actual binding of the pattern head at the topmost recur-
sion level. On the other hand, as the matchings found in a deeper level of recursion are
always immediately propagated upwards by performing a series of natural joins, this
approach requires the proper maintenance of the pattern heads that have actually been
invoked during the traversal including one local copy for their actual bindings and one
for their matchings resulting in a decentralized solution.

The bottom-up recursion evaluation technique directly follows the fixpoint calcula-
tion approach, and in this sense, it iteratively extends one global table of matchings by
repeatedly evaluating the query of each flattened pattern body. As a consequence, com-
pared to the top-down approach, queries are executed fewer times and on larger blocks
of data resulting in a faster solution. On the other hand, the bottom-up technique al-
ways calculates all matchings independently of the initial bindings, which unavoidably
produces a table of matchings that is significantly larger than the final result set.

5.3 Magic sets

In order to preserve the fast and centralized bottom-up evaluation technique and to si-
multaneously minimize the gap between the number of calculated matchings and the
size of the final result set, the concept of magic sets is introduced, which helps avoiding
the generation (and temporary storage) of irrelevant matchings by restricting calcula-
tions only on such input parameters that might be produced during the actual pattern
matching process.

For each pattern head, amagic set (MS) tableis allocated, which stores such tuples
of the bound parameters of the pattern head that have ever been passed downwards (i.e.,
to a deeper level of recursion) as input parameters during the evaluation. Note that the
adornment (or binding pattern) of the pattern head determines, which columns must be
contained by the magic set.

A magic set transformationis performed to introduce the MS table in the query
calculation by placing it into the first (i.e., leftmost) position. Additionally, queries for
extending the MS table are defined. As it is difficult to give a short and intuitive explana-
tion for specifying these queries, the process of MS table extension is only exemplified
in the current paper.

5.4 Execution

Recursive graph pattern matching is an iterative process, in which a fix-point is calcu-
lated for each MS table and each table of matchings.



11

Tuples can be classified based on the number of iterations passed since they got
into a given table. Based on this categorization, tuples that joined just before the current
iteration are calledrecent. All other tuples already contained by the tables are referred
asold. Tuples being calculated in the current iteration are callednew.

The exact process of fix-point calculation is as follows.

– Initialization. The table of matchings is initially empty, and the MS table is ini-
tialized with a single recent tuple containing the input parameters of the original
pattern invocation.

– Calculation tasks of each iteration.In each iteration, all queries are executed
once to possibly generate new tuples for the MS table and the table of matchings,
which, in turn, represent new input parameters passed downwards and new match-
ings passed upwards, respectively. In order to avoid unnecessary recalculations on
old tuples, only recent tuples of the MS table and the table of matchings are in-
volved in the natural joins. The tuples calculated by the natural joins are filtered
by check constraints. If all the constraints are fulfilled, then the result tuple is pro-
jected on the formal parameters of the pattern head, and scheduled to be added to
the corresponding table as a new tuple.

– Synchronization after each iteration. Synchronization is performed after each
iteration by an ageing process, which (i) keeps old tuples, (ii) makes all recent
tuples old, (iii) collects new tuples from flattened pattern bodies, (iv) adds these
new tuples to the corresponding table, if they are not yet contained, and (v) marks
all the collected new tuples recent.

– Termination. Pattern matching is terminated when neither the MS table, nor the
table of matchings is extended during an iteration. Based on analogy to [15], ter-
mination can be guaranteed, if negative application condition checks are invoked
only with bound parameters, which is typically fulfilled in graph transformation
approaches.

– Postprocessing.Finally, in a postprocessing phase, the table of matchings is filtered
by checking whether the result tuples in the bound parameter positions match the
input parameters passed at the original pattern invocation.

Example 7.The iterative pattern matching process is illustrated in Fig. 10. It calculates
such matchings for pattern headclasshasAttr , in which formal parametersCls
andKey are bound tocar andtrue , respectively.

Each subfigure shows (i) the table of matchings for the pattern head
classhasAttr in its top-right corner together with the correspondingMStable be-
neath, (ii) the detailed search plans of flattened pattern bodies#1 and#246O in the
middle, and (iii) the flattened pattern bodies (#3O, #259O, #258O and#247O) not
involved in the calculations on the left.

Fig. 10(a) illustrates the state of the runtime execution after the calculation tasks
of the first iteration, during which (i) theMStable is initially loaded with recent tuple
(car,true) , (ii) the query of non-recursive flattened pattern body#1 is evaluated by
natural joining all its tables to the recent tuple(car,true) of theMStable producing
a new matching(car,nplt,true) , and (iii) a new tuple(plt,true) of input
parameters to be passed downwards later is generated by calculating natural joins of



12

(a) First iteration

(b) Second iteration

(c) Third iteration

(d) Fourth iteration

Fig. 10.Runtime iterations of theclassHasAttr pattern



13

tables up to (but excluding) the recursive invocation constraint in flattened pattern body
#246O.

At the second iteration in Fig. 10(b), the previously matched tuples
(car,nplt,true) and (plt,true) appear as recent tuples in the table of
matchings and theMStable, respectively. In this iteration, the query of flattened pat-
tern body#1 produces a new matching(plt,nbr,true) for the pattern head
classHasAttr , while queries of flattened pattern body#246O fail on checking con-
straints as the natural joins produce such results by starting from either recent tuple, in
which the value in columnB is false.

In the third iteration (shown by Fig. 10(c)), the table of matchings for pattern
head classHasAttr is extended by a new matching(plt,nbr,true) pro-
duced by the query of flattened pattern body#246O, which uses the recent tuple
(plt,nbr,true) for performing the natural joins.

The fixpoint calculation algorithm terminates after the fourth iteration (depicted in
Fig. 10(d)) as neither theMStable, nor the table of matchings is further extended.

Finally, in the postprocessing phase, matching(plt,nbr,true) is filtered out
as it does not have valuecar in its columnCls as it would have been required by the
initial binding of input parameters. However, matchings(car,nplt,true) and the
(car,nbr,true) remain in the final result set.

6 Related Work

The concept of recursion has already been used by several powerful, graph transfor-
mation related algorithms, tools, and approaches including [9], which presents valu-
able theoretical foundations of handling recursion in graph transformation. Since our
approach focuses on theimplementationof a pattern matching engine, only practical
considerations are examined in the following.

Many advanced graph transformation tools support recursion in their control flow
language (like GReAT [16] and VMTS [17]) or use it in the control structure implemen-
tation (like MOLA [18]). In all these approaches, recursion appears in theimperative
control flow partof the graph transformation engine, in contrast to our approach, in
which fully declarative and recursive patternspecifications are given to thepattern
matching moduleas input.

In the following, only such pattern matchers are surveyed in the order of increasing
expression power of their specification language, which are able to handle recursive pat-
terns. PROGRES [4] and Fujaba [5] use the concept of path conditions and expressions,
which can be considered as a form of recursion, as a path can define a set of connected
edges of arbitrary length. Paths are computed only in forward direction in PROGRES,
which may cause performance degradation when the end point of a path condition is
fixed as reverse path navigation is not part of the otherwise, highly sophisticated search
plan generation algorithm. The expression power of path conditions is strongly lim-
ited by their nature due to the fact that only linear graph structures are allowed to be
repeated.

A recent paper [10] presents the concept of star regions for expressing repetitive
graph structures, which can be considered as an alternative representation of recursion.



14

The authors provide a valuable and detailed description of their algorithm, which eval-
uates recursion in a top-down manner, in contrast to our approach, which performs
bottom-up evaluation. Since arbitrary graph structures can be contained by star regions
(undoubtedly providing support for any form of simple recursion) this indicates a more
expressive language compared to the ones that only handle path conditions. However,
e.g., mutual recursion is still an unsupported feature.

From a graph transformation point of view, the implementation of Tefkat [7] shows
the largest similarity to our approach. Both are able (i) to handle complex forms of
recursion (providing a stronger expression power compared to all the previous ap-
proaches), and (ii) to reorder terms (i.e., search plan constraints) for efficiency and
on semantic correctness backgrounds. Tefkat uses the technique of top-down recursion
evaluation with memoing, while our approach performs a magic set transformation fol-
lowed by a bottom-up evaluation. Additionally, our approach provides support for flat-
tening, which allows an inter-pattern search plan optimization for such patterns that can
be evaluated by a single non-recursive pattern matching algorithm.

The technique of combining bottom-up evaluation with magic set transformation
[11] is well-known in the knowledge-base system community for over a decade. This
technique is intentionally used by our approach as several important theorems (includ-
ing statements about algorithm termination) have already been proven. Arguments for
preparing an own implementation include (i) the lack of support for flattening by any
existing general-sense knowledge-base systems, and (ii) a vision to build further run-
time optimizations by using graph pattern matching specific knowledge.

The popularity of recursive graph pattern matching has been demonstrated at the
AGTIVE workshop by several contributions discussing its specification issues. [19] pro-
posed query support for the DRAGOS graph database, and mentioned the handling of
recursive queries by nested subgraph as future work. [20,21] examined different aspects
of set-valued graph transformation by using the PROGRES tool. Note that these con-
tributions can be considered as application domains for our approach as it (over)fulfills
their specification criteria by providing a larger expression power.

7 Conclusion

In the current paper we proposed a pattern matching framework for matching recursive
patterns by using fixpoint-based bottom-up query evaluation with top-down handling of
input parameters. The essence of the matching process is to flatten non-recursive pattern
compositions for global optimization and execute recursive invocations in an iterative
manner by using magic set transformation.

Finally, it is worth pointing out that the proposed approach has been fully imple-
mented, and it will be part of the upcoming VIATRA 2 release.

References

1. Rozenberg, G., ed.: Handbook of Graph Grammars and Computing by Graph Transforma-
tion. Volume 1: Foundations. World Scientific (1997)



15

2. Kreowski, H.J., Kuske, S.: Graph transformation units and modules. In Ehrig, H., Engels,
G., Kreowski, H.J., Rozenberg, G., eds.: Handbook of Graph Grammars and Computing
by Graph Transformation, Vol. 2: Applications, Languages and Tools. World Scientific,
Singapore (1999) 607–638

3. Heckel, R., Ehrig, H., Engels, G., Taentzer, G.: Classification and comparison of module
concepts for graph transformation systems (1999)

4. Zündorf, A.: Graph pattern-matching in PROGRES. In: Proc. 5th Int. Workshop on Graph
Grammars and their Application to Computer Science. Volume 1073 of LNCS., Springer-
Verlag (1996) 454–468

5. Nickel, U., Niere, J., Z̈undorf, A.: The FUJABA environment. In: Proc. of the 22nd Interna-
tional Conference on Software Engineering, ACM Press (2000) 742–745

6. Balogh, A., Varŕo, D.: Advanced model transformation language constructs in the VIATRA2
framework. In: Proc. of the 21st ACM Symposium on Applied Computing, Dijon, France,
ACM Press (April 2006) 1280–1287

7. Lawley, M., Steel, J.: Practical declarative model transformation with Tefkat. In Bézivin,
J., Rumpe, B., Scḧurr, A., Tratt, L., eds.: Proc. of the International Workshop on Model
Transformation in Practice (MTiP 2005). (October 3rd 2005)

8. Horváth, Á., Varró, G., Varŕo, D.: Generic search plans for matching advanced graph pat-
terns. In: Proc. of the Sixth International Workshop on Graph Transformation and Visual
Modeling Techniques (GT-VMT 2007), Braga, Portugal, Electornic Communications of the
EASST (March 31- Apr. 1 2007) 57–68

9. Guerra, E., de Lara, J.: Adding recursion to graph transformation. In: Proc. of the Sixth
International Workshop on Graph Transformation and Visual Modeling Techniques (GT-
VMT 2007), Braga, Portugal, Electornic Communications of the EASST (March 31- Apr. 1
2007) 107–120

10. Lindqvist, J., Lundkvist, T., Porres, I.: A query language with the star operator. In: Proc. of
the Sixth International Workshop on Graph Transformation and Visual Modeling Techniques
(GT-VMT 2007), Braga, Portugal, Electornic Communications of the EASST (March 31-
Apr. 1 2007) 69–80

11. Ullman, J.D.: Principles of database and knowledge-base systems, Vol. II. Computer Science
Press, Inc., New York, NY, USA (1989)

12. Varró, G., Varŕo, D., Friedl, K.: Adaptive graph pattern matching for model transformations
using model-sensitive search plans. In Karsai, G., Taentzer, G., eds.: Proc. of Int. Workshop
on Graph and Model Transformation (GraMoT’05). Volume 152 of ENTCS., Tallinn, Estonia
(September 2005) 191–205

13. Bézivin, J., Rumpe, B., Schürr, A., Tratt, L.: Challenge of the model transformations in
practice workshop (October 3rd 2005)

14. Ehrig, K., Guerra, E., de Lara, J., Lengyel, L., Levendovszky, T., Prange, U., Taentzer, G.,
Varró, D., Varŕo-Gyapay, S.: Model transformation by graph transformation: A compara-
tive study. In: MTiP 2005, International Workshop on Model Transformations in Practice
(Satellite Event of MoDELS 2005). (2005)

15. Ullman, J.D.: Principles of Database and Knowledge-Base Systems. Volume II: The New
Technologies. Computer Science Press (1989)

16. Agrawal, A., Vizhanyo, A., Kalmar, Z., Shi, F., Narayanan, A., Karsai, G.: Reusable id-
ioms and patterns in graph transformation languages. In Mens, T., Schürr, A., Taentzer,
G., eds.: Proc. of the International Workshop on Graph-Based Tools. Volume 127 of
ENTCS., Rome, Italy, Elsevier (October 2004) 181–192http://tfs.cs.tu-berlin.
de/grabats/ .

17. Lengyel, L., Levendovszky, T., Mezei, G., Charaf, H.: Model transformation with a visual
control flow language. International Journal of Computer Science1(1) (2006) 45–53



16

18. Kalnins, A., Celms, E., Sostaks, A.: Model transformation approach based on MOLA. In
Bézivin, J., Rumpe, B., Schürr, A., Tratt, L., eds.: Proc. of the International Workshop on
Model Transformation in Practice (MTiP 2005). (October 2005)http://sosym.dcs.
kcl.ac.uk/events/mtip05/ .

19. Weinell, E.: Adaptable support for queries and transformations for the DRAGOS graph-
database. In Schürr, A., Nagl, M., Z̈undorf, A., eds.: Proc. of the 3rd International Workshop
and Symposium on Applications of Graph Transformation with Industrial Relevance, Kassel,
Germany (October 2007)

20. Fuss, C., Tuttlies, V.E.: Simulating set-valued transformations with algorithmic graph trans-
formation languages. In Schürr, A., Nagl, M., Z̈undorf, A., eds.: Proc. of the 3rd International
Workshop and Symposium on Applications of Graph Transformation with Industrial Rele-
vance, Kassel, Germany (October 2007)

21. Körtgen, A.T.: Modeling successively connected repetitive subgraphs. In Schürr, A., Nagl,
M., Zündorf, A., eds.: Proc. of the 3rd International Workshop and Symposium on Applica-
tions of Graph Transformation with Industrial Relevance, Kassel, Germany (October 2007)


