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Abstract:

The current paper presents a new approach usirggigemnd meta-transformations

for generating platform-specific transformer plugfrom model transformation specifications
defined by a combination of graph transformatiod ahstract state machine rules (as used within
the VIATRA2 framework). The essence of the appro&cho store transformation rules as
ordinary models in the model space, which can loegssed later by the meta-transformations,
which generates the Java transformer plugin. Thesa rules highly rely on generic patterns (i.e.
patterns with type parameters), which provide Haglel reuse of basic transformation elements.
Graph algorithms used for search plan generatiennéegrated as abstract state machines, while
the final code generation step is carried out bgectemplates. As a result, the porting of a
transformer plugin to a new underlying platform ¢tenaccelerated significantly.
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1 Introduction

Nowadays, model-driven system developme8f (MDSD) is an emerging
paradigm in software development. A main challefoyeMDSD is accommodate to the
accelerating changes of business and technologgedBan high-level model standards
(such as the Unified Modeling Language — UMI2]), MDSD separates business and
application logic from underlying platform techngio Platform-independent models
(PIM) capture the core business functionality iretegently from the underlying
implementation technology, which are incorporai@en on in platform-specific models
(PSM). The source code of the system under desigremerated afterwards from such
platform-specific models. The success of the MD&ihly depends on automated model
transformations (MT), which generate PSMs from BlMsd executable source code
from PSMs.

In MDSD, models are frequently captured by a gragitucture, and the
transformations are specified as graph transfoonati Informally, a graph
transformation (GT11,7]) rule performs local manipulation on graph mod#&ysfinding



a matching of the pattern prescribed by its leftchaide (LHS) graph in the model, and
changing it according to the right-hand side (Rig@)ph.

The main objective of the VIATRA2 (Visual Automatedmodel
TRAnsformations) framework developed at the Deparnimof Measurement and
Information Systems at Budapest University of Tedbgy and Economics is to provide
a general-purpose support for the entire life-cyflengineering model transformations
including the specification, design, execution, idation and maintenance of
transformations within and between various modelagguages and domains. Since
September 2005, VIATRAZ is part of the Eclipse Gatiee Modeling Tools subproject.

Advanced model transformation tools frequently ainseparating the design of a
transformation from its execution by using highdewynodel transformation rules in
design time and deriving executable platform-spedifansformer plugins from these
high level models. The role of design-time transfation frameworks (also called as
platform independent transformers PIT) is to eabe tevelopment of model
transformations, while the role of compiled standal versions of a model
transformation (Platform (language) specific transfers (PST)) in an underlying
platform (e.g. Java) are more efficient from rurdiperformance aspects.

Code generators deriving the standalone transfernaee typically implemented
in a standard programming language for specific ehdcansformations, thus, it is
difficult to reuse existing code generators to etéht platforms with conceptual
similarities (e.g. from Java to Enterprise JavarBgar to integrate them into other MT
tools.

The current paper presents a new approach usingrigerand meta-
transformations 14] for generating platform-specific transformer ghg from model
transformation specifications defined by a combamatof graph transformation and
abstract state machine rules (as used within tAdRIA2 framework).

The essence of the approach is to store transfimmatles as ordinary models in
the model space, which can be processed later éyntata-transformations, which
generates the standalone Java transformer plugeselmeta rules highly rely on generic
patterns (i.e. patterns with type parameters), whooovide high-level reuse of basic
transformation elements. Graph algorithms useddéarch plan generation are integrated
as abstract state machines, while the final codergéion step is carried out by code
templates.

As a result, the porting of a transformer plugiratoew underlying platform can
be accelerated significantly.

2 Overview of the approach

The proposed workflow of the meta-transformationP&T generation is summarized in
Fig. 1.



Meta-transform ation Module
XForm
metamodel j
Process
# ™ ASM rule
Control
Structure Generate
{ASM) | Separate Qutput P S:;I[;ZE
Model | T|ASM&GT
Manipulatioh {Java)
{GT Rule}
Process
| GT action part
"] Process Generate
GT pattern Search Plan

VIATRAZ2 Modelling Framew ork

Fig. 1. Overview of the meta-transformation based generation

In VIATRAZ2, transformations can be defined by thembination of graph
transformation (GT 7]) and abstract state machines (ASHK])[ The Transformation
(XForm) metamodel (to be discussed in details io. 3&€) consists of an ASM part for
control structures and a graph transformation foart
elementary model manipulation.

The steps of the plugin generator transformatierttae following:

* As ASM and GT rules are processed differently, wpasate them in the first
step. Since ASM rules are (semantically) very cltsetraditional high-level
programming language constructs, their handlingisdiscussed.

* GT rules are processed in two substeps. The LHBeofule should be handled as
a GT pattern, while the action part described lgydtiference of RHS and LHS
(and potentially additional ASM rules).

» For each pattern call initiating a graph patterriamag process, different search
graphs are generated. (Set5|[ for a detailed discussion of search graph
generation.)

* An optimized search plan (i.e. the traversal omfepattern nodes) is generated
for every search graph in order to sequence thehmaf of the GT pattern.

* Finally, Java output is generated by code templatex every different
implementation platform only these code templatagetto be replaced.

Note that the presented transformer plugin ger@ratpproach is implemented in
the VIATRA2 framework, which improves extensibiliand portability. In the rest of the
paper, we first provide a brief overview of the ratsdand transformations used in
VIATRAZ2 (in Sec.3). Then, the main part of the paper discusses €mn 4 the meta-
transformation developed for the PST generation foudises on the graph pattern



matching phase, as it is the most critical step foe performance of graph
transformation. Finally, Se&.concludes the paper.

3 Modelsand Transformationsin VIATRA?Z2

3.1 The VPM Metamodeling Language

Metamodeling is a fundamental part of model trarmsfdion design as it allows
the structural definition (i.e. abstract syntax) mbdeling languages. Metamodels are
represented in a metamodeling language, which @han modeling language for
capturing metamodels.

The VPM (Visual Precise Metamodelind)3, which is the metamodel language
of VIATRAZ2, consists of two basic elements: theityn{a generalization of MOF
package, class, or object) and the relation (argémation of MOF association end,
attribute, link end, slot). Entities represent basincepts of a (modeling) domain, while
relations represent the relationships between otiatel elements. Model elements are
arranged into a strict containment hierarchy, whiomstitute the VPM model space.
Within a container entity, each model element hasigue local name, but each model
element also has a globally unique identifier, \Wwhis called a fully qualified name
(FQN).

There are two special relationships between moldghents: thesupertypeOf
(inheritance, generalization) relation represenitay superclass-subclass relationships
(like the UML generalization concept), while tihestanceOf relation represents type-
instance relationships (between meta-levels). Bygusexplicit instanceOf relationship,
metamodels and models can be stored in the samel spate in a compact way.

3.2 Transformation Language

Transformation descriptions in VIATRAZ2 consist dfet combination of three
paradigms: (i) graph patterns, (ii) graph transfation (GT [/]) rules and (iii)) abstract
state machine (ASM4]).

Graph patterns

Graph patterns (referred as GT patterns) are tlniat units of model
transformations. They represent conditions (or traimgs) that have to be fulfilled by a
part of the model space in order to execute som@pulation steps on the model. A
model (i.e. part of the model space) can satistyaph pattern, if the pattern can be
matched to a subgraph of the model (by graph pattatching).

An example GT pattern is depicted in Fig.The GT pattern of Fig is fulfilled
if there exists a clagSSthat has an attributé and a parent clas3P.

CP:Class
P:parentT

CS:Class AcAttribute

¥

CAT attrs

Example pattern

Fig. 2. Example GT pattern



Graph transformation rules

While graph patterns define logical conditions iffiafas) on models, the
manipulation of models is defined by graph transfation rules, which heavily rely on
graph patterns for defining the application craerof transformation steps. The
application of a GT rule on a given model replaaesmage of its left-hand side (LHS)
pattern with an image of its right-hand side (Ri&jtern (following the single pushout
approach ).

The meta-model used for the graph transformatitesrin VIATRAZ2 framework
extends the core formalism by: (i) negative coodsi can be embedded into each other
in an arbitrary depth, (ii) supports the use of A8Nes in the action part of a GT rule,
and (iii) supports the notation of standalone Giguas.

The sample graph transformation rule in Bglefines a refactoring step, which
moves an attribute from the child to the parensxIdhis means that if the child class has
an attribute, it will be moved to its parent.

gtrliﬂe TiftAttrs(in CS) =

CP:Class Inew!
condition pattern cond (CS) F':parentT CAZ:attrs
C-|£lSS(CP)' CS:Class —ideli» A:Attribute
Class.attrs(P, CP, CS); CAl1 attrs
Class(CS);
Attribute(A); liftAttrsR(CS)

new class.attrs(CAl, CP, A);
del class.attrs(cA2, CS, A);

(a) code view (b) graph view
Fig. 3. The GT ruleliftAttrs

The rule contains a simple pattern (marked withway condition), that jointly
defines the left hand side (LHS) of the graph ti@msation rule, and the actions to be
carried out. Pattern elements marked with keywaw are created after a matching for
the LHS is found (and therefore, they do not pgrdite in the pattern matching), and
elements marked with keyword del are deleted attiern matching.

Control Structure

To control the execution order and the mode of l[yrapnsformation, abstract
state machinesd] are used. ASMs provide complex model transforamstiwith all the
necessary control structures including the sequenaperator feq), ASM rule
invocation €all), variable declarations and updatkst &ndupdate constructs)jf-then-
else structures, non-deterministically selecteéndom) and executed ruleshoose),
iterative execution (applying a rule as long asspus iterate), and the deterministic
parallel rule application at all possible matchin@scations) satisfying a condition
(forall).



4 Generation of PST with M eta-tr ansfor mations

To give an overview how the automatic PST genemagwocess can be
implemented over model transformations, three qotuedly critical fragments are
discussed in this section. The first example (ic.3el) shows how the type of the
elements in a GT pattern is determined by a comibmaf GT patterns and ASM rules
(using explicit instanceOf relations). The secordmeple (in Sec4.2) gives an overview
how the algorithms of the search plan generatienimplemented in the framework.
While the third (in Sec4.3) shows how the Java representation of relatiosoaation)
traversal is generated by a code template.

4.1 Processing the pattern elements of the graph transformation

Our approach is using generic model transformatmmshe graph pattern rules
presented as models in the VIATRA2 modelspace. Gempatterns in VIATRAZ2 use
explicit instanceOf relations, which denote type variables.

This approach of the PST generation consists ofGW@atterns
SearchPatternGraph, directType and they are called from an ASM rule
processGTPattern.

The meta-pattern Sear chPatternGraph

The patternSear chPatternGraph of Fig. 4 denotes that the PG is the pattern
graph of the GT pattern GTP. In the transformatimodel, the PatternGraph is
connected to th&TPattern through theBasicGTPatternBody (BGTPB) entity, along a
body and aoncretePattern relation.

//PG 15 the pattern graph

of GTP(GTPattern)

pattern aPatternGraph(GTP,PG) = GTP:GTPattern PG:PatternGraph
I 3

iGTPatte rn’ (GTP) ; \b_ud.y concretePatern

barosys BasicGTPatternBody BGTPB:BasicGTPatternBody

’GTPattern’.’BasicGTPatternBody’

."PatternGraph’ (PG); SearchPatternGraph(GTP, PG)

’GTPattern’.body(Bo,GTP,BGTPB);

J//relations _

’GTPattern’.’BasicGTPatternBody’

.concretePattern(Con,BGTPB, PG) (b) graph view

Graph GT pattern

The generic pattern directType

The patterrdirectType (depicted in Fig5) is used to return the direct type of the
input parameter X. The outer (positive) pattern anes the metamodel entity, which
represents the type of X by the explicistanceOf relation. The inner (negative) pattern
can be satisfied if the input entity T has a sulEl'yhich is connected to X by an
instanceOf relation. In this case the execution of the whiale is violated.



pattern directType(X, T) = Tentty K ﬁmgqg%Of

I//X 1s an ?ﬁgity of Type T
entity(X); .
ent1 ty (T) ; TInStaﬂEEOf - P
instanceof(x,T); X:entity SubPEatity
//T 1s not a type of X’s i : - -
J/supertypes | jﬁﬁff i

neg pattern hasSubType(T,X) =
{ direct Type(T .X)
entity(T);
entity(SubT);
supertypeof (T, SubT);
y instanceof (X, SubT);
(a) code view (b) graph view

Fig. 5. ThedirectType GT pattern
This generic pattern can handle several situatidmere essentially the same rule
pattern should be applied on objects of differgmies. The type variables used in the
pattern are instantiated by thestanceOf relation as concrete entities/relations from the
metamodel (similarly to ordinary pattern variables)

The ASM rule processGTPattern

The ASM ruleprocessGTPattern determines the direct type of the elements in the
graph pattern PG. Type entities must be under rthbatiparameteMetamodd in the
containment hierarchy, while PG is the pattern grapthe input parameter GT pattern
InGTPattern. The steps of the rule are the following:

0] The choose selects the pattern graph of the GT patte@TPattern with the
GT patternSearchPatternGraph and puts it into the variable PG.

(i) Theforall enumerates all the combinations of the elemenengin the scope
one by one and tries to match theectType GT pattern. If a part of the model
satisfies the pattern then its values are storediiablesX andT.

(i)  The ASM ruleprocessEntityBuildSG is called with parameters P& andT in
order to add this new element to the search grapedsT patteriPG.

The VIATRAZ2 transformation rule is as follows:

//GTPatternHolder holds the pattern, and MetaModel is the //metamodel of the
/rsentities used in the GTPattern(s)
rule processGTPattern(in InGTPattern, in MetaModel) = seq

//selects the GTPatternGraph below the input GTPattern
choose PG with find aPatternGraph(InGTPattern,PG) do
//selects the the type(T) in the Metamodel of the entity X
forall T below MetaModel, X in PG with
find directType(X, T) do

//processes the entity further and adds to the search graph
call processEntityBuildsG(PG,X,T);



4.2 Search plan evaluation

As the most critical step for the performance ajraph rewriting framework is
the graph pattern matching phase, our approach losed search algorithms for
evaluating the traversal order of the pattern mathA weighted search graph is a
directed graph with numeric weights on its edgesjirilg a starting node connected to
each other node with an edge. A search tree isaangmy tree of the weighted search
graph. As the starting node has no incoming edaglesther nodes should be reachable
on a directed path from the starting node. A septah is one possible traversal of a
search tree. A traversal defines a sequence invddges are traversed.

The Java code representation of the optimized tsaVerder is also generated by
model transformation, which consist of three phases

(1) In the first phase, a weighted search graph is rgéee@ from the input GT
pattern also taking into account all constraintd/&M entities of the pattern.

(i) By using Chu-Liu and Edmonds algorithrs,] combined with a simple
greedy algorithm, a low cost search plan is catedla

(i)  Finally, Java code is generated based on the s@daoh(discussed later in
Sec4.3).

As abstract state machines are widely used to faenaalgorithms 10|, is
straightforward to implement them in VIATRAZ2. Thellbwing example demonstrates
this on the well known greedy algorithm used ingbarch plan evaluation to select a low
cost search plan from a search tree.

Simple greedy algorithm.

Initially, the list P consists only the starting node. The algorithmpéjnselects
the smallest edge that goes out from the seargbhgnades that are already ) and
adds the target of the selected edge as the &maeal ofP.

Theiterate choose construct selects the smallest edge that leadihgfd, by
using the ASM functiomodes andvalues to store the edge with the smallest
weight. Then the secorathoose selects the target node of the edge and adds
it to P by setting the value of the nodeRoThe recursion terminates when

the counter of nodes reaches the number of the nodes in the search grap
(stored in the ASM function values).

//SG 7s the spanning tree of the search graph
rule sPlan(in SG) = seq {
update values("Min") = 1nf1n1te i //Tnit values
update nodes("MinEdge") = "-1";
//selecting the lowest we7ghted edge
iterate choose No below SG, NextNode below SG, Edge below SG, Owe
below SG w1thf1nd(searchP1an(No NextNode, Edge owe)) do
//checking the edge values, smaller then min and not in P
if((value(owe) < values("Min") && value(NextNode)!="P") seq
{update values("Min") = value(Owe);
update nodes("MinEdge") = Edge; //weights are updated

// u,t;date the value of the element by P
choose No below SG, NextNode below SG, Owe below SG



with find(searchPlan(No,NextNode,nodes("MinEdge"))) do seq
{setvalue(NextNode, "P"); //it 7s now part of the ’list’ P
update values("searchplan") = values("searchplan")+1;

if(values("searchPlan") != values("nodeMaxNumber'))
call sPlan(sG); //recurvise call

4.3 Source code generation

In this section, we propose a source code genaragchnique for model
transformer plugins in Java based on VIATRAZ2 casgtaplates. The template concept is
similar to the one introduced in the Apache Velp¢it] language, but uses the formal
ASM and GT paradigms as its control language wlosistructs can be referred by the
#() notation.

As an example, we use the template prietTraversalArb, which generates the
Java equivalent of a simple traversal of a relatioth arbitrary multiplicity. In case of
arbitrary multiplicity in the traversed directiorone-to-many or many-to-many), an
iterator is generated to investigate all possible contionat

The input of the template is the sour8eufce) and targetTarget) entities of the
relation, the typeType) of the target element, the name of the relatiRRebation) and the
next (Next) element in the traversal order. The ASM functi@me returns the name of
the model element. The steps of the traversal
order are processed recursively by calling the A&l processNextStep in order to
generate the Java equivalents of internal code&bloc

//code generation the traversal of a relation with arbitrary
multiplicity
template printTraversalArb(in Target, in Source, in Relation,in
Type, in Next)= {
Iterator iter_#(name(Target))=
#(name(Source)) .get#(name(Relation)) () .iterator();
whi}e(iter_#(name(Target)).hasNext()){
try
I#(name(Type)) #(name(Target)) =
(I#(name(Type))) iter_#(name(Target)).next();

ss/call recursively the next step in the order of
J/traversal
#(call processNextStep(Next);)

} catch (ClassCastException e) {} }

5 Conclusion

In the current paper, we proposed to use genedcnagta-transformations for
generating platform-specific transformer plugin®nfr transformation specifications
given by the combination of graph transformatiolesuand abstract state machines in the
VIATRAZ framework.

The main advantage of our approach is reusabiityy final code generation
templates need to be altered when porting plugirgher object oriented languages. Up
to now, we have a complete implementation for Jéwda, we plan to port the plugin



transformers to other underlying platforms (e.digse Model Framework, EMF) and to
perform numeric measurements on the transformers.

Experimental evaluation of the generated transfonphggins was carried out in
[2] using Enterprise Java Beans 3P4ds the underlying plugin technology.

The generated transformer plugins were able tolbgretsistent models stored in
relational databases with several million grapleots. A next challenge for the future is
to integrate transformer plugins to the VIATRAZ2 rfrawork itself. After successful
integration, an optimized compiled version of natidava transformations can be
executed instead of the interpreted version.
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