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Abstract: 
The current paper presents a new approach using generic and meta-transformations 
for generating platform-specific transformer plugins from model transformation specifications 
defined by a combination of graph transformation and abstract state machine rules (as used within 
the VIATRA2 framework). The essence of the approach is to store transformation rules as 
ordinary models in the model space, which can be processed later by the meta-transformations, 
which generates the Java transformer plugin. These meta rules highly rely on generic patterns (i.e. 
patterns with type parameters), which provide high-level reuse of basic transformation elements. 
Graph algorithms used for search plan generation are integrated as abstract state machines, while 
the final code generation step is carried out by code templates. As a result, the porting of a 
transformer plugin to a new underlying platform can be accelerated significantly. 
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1 Introduction 
 

Nowadays, model-driven system development [3] (MDSD) is an emerging 
paradigm in software development. A main challenge for MDSD is accommodate to the 
accelerating changes of business and technology. Based on high-level model standards 
(such as the Unified Modeling Language – UML [12]), MDSD separates business and 
application logic from underlying platform technology. Platform-independent models 
(PIM) capture the core business functionality independently from the underlying 
implementation technology, which are incorporated later on in platform-specific models 
(PSM). The source code of the system under design is generated afterwards from such 
platform-specific models. The success of the MDSD highly depends on automated model 
transformations (MT), which generate PSMs from PIMs, and executable source code 
from PSMs. 

In MDSD, models are frequently captured by a graph structure, and the 
transformations are specified as graph transformations. Informally, a graph 
transformation (GT [11,7]) rule performs local manipulation on graph models by finding 



a matching of the pattern prescribed by its left-hand side (LHS) graph in the model, and 
changing it according to the right-hand side (RHS) graph. 

The main objective of the VIATRA2 (VIsual Automated model 
TRAnsformations) framework developed at the Department of Measurement and 
Information Systems at Budapest University of Technology and Economics is to provide 
a general-purpose support for the entire life-cycle of engineering model transformations 
including the specification, design, execution, validation and maintenance of 
transformations within and between various modeling languages and domains. Since 
September 2005, VIATRA2 is part of the Eclipse Generative Modeling Tools subproject. 

Advanced model transformation tools frequently aim at separating the design of a 
transformation from its execution by using high-level model transformation rules in 
design time and deriving executable platform-specific transformer plugins from these 
high level models. The role of design-time transformation frameworks (also called as 
platform independent transformers PIT) is to ease the development of model 
transformations, while the role of compiled standalone versions of a model 
transformation (Platform (language) specific transformers (PST)) in an underlying 
platform (e.g. Java) are more efficient from runtime performance aspects. 

Code generators deriving the standalone transformers, are typically implemented 
in a standard programming language for specific model transformations, thus, it is 
difficult to reuse existing code generators to different platforms with conceptual 
similarities (e.g. from Java to Enterprise Java Beans) or to integrate them into other MT 
tools. 

The current paper presents a new approach using generic and meta-
transformations [14] for generating platform-specific transformer plugins from model 
transformation specifications defined by a combination of graph transformation and 
abstract state machine rules (as used within the VIATRA2 framework). 

The essence of the approach is to store transformation rules as ordinary models in 
the model space, which can be processed later by the meta-transformations, which 
generates the standalone Java transformer plugin. These meta rules highly rely on generic 
patterns (i.e. patterns with type parameters), which provide high-level reuse of basic 
transformation elements. Graph algorithms used for search plan generation are integrated 
as abstract state machines, while the final code generation step is carried out by code 
templates. 

As a result, the porting of a transformer plugin to a new underlying platform can 
be accelerated significantly. 

 

2 Overview of the approach 
 
The proposed workflow of the meta-transformation for PST generation is summarized in 
Fig. 1. 



Fig. 1. Overview of the meta-transformation based generation 
 

In VIATRA2, transformations can be defined by the combination of graph 
transformation (GT [7]) and abstract state machines (ASM [4]). The Transformation 
(XForm) metamodel (to be discussed in details in Sec. 3.2) consists of an ASM part for 
control structures and a graph transformation part for 
elementary model manipulation. 

The steps of the plugin generator transformation are the following:  
 

•  As ASM and GT rules are processed differently, we separate them in the first 
step. Since ASM rules are (semantically) very close to traditional high-level 
programming language constructs, their handling is not discussed. 

 

•  GT rules are processed in two substeps. The LHS of the rule should be handled as 
a GT pattern, while the action part described by the difference of RHS and LHS 
(and potentially additional ASM rules). 

 

•  For each pattern call initiating a graph pattern matching process, different search 
graphs are generated. (See [15] for a detailed discussion of search graph 
generation.) 

 
• An optimized search plan (i.e. the traversal order of pattern nodes) is generated 

for every search graph in order to sequence the matching of the GT pattern. 
 

• Finally, Java output is generated by code templates. For every different 
implementation platform only these code templates have to be replaced. 

 
Note that the presented transformer plugin generation approach is implemented in 

the VIATRA2 framework, which improves extensibility and portability. In the rest of the 
paper, we first provide a brief overview of the models and transformations used in 
VIATRA2 (in Sec. 3). Then, the main part of the paper discusses (in Sec. 4) the meta-
transformation developed for the PST generation and focuses on the graph pattern 



matching phase, as it is the most critical step for the performance of graph 
transformation. Finally, Sec. 5 concludes the paper. 

3 Models and Transformations in VIATRA2 

3.1 The VPM Metamodeling Language 
Metamodeling is a fundamental part of model transformation design as it allows 

the structural definition (i.e. abstract syntax) of modeling languages. Metamodels are 
represented in a metamodeling language, which is another modeling language for 
capturing metamodels. 

The VPM (Visual Precise Metamodeling) [13], which is the metamodel language 
of VIATRA2, consists of two basic elements: the entity (a generalization of MOF 
package, class, or object) and the relation (a generalization of MOF association end, 
attribute, link end, slot). Entities represent basic concepts of a (modeling) domain, while 
relations represent the relationships between other model elements. Model elements are 
arranged into a strict containment hierarchy, which constitute the VPM model space. 
Within a container entity, each model element has a unique local name, but each model 
element also has a globally unique identifier, which is called a fully qualified name 
(FQN). 

There are two special relationships between model elements: the supertypeOf 
(inheritance, generalization) relation represents binary superclass-subclass relationships 
(like the UML generalization concept), while the instanceOf relation represents type-
instance relationships (between meta-levels). By using explicit instanceOf relationship, 
metamodels and models can be stored in the same model space in a compact way. 

3.2 Transformation Language 
Transformation descriptions in VIATRA2 consist of the combination of three 

paradigms: (i) graph patterns, (ii) graph transformation (GT [7]) rules and (iii) abstract 
state machine (ASM [4]).  

Graph patterns 
Graph patterns (referred as GT patterns) are the atomic units of model 

transformations. They represent conditions (or constraints) that have to be fulfilled by a 
part of the model space in order to execute some manipulation steps on the model. A 
model (i.e. part of the model space) can satisfy a graph pattern, if the pattern can be 
matched to a subgraph of the model (by graph pattern matching). 

An example GT pattern is depicted in Fig. 2. The GT pattern of Fig. 2 is fulfilled 
if there exists a class CS that has an attribute A and a parent class CP. 

 
Fig. 2. Example GT pattern 



Graph transformation rules 
While graph patterns define logical conditions (formulas) on models, the 

manipulation of models is defined by graph transformation rules, which heavily rely on 
graph patterns for defining the application criteria of transformation steps. The 
application of a GT rule on a given model replaces an image of its left-hand side (LHS) 
pattern with an image of its right-hand side (RHS) pattern (following the single pushout 
approach [8]). 

The meta-model used for the graph transformation rules in VIATRA2 framework 
extends the core formalism by: (i) negative conditions can be embedded into each other 
in an arbitrary depth, (ii) supports the use of ASM rules in the action part of a GT rule, 
and (iii) supports the notation of standalone GT patterns. 

The sample graph transformation rule in Fig. 3 defines a refactoring step, which 
moves an attribute from the child to the parent class. This means that if the child class has 
an attribute, it will be moved to its parent. 

 
 
 
 
 
 

(a) code view      (b) graph view 
Fig. 3. The GT rule liftAttrs 

 
The rule contains a simple pattern (marked with keyword condition), that jointly 

defines the left hand side (LHS) of the graph transformation rule, and the actions to be 
carried out. Pattern elements marked with keyword new are created after a matching for 
the LHS is found (and therefore, they do not participate in the pattern matching), and 
elements marked with keyword del are deleted after pattern matching. 

Control Structure 
To control the execution order and the mode of graph transformation, abstract 

state machines [4] are used. ASMs provide complex model transformations with all the 
necessary control structures including the sequencing operator (seq), ASM rule 
invocation (call), variable declarations and updates (let and update constructs), if-then-
else structures, non-deterministically selected (random) and executed rules (choose), 
iterative execution (applying a rule as long as possible iterate), and the deterministic 
parallel rule application at all possible matchings (locations) satisfying a condition 
(forall). 

 

gtrule liftAttrs(in CS) = 
   { 
       condition pattern cond (CS) 
= 
       { 

Class(CP); 
Class.attrs(P, CP, CS);  
Class(CS); 
Attribute(A); 
new class.attrs(CA1, CP, A); 
del class.attrs(CA2, CS, A); 

      } 
} 
 



4 Generation of PST with Meta-transformations 
 
To give an overview how the automatic PST generation process can be 

implemented over model transformations, three conceptually critical fragments are 
discussed in this section. The first example (in Sec. 4.1) shows how the type of the 
elements in a GT pattern is determined by a combination of GT patterns and ASM rules 
(using explicit instanceOf relations). The second example (in Sec. 4.2) gives an overview 
how the algorithms of the search plan generation are implemented in the framework. 
While the third (in Sec. 4.3) shows how the Java representation of relation (association) 
traversal is generated by a code template. 

4.1 Processing the pattern elements of the graph transformation 
Our approach is using generic model transformations on the graph pattern rules 

presented as models in the VIATRA2 modelspace. Generic patterns in VIATRA2 use 
explicit instanceOf relations, which denote type variables. 

This approach of the PST generation consists of two GT patterns  
SearchPatternGraph, directType and they are called from an ASM rule 
processGTPattern.  

The meta-pattern SearchPatternGraph 
The pattern SearchPatternGraph of Fig. 4 denotes that the PG is the pattern 

graph of the GT pattern GTP. In the transformation model, the PatternGraph is 
connected to the GTPattern through the BasicGTPatternBody (BGTPB) entity, along a 
body and a concretePattern relation. 

 
 
 

 (a) code view      (b) graph view 
Fig. 4. The SearchPatternGraph GT pattern 

The generic pattern directType 
The pattern directType (depicted in Fig. 5) is used to return the direct type of the 

input parameter X. The outer (positive) pattern matches the metamodel entity, which 
represents the type of X by the explicit instanceOf relation. The inner (negative) pattern 
can be satisfied if the input entity T has a subType, which is connected to X by an 
instanceOf relation. In this case the execution of the whole rule is violated. 

//PG is the pattern graph  
of GTP(GTPattern) 
pattern aPatternGraph(GTP,PG) = 
{  
’GTPattern’(GTP); 
’GTPattern’.’BasicGTPatternBody’ 
(BGTPB); 
’GTPattern’.’BasicGTPatternBody’ 
.’PatternGraph’(PG); 
’GTPattern’.body(Bo,GTP,BGTPB); 
//relations 
’GTPattern’.’BasicGTPatternBody’ 
.concretePattern(Con,BGTPB,PG) 
} 
 



 
 
 
 
 
 

(a) code view      (b) graph view 
Fig. 5. The directType GT pattern 

This generic pattern can handle several situations where essentially the same rule 
pattern should be applied on objects of different types. The type variables used in the 
pattern are instantiated by the instanceOf relation as concrete entities/relations from the 
metamodel (similarly to ordinary pattern variables). 

The ASM rule processGTPattern 
The ASM rule processGTPattern determines the direct type of the elements in the 

graph pattern PG. Type entities must be under the input parameter Metamodel in the 
containment hierarchy, while PG is the pattern graph of the input parameter GT pattern 
InGTPattern. The steps of the rule are the following: 

(i) The choose selects the pattern graph of the GT pattern InGTPattern with the 
GT pattern SearchPatternGraph and puts it into the variable PG. 

(ii)  The forall enumerates all the combinations of the elements given in the scope 
one by one and tries to match the directType GT pattern. If a part of the model 
satisfies the pattern then its values are stored in variables X and T. 

(iii)  The ASM rule processEntityBuildSG is called with parameters PG, X and T in 
order to add this new element to the search graph of the GT pattern PG. 

The VIATRA2 transformation rule is as follows: 
 
//GTPatternHolder holds the pattern, and MetaModel is the //metamodel of the 
//entities used in the GTPattern(s) 
rule processGTPattern(in InGTPattern, in MetaModel) = seq 
{ 
//selects the GTPatternGraph below the input GTPattern 
choose PG with find aPatternGraph(InGTPattern,PG) do 
//selects the the type(T) in the Metamodel of the entity X 

forall T below MetaModel, X in PG with  
find directType(X, T) do 
 
//processes the entity further and adds to the search graph 

call processEntityBuildSG(PG,X,T); 
} 

pattern directType(X, T) = 
{//X is an entity of Type T 

entity(X); 
entity(T); 
instanceOf(X,T); 
//T is not a type of X’s 
//supertypes 
neg pattern hasSubType(T,X) = 
{ 
   entity(T); 
   entity(SubT); 
   supertypeOf(T, SubT); 
   instanceOf(X,SubT); 
} 

}



4.2 Search plan evaluation 
As the most critical step for the performance of a graph rewriting framework is 

the graph pattern matching phase, our approach uses local search algorithms for 
evaluating the traversal order of the pattern matching. A weighted search graph is a 
directed graph with numeric weights on its edges, having a starting node connected to 
each other node with an edge. A search tree is a spanning tree of the weighted search 
graph. As the starting node has no incoming edges, all other nodes should be reachable 
on a directed path from the starting node. A search plan is one possible traversal of a 
search tree. A traversal defines a sequence in which edges are traversed. 

The Java code representation of the optimized traversal order is also generated by 
model transformation, which consist of three phases: 

 
(i) In the first phase, a weighted search graph is generated from the input GT 

pattern also taking into account all constraints on VPM entities of the pattern. 
(ii)  By using Chu-Liu and Edmonds algorithm [5,6] combined with a simple 

greedy algorithm, a low cost search plan is calculated.  
(iii)  Finally, Java code is generated based on the search plan (discussed later in 

Sec. 4.3). 
 

As abstract state machines are widely used to formalize algorithms [10], is 
straightforward to implement them in VIATRA2. The following example demonstrates 
this on the well known greedy algorithm used in the search plan evaluation to select a low 
cost search plan from a search tree. 
 
Simple greedy algorithm. 

Initially, the list P consists only the starting node. The algorithm simply selects 
the smallest edge that goes out from the search graph nodes that are already in P, and 
adds the target of the selected edge as the last element of P. 
The iterate choose construct selects the smallest edge that leading out of P, by 
using the ASM function nodes and values to store the edge with the smallest 
weight. Then the second choose selects the target node of the edge and adds 
it to P by setting the value of the node to P. The recursion terminates when 
the counter of nodes in P reaches the number of the nodes in the search graph 
(stored in the ASM function values). 
 
//SG is the spanning tree of the search graph 
rule sPlan(in SG) = seq { 
  update values("Min") = "infinite"; //init values 
  update nodes("MinEdge") = "-1"; 
  //selecting the lowest weighted edge 
iterate choose No below SG, NextNode below SG, Edge below SG, Owe 
    below SG withfind(searchPlan(No,NextNode,Edge,Owe)) do 

//checking the edge values, smaller then Min and not in P 
if((value(Owe) < values("Min") && value(NextNode)!="P") seq 
{update values("Min") = value(Owe); 
update nodes("MinEdge") = Edge; //weights are updated 
}; 

  // update the value of the element by P 
  choose No below SG, NextNode below SG, Owe below SG 



   with find(searchPlan(No,NextNode,nodes("MinEdge"))) do seq 
   {setValue(NextNode, "P"); //it is now part of the ’list’ P 
   update values("searchPlan") = values("searchPlan")+1; 
   } 
  if(values("searchPlan") != values("nodeMaxNumber")) 
  call sPlan(SG); //recurvise call 
} 

4.3 Source code generation 
In this section, we propose a source code generation technique for model 

transformer plugins in Java based on VIATRA2 code templates. The template concept is 
similar to the one introduced in the Apache Velocity [1] language, but uses the formal 
ASM and GT paradigms as its control language whose constructs can be referred by the 
#() notation. 

As an example, we use the template rule printTraversalArb, which generates the 
Java equivalent of a simple traversal of a relation with arbitrary multiplicity. In case of 
arbitrary multiplicity in the traversed direction (one-to-many or many-to-many), an 
iterator is generated to investigate all possible continuations. 

The input of the template is the source (Source) and target (Target) entities of the 
relation, the type (Type) of the target element, the name of the relation (Relation) and the 
next (Next) element in the traversal order. The ASM function name returns the name of 
the model element. The steps of the traversal 
order are processed recursively by calling the ASM rule processNextStep in order to 
generate the Java equivalents of internal code blocks. 
 
//code generation the traversal of a relation with arbitrary 
multiplicity 
template printTraversalArb(in Target, in Source, in Relation,in 
Type, in Next)= { 
Iterator iter_#(name(Target))= 
#(name(Source)).get#(name(Relation))().iterator(); 

while(iter_#(name(Target)).hasNext()){ 
try{ 

I#(name(Type)) #(name(Target)) = 
(I#(name(Type))) iter_#(name(Target)).next(); 
 

//call recursively the next step in the order of 
//traversal 
#(call processNextStep(Next);) 

} catch (ClassCastException e) {} } 
} 

5 Conclusion 
 
In the current paper, we proposed to use generic and meta-transformations for 

generating platform-specific transformer plugins from transformation specifications 
given by the combination of graph transformation rules and abstract state machines in the 
VIATRA2 framework. 

The main advantage of our approach is reusability: only final code generation 
templates need to be altered when porting plugins to other object oriented languages. Up 
to now, we have a complete implementation for Java, but we plan to port the plugin 



transformers to other underlying platforms (e.g, Eclipse Model Framework, EMF) and to 
perform numeric measurements on the transformers. 

Experimental evaluation of the generated transformer plugins was carried out in 
[2] using Enterprise Java Beans 3.0 [9] as the underlying plugin technology. 

The generated transformer plugins were able to handle persistent models stored in 
relational databases with several million graph objects. A next challenge for the future is 
to integrate transformer plugins to the VIATRA2 framework itself. After successful 
integration, an optimized compiled version of native Java transformations can be 
executed instead of the interpreted version. 
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