
Automatic generation of platform-specific
transformation

Ákos Horváth, Dániel Varró
Department of Measurement and Information Systems
Budapest University of Technology and Economics

H-1521 Budapest, Magyar tudósok körútja 2., Hungary
ha442@hszk.bme.hu, varro@mit.bme.hu

Gergely Varró
Department of Computer Science and Information Theory

Budapest University of Technology and Economics
H-1521 Budapest, Magyar tudósok körútja 2., Hungary

gervarro@szit.bme.hu

Abstract:
The current paper presents a new approach using generic and meta-transformations
for generating platform-specific transformer plugins from model transformation specifications
defined by a combination of graph transformation and abstract state machine rules (as used within
the VIATRA2 framework). The essence of the approach is to store transformation rules as
ordinary models in the model space, which can be processed later by the meta-transformations,
which generates the Java transformer plugin. These meta rules highly rely on generic patterns (i.e.
patterns with type parameters), which provide high-level reuse of basic transformation elements.
Graph algorithms used for search plan generation are integrated as abstract state machines, while
the final code generation step is carried out by code templates. As a result, the porting of a
transformer plugin to a new underlying platform can be accelerated significantly.

Key words: meta-transformation, generic transformation, code generation

1 Introduction

Nowadays, model-driven system development [3] (MDSD) is an emerging
paradigm in software development. A main challenge for MDSD is accommodate to the
accelerating changes of business and technology. Based on high-level model standards
(such as the Unified Modeling Language – UML [12]), MDSD separates business and
application logic from underlying platform technology. Platform-independent models
(PIM) capture the core business functionality independently from the underlying
implementation technology, which are incorporated later on in platform-specific models
(PSM). The source code of the system under design is generated afterwards from such
platform-specific models. The success of the MDSD highly depends on automated model
transformations (MT), which generate PSMs from PIMs, and executable source code
from PSMs.

In MDSD, models are frequently captured by a graph structure, and the
transformations are specified as graph transformations. Informally, a graph
transformation (GT [11,7]) rule performs local manipulation on graph models by finding

a matching of the pattern prescribed by its left-hand side (LHS) graph in the model, and
changing it according to the right-hand side (RHS) graph.

The main objective of the VIATRA2 (VIsual Automated model
TRAnsformations) framework developed at the Department of Measurement and
Information Systems at Budapest University of Technology and Economics is to provide
a general-purpose support for the entire life-cycle of engineering model transformations
including the specification, design, execution, validation and maintenance of
transformations within and between various modeling languages and domains. Since
September 2005, VIATRA2 is part of the Eclipse Generative Modeling Tools subproject.

Advanced model transformation tools frequently aim at separating the design of a
transformation from its execution by using high-level model transformation rules in
design time and deriving executable platform-specific transformer plugins from these
high level models. The role of design-time transformation frameworks (also called as
platform independent transformers PIT) is to ease the development of model
transformations, while the role of compiled standalone versions of a model
transformation (Platform (language) specific transformers (PST)) in an underlying
platform (e.g. Java) are more efficient from runtime performance aspects.

Code generators deriving the standalone transformers, are typically implemented
in a standard programming language for specific model transformations, thus, it is
difficult to reuse existing code generators to different platforms with conceptual
similarities (e.g. from Java to Enterprise Java Beans) or to integrate them into other MT
tools.

The current paper presents a new approach using generic and meta-
transformations [14] for generating platform-specific transformer plugins from model
transformation specifications defined by a combination of graph transformation and
abstract state machine rules (as used within the VIATRA2 framework).

The essence of the approach is to store transformation rules as ordinary models in
the model space, which can be processed later by the meta-transformations, which
generates the standalone Java transformer plugin. These meta rules highly rely on generic
patterns (i.e. patterns with type parameters), which provide high-level reuse of basic
transformation elements. Graph algorithms used for search plan generation are integrated
as abstract state machines, while the final code generation step is carried out by code
templates.

As a result, the porting of a transformer plugin to a new underlying platform can
be accelerated significantly.

2 Overview of the approach

The proposed workflow of the meta-transformation for PST generation is summarized in
Fig. 1.

Fig. 1. Overview of the meta-transformation based generation

In VIATRA2, transformations can be defined by the combination of graph
transformation (GT [7]) and abstract state machines (ASM [4]). The Transformation
(XForm) metamodel (to be discussed in details in Sec. 3.2) consists of an ASM part for
control structures and a graph transformation part for
elementary model manipulation.

The steps of the plugin generator transformation are the following:

• As ASM and GT rules are processed differently, we separate them in the first
step. Since ASM rules are (semantically) very close to traditional high-level
programming language constructs, their handling is not discussed.

• GT rules are processed in two substeps. The LHS of the rule should be handled as
a GT pattern, while the action part described by the difference of RHS and LHS
(and potentially additional ASM rules).

• For each pattern call initiating a graph pattern matching process, different search
graphs are generated. (See [15] for a detailed discussion of search graph
generation.)

• An optimized search plan (i.e. the traversal order of pattern nodes) is generated

for every search graph in order to sequence the matching of the GT pattern.

• Finally, Java output is generated by code templates. For every different
implementation platform only these code templates have to be replaced.

Note that the presented transformer plugin generation approach is implemented in

the VIATRA2 framework, which improves extensibility and portability. In the rest of the
paper, we first provide a brief overview of the models and transformations used in
VIATRA2 (in Sec. 3). Then, the main part of the paper discusses (in Sec. 4) the meta-
transformation developed for the PST generation and focuses on the graph pattern

matching phase, as it is the most critical step for the performance of graph
transformation. Finally, Sec. 5 concludes the paper.

3 Models and Transformations in VIATRA2

3.1 The VPM Metamodeling Language
Metamodeling is a fundamental part of model transformation design as it allows

the structural definition (i.e. abstract syntax) of modeling languages. Metamodels are
represented in a metamodeling language, which is another modeling language for
capturing metamodels.

The VPM (Visual Precise Metamodeling) [13], which is the metamodel language
of VIATRA2, consists of two basic elements: the entity (a generalization of MOF
package, class, or object) and the relation (a generalization of MOF association end,
attribute, link end, slot). Entities represent basic concepts of a (modeling) domain, while
relations represent the relationships between other model elements. Model elements are
arranged into a strict containment hierarchy, which constitute the VPM model space.
Within a container entity, each model element has a unique local name, but each model
element also has a globally unique identifier, which is called a fully qualified name
(FQN).

There are two special relationships between model elements: the supertypeOf
(inheritance, generalization) relation represents binary superclass-subclass relationships
(like the UML generalization concept), while the instanceOf relation represents type-
instance relationships (between meta-levels). By using explicit instanceOf relationship,
metamodels and models can be stored in the same model space in a compact way.

3.2 Transformation Language
Transformation descriptions in VIATRA2 consist of the combination of three

paradigms: (i) graph patterns, (ii) graph transformation (GT [7]) rules and (iii) abstract
state machine (ASM [4]).

Graph patterns
Graph patterns (referred as GT patterns) are the atomic units of model

transformations. They represent conditions (or constraints) that have to be fulfilled by a
part of the model space in order to execute some manipulation steps on the model. A
model (i.e. part of the model space) can satisfy a graph pattern, if the pattern can be
matched to a subgraph of the model (by graph pattern matching).

An example GT pattern is depicted in Fig. 2. The GT pattern of Fig. 2 is fulfilled
if there exists a class CS that has an attribute A and a parent class CP.

Fig. 2. Example GT pattern

Graph transformation rules
While graph patterns define logical conditions (formulas) on models, the

manipulation of models is defined by graph transformation rules, which heavily rely on
graph patterns for defining the application criteria of transformation steps. The
application of a GT rule on a given model replaces an image of its left-hand side (LHS)
pattern with an image of its right-hand side (RHS) pattern (following the single pushout
approach [8]).

The meta-model used for the graph transformation rules in VIATRA2 framework
extends the core formalism by: (i) negative conditions can be embedded into each other
in an arbitrary depth, (ii) supports the use of ASM rules in the action part of a GT rule,
and (iii) supports the notation of standalone GT patterns.

The sample graph transformation rule in Fig. 3 defines a refactoring step, which
moves an attribute from the child to the parent class. This means that if the child class has
an attribute, it will be moved to its parent.

(a) code view (b) graph view
Fig. 3. The GT rule liftAttrs

The rule contains a simple pattern (marked with keyword condition), that jointly

defines the left hand side (LHS) of the graph transformation rule, and the actions to be
carried out. Pattern elements marked with keyword new are created after a matching for
the LHS is found (and therefore, they do not participate in the pattern matching), and
elements marked with keyword del are deleted after pattern matching.

Control Structure
To control the execution order and the mode of graph transformation, abstract

state machines [4] are used. ASMs provide complex model transformations with all the
necessary control structures including the sequencing operator (seq), ASM rule
invocation (call), variable declarations and updates (let and update constructs), if-then-
else structures, non-deterministically selected (random) and executed rules (choose),
iterative execution (applying a rule as long as possible iterate), and the deterministic
parallel rule application at all possible matchings (locations) satisfying a condition
(forall).

gtrule liftAttrs(in CS) =
 {
 condition pattern cond (CS)
=
 {

Class(CP);
Class.attrs(P, CP, CS);
Class(CS);
Attribute(A);
new class.attrs(CA1, CP, A);
del class.attrs(CA2, CS, A);

 }
}

4 Generation of PST with Meta-transformations

To give an overview how the automatic PST generation process can be

implemented over model transformations, three conceptually critical fragments are
discussed in this section. The first example (in Sec. 4.1) shows how the type of the
elements in a GT pattern is determined by a combination of GT patterns and ASM rules
(using explicit instanceOf relations). The second example (in Sec. 4.2) gives an overview
how the algorithms of the search plan generation are implemented in the framework.
While the third (in Sec. 4.3) shows how the Java representation of relation (association)
traversal is generated by a code template.

4.1 Processing the pattern elements of the graph transformation
Our approach is using generic model transformations on the graph pattern rules

presented as models in the VIATRA2 modelspace. Generic patterns in VIATRA2 use
explicit instanceOf relations, which denote type variables.

This approach of the PST generation consists of two GT patterns
SearchPatternGraph, directType and they are called from an ASM rule
processGTPattern.

The meta-pattern SearchPatternGraph
The pattern SearchPatternGraph of Fig. 4 denotes that the PG is the pattern

graph of the GT pattern GTP. In the transformation model, the PatternGraph is
connected to the GTPattern through the BasicGTPatternBody (BGTPB) entity, along a
body and a concretePattern relation.

 (a) code view (b) graph view
Fig. 4. The SearchPatternGraph GT pattern

The generic pattern directType
The pattern directType (depicted in Fig. 5) is used to return the direct type of the

input parameter X. The outer (positive) pattern matches the metamodel entity, which
represents the type of X by the explicit instanceOf relation. The inner (negative) pattern
can be satisfied if the input entity T has a subType, which is connected to X by an
instanceOf relation. In this case the execution of the whole rule is violated.

//PG is the pattern graph
of GTP(GTPattern)
pattern aPatternGraph(GTP,PG) =
{
’GTPattern’(GTP);
’GTPattern’.’BasicGTPatternBody’
(BGTPB);
’GTPattern’.’BasicGTPatternBody’
.’PatternGraph’(PG);
’GTPattern’.body(Bo,GTP,BGTPB);
//relations
’GTPattern’.’BasicGTPatternBody’
.concretePattern(Con,BGTPB,PG)
}

(a) code view (b) graph view
Fig. 5. The directType GT pattern

This generic pattern can handle several situations where essentially the same rule
pattern should be applied on objects of different types. The type variables used in the
pattern are instantiated by the instanceOf relation as concrete entities/relations from the
metamodel (similarly to ordinary pattern variables).

The ASM rule processGTPattern
The ASM rule processGTPattern determines the direct type of the elements in the

graph pattern PG. Type entities must be under the input parameter Metamodel in the
containment hierarchy, while PG is the pattern graph of the input parameter GT pattern
InGTPattern. The steps of the rule are the following:

(i) The choose selects the pattern graph of the GT pattern InGTPattern with the
GT pattern SearchPatternGraph and puts it into the variable PG.

(ii) The forall enumerates all the combinations of the elements given in the scope
one by one and tries to match the directType GT pattern. If a part of the model
satisfies the pattern then its values are stored in variables X and T.

(iii) The ASM rule processEntityBuildSG is called with parameters PG, X and T in
order to add this new element to the search graph of the GT pattern PG.

The VIATRA2 transformation rule is as follows:

//GTPatternHolder holds the pattern, and MetaModel is the //metamodel of the
//entities used in the GTPattern(s)
rule processGTPattern(in InGTPattern, in MetaModel) = seq
{
//selects the GTPatternGraph below the input GTPattern
choose PG with find aPatternGraph(InGTPattern,PG) do
//selects the the type(T) in the Metamodel of the entity X

forall T below MetaModel, X in PG with
find directType(X, T) do

//processes the entity further and adds to the search graph

call processEntityBuildSG(PG,X,T);
}

pattern directType(X, T) =
{//X is an entity of Type T

entity(X);
entity(T);
instanceOf(X,T);
//T is not a type of X’s
//supertypes
neg pattern hasSubType(T,X) =
{
 entity(T);
 entity(SubT);
 supertypeOf(T, SubT);
 instanceOf(X,SubT);
}

}

4.2 Search plan evaluation
As the most critical step for the performance of a graph rewriting framework is

the graph pattern matching phase, our approach uses local search algorithms for
evaluating the traversal order of the pattern matching. A weighted search graph is a
directed graph with numeric weights on its edges, having a starting node connected to
each other node with an edge. A search tree is a spanning tree of the weighted search
graph. As the starting node has no incoming edges, all other nodes should be reachable
on a directed path from the starting node. A search plan is one possible traversal of a
search tree. A traversal defines a sequence in which edges are traversed.

The Java code representation of the optimized traversal order is also generated by
model transformation, which consist of three phases:

(i) In the first phase, a weighted search graph is generated from the input GT

pattern also taking into account all constraints on VPM entities of the pattern.
(ii) By using Chu-Liu and Edmonds algorithm [5,6] combined with a simple

greedy algorithm, a low cost search plan is calculated.
(iii) Finally, Java code is generated based on the search plan (discussed later in

Sec. 4.3).

As abstract state machines are widely used to formalize algorithms [10], is
straightforward to implement them in VIATRA2. The following example demonstrates
this on the well known greedy algorithm used in the search plan evaluation to select a low
cost search plan from a search tree.

Simple greedy algorithm.

Initially, the list P consists only the starting node. The algorithm simply selects
the smallest edge that goes out from the search graph nodes that are already in P, and
adds the target of the selected edge as the last element of P.
The iterate choose construct selects the smallest edge that leading out of P, by
using the ASM function nodes and values to store the edge with the smallest
weight. Then the second choose selects the target node of the edge and adds
it to P by setting the value of the node to P. The recursion terminates when
the counter of nodes in P reaches the number of the nodes in the search graph
(stored in the ASM function values).

//SG is the spanning tree of the search graph
rule sPlan(in SG) = seq {
 update values("Min") = "infinite"; //init values
 update nodes("MinEdge") = "-1";
 //selecting the lowest weighted edge
iterate choose No below SG, NextNode below SG, Edge below SG, Owe
 below SG withfind(searchPlan(No,NextNode,Edge,Owe)) do

//checking the edge values, smaller then Min and not in P
if((value(Owe) < values("Min") && value(NextNode)!="P") seq
{update values("Min") = value(Owe);
update nodes("MinEdge") = Edge; //weights are updated
};

 // update the value of the element by P
 choose No below SG, NextNode below SG, Owe below SG

 with find(searchPlan(No,NextNode,nodes("MinEdge"))) do seq
 {setValue(NextNode, "P"); //it is now part of the ’list’ P
 update values("searchPlan") = values("searchPlan")+1;
 }
 if(values("searchPlan") != values("nodeMaxNumber"))
 call sPlan(SG); //recurvise call
}

4.3 Source code generation
In this section, we propose a source code generation technique for model

transformer plugins in Java based on VIATRA2 code templates. The template concept is
similar to the one introduced in the Apache Velocity [1] language, but uses the formal
ASM and GT paradigms as its control language whose constructs can be referred by the
#() notation.

As an example, we use the template rule printTraversalArb, which generates the
Java equivalent of a simple traversal of a relation with arbitrary multiplicity. In case of
arbitrary multiplicity in the traversed direction (one-to-many or many-to-many), an
iterator is generated to investigate all possible continuations.

The input of the template is the source (Source) and target (Target) entities of the
relation, the type (Type) of the target element, the name of the relation (Relation) and the
next (Next) element in the traversal order. The ASM function name returns the name of
the model element. The steps of the traversal
order are processed recursively by calling the ASM rule processNextStep in order to
generate the Java equivalents of internal code blocks.

//code generation the traversal of a relation with arbitrary
multiplicity
template printTraversalArb(in Target, in Source, in Relation,in
Type, in Next)= {
Iterator iter_#(name(Target))=
#(name(Source)).get#(name(Relation))().iterator();

while(iter_#(name(Target)).hasNext()){
try{

I#(name(Type)) #(name(Target)) =
(I#(name(Type))) iter_#(name(Target)).next();

//call recursively the next step in the order of
//traversal
#(call processNextStep(Next);)

} catch (ClassCastException e) {} }
}

5 Conclusion

In the current paper, we proposed to use generic and meta-transformations for

generating platform-specific transformer plugins from transformation specifications
given by the combination of graph transformation rules and abstract state machines in the
VIATRA2 framework.

The main advantage of our approach is reusability: only final code generation
templates need to be altered when porting plugins to other object oriented languages. Up
to now, we have a complete implementation for Java, but we plan to port the plugin

transformers to other underlying platforms (e.g, Eclipse Model Framework, EMF) and to
perform numeric measurements on the transformers.

Experimental evaluation of the generated transformer plugins was carried out in
[2] using Enterprise Java Beans 3.0 [9] as the underlying plugin technology.

The generated transformer plugins were able to handle persistent models stored in
relational databases with several million graph objects. A next challenge for the future is
to integrate transformer plugins to the VIATRA2 framework itself. After successful
integration, an optimized compiled version of native Java transformations can be
executed instead of the interpreted version.

References
[1] Apache, Velocity homepage, http://jakarta.apache.org/velocity/index.
html.
[2] Balogh, A., G. Varró, D. Varró and A. Pataricza, Compiling model
transformations to EJB3-specific transformer plugins, in: ACM Symposium on
Applied Computing — Model Transformation Track (SAC 2006) (2006), pp.
1288–1295.
[3] Bettin, J., Ensuring structural constraints in graph-based models with type
inheritance, in: M. Cerioli, editor, Proc. 8th Int. Conf on Fundamental
Approaches to Software Engineering (FASE 2005), LNCS 3442 (2005), pp. 64–
79.
[4] Börger, E. and R. Stark, “Abstract State Machines. A method for High-Level
System Design and Analysis,” Springer-Verlag, 2003.
[5] Chu, Y. J. and T. H. Liu, On the shortest arborescence of a directed graph,
Science Sinica 14 (1965), pp. 1396–1400.
[6] Edmonds, J., Optimum branchings, Journal Research of the National Bureau
of Standards (1967), pp. 233–240.
[7] Ehrig, H., G. Engels, H.-J. Kreowski and G. Rozenberg, editors, “Handbook
of Graph Grammars and Computing by Graph Transformation, Vol. 2:
Applications, Languages and Tools,” World Scientific, 1999.
[8] Ehrig, H., R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner and
A. Corradini, “In [11],” World Scientific, 1997 pp. 247–312.
[9] Enterprise Java Beans 3.0, Sun Microsystems, http://java.sun.com/
products/ejb/docs.html.
[10] Gurevich, Y., The sequential ASM thesis, Bulletin of the European Association
for Theoretical Computer Science 67 (1999), pp. 93–124.
[11] Rozenberg, G., editor, “Handbook of Graph Grammars and Computing by
Graph Transformation, Vol. 1: Foundations,” World Scientific, 1997.
[12] Rumbaugh, J., I. Jacobson and G. Booch, “The Unified Modeling Language
Reference Manual,” Addison-Wesley, 1999.
[13] Varró, D. and A. Pataricza, VPM: A visual, precise and multilevel metamodeling
framework for describing mathematical domains and UML, Journal of Software
and Systems Modeling 2 (2003), pp. 187–210.
[14] Varró, D. and A. Pataricza, Generic and meta-transformations for model
transformation engineering, in: T. Baar, A. Strohmeier, A. Moreira and
S. Mellor, editors, Proc. UML 2004: 7th International Conference on the Unified
Modeling Language, LNCS 3273 (2004), pp. 290–304.
[15] Varró, G., D. Varró and K. Friedl, Adaptive graph pattern matching for
model transformations using model-sensitive search plans, in: G. Karsai and
G. Taentzer, editors, GraMot 2005, International Workshop on Graph and

Model Transformations, ENTCS vol. 42, pp 191--205

