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Preface

This work is the summary of my research about physics-based sound synthesis of string
instruments. Physics-based sound synthesis is a promising approach, which has several
advantages over the commercially most often used sampling synthesizers. However, due to
its significantly higher computational complexity and its lack of ability to model the impor-
tant nuances of the instruments, the physics-based technique has only marginal commercial
applications. My goal was to develop such methods that increase the competitiveness of
the approach by either providing better sound quality or decreasing the computational cost
compared to earlier physics-based methods. Most of the results have been developed with
the application to the piano, but they can be directly used in the synthesis of other struck
or plucked instruments, too.

The first part of the thesis concentrates on the development of parameter estimation
techniques for the digital waveguide, the most often used string modeling technique, pro-
viding more accurate control over the decay of partials. This is followed by the development
of multi-rate techniques that increase the efficiency of modeling the excitation, the beating
and two-stage decay, and the filtering effect of the instrument body. However, certain
important features of the sound, e.g., phantom partials, cannot be reproduced by linear
string models. Therefore, the second part of the thesis concentrates on the development
of nonlinear string models that are able to capture the characteristic subtleties of the tone
generated by the nonlinear coupling of the transverse and longitudinal polarizations. For
forming the basis of sound synthesis algorithms, a theoretical framework on the generation
of longitudinal vibration is also developed. Thus, the structure of the thesis follows the
progress of my research by proceeding from simpler linear models to more complicated
nonlinear techniques.

Most of this work has been carried out at the Department of Measurement and Infor-
mation Systems, Budapest University of Technology and Economics, Hungary. First of all,
I wish to thank my supervisor, Dr. László Sujbert for his continuous help during our seven
year long scientific relationship, and Prof. Gábor Péceli, the head of the department, for
supporting my work. I am grateful for the support of all the other colleagues, especially
for that of Dr. János Márkus, who has helped in the preparation of this thesis and in the
organization of my Ph.D. defense.

The research work has been started in the Laboratory of Acoustics and Audio Signal
Processing, Helsinki University of Technology (Finland), where I wrote my M.Sc. thesis
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Chapter 1

Introduction

Physics-based sound synthesis is on the borderline of acoustics and digital signal processing.
Building a physics-based sound synthesis model has two steps: the first is to understand
how the real instrument works and to construct a precise model that describes the physical
reality. The second step is to implement this model on a computer or a dedicated hardware.
This means the temporal and spatial discretization of continuous-time equations. More-
over, often some simplifications are necessary due to the limited computational resources.
These simplifications are usually carried out in a way that the perceptually less significant
effects are neglected. Naturally, the first step is skipped if the phenomenon that should
be modeled is well understood. This often happens as physics and acoustics have a much
longer tradition compared to developing efficient signal processing algorithms.

1.1 Physics-based Modeling as a Sound Synthesis Technique

Sound synthesis methods can be classified in many ways. Here we divide them into three
groups, by unifying two groups of the classifications found in [Smith 1991; Tolonen et al.
1998].

The first group is the family of abstract methods. These are different algorithms
which can easily generate synthetic sounds. Methods like frequency modulation [Chowning
1973] and waveshaping [Le Brun 1979; Arfib 1979] belong to this category. Modeling
real instruments with these methods is fairly complicated as the relationship between the
parameters of the technique and those of the real instruments cannot be easily formulated.
As now the primary goal is to model the sound of acoustic instruments, we do not discuss
this group any further.

The second group (signal modeling) is the one which models the sound of the musical
instruments. In this case, the input to the model is only the waveform or a set of waveforms
generated by the instrument and the physics of the sound generation mechanism is not
examined in detail. Synthesis methods like PCM (Pulse Code Modulation) [Roads 1995]
and SMS (Spectral Modeling Synthesis) [Serra and Smith 1990] belong to this category.
The corresponding groups in the taxonomy of Smith [1991] are processing of pre-recorded
samples and spectral models.

1



2 CHAPTER 1. INTRODUCTION

The third group (physical modeling) is the one which, instead of reproducing a specific
sound of an instrument, models the physical behavior of the instrument. Usually, the
physical system (such as a string on a violin or the skin of a drum) can be described with
a set of difference equations and transfer functions. Given the excitation of the instrument
(bowing, plucking, etc.), the difference equations can be solved (or the general solution
can be applied for the given input), and the output of the model is expected to be close
to the output of the real instrument. One well-known method in this category is the
digital waveguide synthesis [Smith 1992], which efficiently models the vibration of a one-
dimensional string, based on the solution of the wave-equation. A comprehensive review
on the different physics-based modeling approaches can be found in [Välimäki et al. 2006].

Both of the two latter methods have their own advantages and disadvantages. Signal-
based synthesis can be realized efficiently, and the generated sound is usually an accurate
model of the response of an instrument for a given excitation. The method can be used if
the excitation is nearly constant, or the instrument is linear to a good approximation. Its
greatest advantage is the simple parameter estimation and that the same model structure
can be used for many different instruments. In contrast, physical modeling is capable of
the accurate modeling of nonlinear, transient responses of an instrument. It is able to
respond dynamically to different excitations similar to a real instrument. However, usually
physical models require more computational resources for real-time implementation. A
strong disadvantage is that the parameter estimation of physical models is much more
complicated, compared to signal models.

In the next subsections, the signal-based and the physics-based approach is compared,
from the point of view of their applicability. The main features of the methods are listed
in Table 1.1. Then the most important properties of the some example instruments are
described, serving as a basis for the choice among the synthesis methods. We note that an
exhaustive evaluation of many different sound synthesis methods can be found in [Tolonen
et al. 1998].

1.1.1 Signal-based Approach

The signal-based approach models the sound of the instrument itself. Accordingly, it
does not make any assumptions on the structure of the musical instrument, only that the
generated sound is periodic. Therefore, it can model a wide range of instrument sounds,
since they differ in their parameters only, not in the model structure, which is, e.g., a set of
sinusoids for each instrument. As it is a general representation, its parameter estimation
is simple, basically reduces to tracking partial envelopes, which can be easily automated.
In general, a large amount of data is required to describe a given tone, but this specific
tone from which the parameters originate, is almost perfectly reproduced. As the structure
of the instrument is not modeled, the interaction of the musician cannot be easily taken
into account, meaning that, e.g., for different bow forces or velocities in the case of the
violin different parameter sets are required for resynthesis. In practice, this means that for
a single note the analysis procedure has to be run for all the different playing styles that
a player can produce, and a large amount of data has to be stored or transmitted. As it
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Method Signal modeling Physical modeling

Assumptions on the structure Poor Yes

Generality Yes No

Parameter estimation Simple Complicated

Nature of parameters Abstract Meaningful

Number of parameters Many Few

Modeling a specific sound Precisely Approximately

Interaction of the musician Hard to model Modeled

Interaction of instrument parts Hard to model Modeled

Table 1.1: Main features of signal- and physics-based sound synthesis methods.

treats the notes separately, the interaction of the different notes, e.g., the coupled vibration
of strings, cannot be modeled. Changing the parameters of the synthesis program directly
is not user-friendly: dozens of parameters can be changed, which all influence the sound
in a different way compared to musicians got used to it in the case of real instruments.
The quality and the computational load of the synthesis is usually varied by changing the
number of simulated partials, which is probably not the best way from a perceptual point
of view.

1.1.2 Physics-based Approach

The physics-based approach models the functioning of the instrument, rather than the
produced sound itself. It makes assumptions about the instrument it models, therefore, it
looses generality. A piano model, e.g., cannot be used for violin modeling by just changing
its parameters, since the excitation model is completely different for the two instruments.
Consequently, the parameter estimation cannot be completely automated, at least the
model structure has to be determined by the user. As the model structure already describes
the main features of the instrument, only small number of parameters are needed, and
modifications to these parameters produce perceptually meaningful results. For example,
the user now controls the bow force, rather than the loudness of a single partial, and the
instrument reacts in a way as a real violin would do. Therefore, only one parameter set
is required, since the different playing styles according to the interaction of the musician
are automatically modeled. As it describes the physical structure, the interaction of the
different model parts are also taken into account, e.g., the string coupling on the piano is
easily modeled. A drawback that none of the tones will be perfectly modeled: the model
may sound as a piano, but will be always different from that piano where its parameters
come from. The quality and the computational load is varied by, e.g., changing the accuracy
of modeling losses and dispersion, rather than changing the number of simulated partials,
which is less noticeable for the listener. These characteristics are summarized in Table 1.1.
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Instrument Organ Piano Violin

Number of partials < 20 5-100 10–50

Number of playing parameters 0 Few Many

Coupling between the instrument parts Negligible Present Significant

Table 1.2: Main features of the different instruments, serving as a basis for choosing the
proper synthesis approach.

1.1.3 Instruments as Case Studies

The choice between the signal-based or the physics-based approaches strongly depends on
which instrument should be modeled. Here we will use the organ, the piano, and the violin
as case studies. The features which are relevant from this viewpoint for these instruments
are listed in Table 1.2. Naturally, other factors also influence the choice of the user, e.g.,
if automatic parameter estimation is required, the signal modeling approach should be
chosen.

The sound of a specific organ pipe cannot be influenced by the player. Moreover,
the coupling between the different pipes is negligible, therefore the different tones can be
synthesized independently. As signal modeling models a specific sound almost perfectly,
it is the best choice for organ synthesis. Its computational load is acceptable, since the
number of partials is low in the case of the organ flue pipes.

As for the piano, the player can vary only one parameter for a given note, by changing
the impact velocity of the hammer, thus, the timbre space of one note is one-dimensional.
For a signal model, this would mean storing different parameter sets for a few hammer
velocities, and interpolation could be used between sets. Although it is also possible
with the signal model, the effect of the player is much easier modeled by the physics-
based approach. Moreover, the strings of the piano are coupled when the damper pedal is
depressed which is also controlled by the player: this can be modeled by the physics-based
approach only.

For the violin, the freedom of the player is enormous: he can vary the bow force,
velocity, position, and angle, the finger position and pressure, and decide on which string
he plays the given note. Therefore, the timbre space of the violin is multi-dimensional:
for signal-based synthesis many sounds along all these dimensions should be recorded and
analyzed. Since the goal is not only to render the sound of a specific violin note, but
to create a playable instrument, the only choice which remains is physical modeling. The
inputs of the physical model are the real physical parameters (e.g., bow force and velocity),
therefore the effect of the player is automatically taken into account.

1.2 The Benefit of Physics-based Sound Synthesis

The primary use of developing physics-based sound synthesis algorithms is that they lead
to synthesizers with better sound quality. Naturally, synthesizers should not replace real
instruments. However, for pianists for whom real pianos are too expensive, too large, or
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too loud, practicing on a better digital piano could be very helpful. Better synthesis models
could also increase the reality of games and multimedia applications. Here, the physics-
based approach can be used as an intermediate coding level between MIDI (that stores the
score and the instrument name) and perceptual coders (such as MPEG-1 Layer 3), as it is
able to transmit the main features of the instrument by a low number of parameters. This
kind of “structured audio coding” is supported by MPEG-4 [Scheier 1999].

Another benefit of physics-based sound synthesis algorithms is that they can be used
for experimentation purposes. With a physical model it is possible to include or exclude
a specific feature of the sound production mechanism and asses the importance of that
phenomenon by listening to the result. Varying the physical parameters of the model
could help instrument makers to estimate the sonic consequences of changing the geometry
or material of the instrument. Moreover, the acoustic research and theory development
triggered by the need of sound synthesis yields a better knowledge of real instruments.

1.3 Structure of the Thesis

Chapter 2 describes the most often used physics-based sound synthesis approaches and
provides the necessary theoretical background for the rest of the thesis. In Chap. 3 new pa-
rameter estimation techniques are proposed for the loss-filters of digital waveguides (which
are the most often used string models). Chapter 4 presents new algorithms to excitation,
string, and body modeling applying the multi-rate approach, which result in a significantly
lower computational cost compared to earlier methods. Chapter 5 is about the theory of
geometric nonlinearities of musical instrument strings, presenting a modal model that not
only founds the basis of sound synthesis algorithms but gives a qualitative insight to the
physics of the phenomenon, too. In Chap. 6 the theoretical results on the geometric non-
linearities are applied for the development of efficient sound synthesis algorithms. Finally,
Chap. 7 summerizes the results of this thesis and outlines the possible research directions.
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Chapter 2

Physical Modeling of String

Instruments

In this chapter the most often used modeling strategies are reviewed to provide the back-
ground for the new results of the following part of the thesis. Note that the notation and
the derivations of the equations have been changed compared to the referenced literature,
to be in coherence with the rest of the thesis.

Section 2.1 gives an outline of the model structure used in physics-based sound syn-
thesis. Then, Sec. 2.2 provides the theoretical background of string vibrations, starting
from the equations of motion. This is followed by the most often used string modeling
approaches, namely, finite-difference modeling, digital waveguides and modal models in
Sec. 2.3. Section 2.4 describes the modeling methods for the different excitation mecha-
nisms (striking, plucking, and bowing), and finally, Sec. 2.5 summarizes the techniques for
instrument body modeling.

2.1 Model Structure

Since the physical modeling approach simulates the sound production mechanism of the
instrument, the parts of the model correspond to the parts of real instruments. In every
string instrument, the heart of the sound production mechanism is the string itself. The
string is excited by the excitation mechanism, which corresponds to the hammer strike in
the case of the piano, to the pluck in the case of the guitar, or to the bow in the case of the
violin. The string is responsible for the generation of the periodic sound by storing this
vibrational energy in its normal modes. One part of this energy dissipates and another
part is radiated to the air by the instrument body. The body can be seen as an impedance
transformer between the string and the air, which increases the effectiveness of radiation
significantly. The body provides a terminating impedance to the string, therefore it also
influences the modal parameters of string vibration, i.e., partial frequencies, amplitudes,
and decay times. The model structure is displayed in Fig. 2.1.

The modeling of the interaction between the string and the excitation can be both uni-
and bidirectional. When, e.g., the plucking of the guitar is modeled by setting the initial

7
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Excitation String Body Sound

Control

Figure 2.1: Model structure.

displacement of the string (see Sec. 2.4.2), then the string vibration has no influence on the
excitation. On the other hand, if the hammer strike in the case of the piano is modeled by
a nonlinear hammer model as in Sec. 2.4.1, the coupling is bidirectional, as the hammer
force is a function of string shape. The same happens for a bowing type of excitation,
where the periodic excitation force is the result of the continuous interaction of the string
and the bow (see Sec. 2.4.3).

The interaction of the instrument body and the strings can also be treated in two
ways. The physically precise solution is when the strings are continuously coupled to the
instrument body, leading to the coupling of different strings and to a change of partial
frequencies and decay times. However, often the instrument body is implemented as a
post-processing unit, i.e., as a linear filter. In this case, the impedance effects of the body
(that alter the frequencies and decay times of string modes) are implemented within the
string model, and the body model reproduces only the radiation properties of the real
instrument body.

Note that if both interactions are unidirectional (showed by solid lines in Fig. 2.1) and
the building blocks are linear, the model reduces to a series of linear filters. In this case
the model elements can be commuted, leading to large computational savings. This will
be discussed in Sec. 2.5.3.

2.2 String Equations

The most important part of the string instrument is the string itself. This section provides
the theoretical background for the string modeling methods of Sec. 2.3. Note that most of
the findings of this section can be found in acoustic textbooks, such as [Morse 1948; Morse
and Ingard 1968]. However, summarizing them here together with their derivations (which
are slightly different from the ones in [Morse 1948; Morse and Ingard 1968]) should help
the understanding of the results of Chaps. 5 and 6. In this section only the linear vibration
of strings is investigated in detail, while the nonlinear phenomena will be discussed in
Chap. 5.

2.2.1 General Equations of String Vibration

For perfectly describing the motion of the string, it should be treated as a prestressed thin
rod by elasticity theory [Graff 1975]. However, it is sufficient for our purposes to suppose
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that the string has negligible diameter, where simpler theory applies. Note that one effect
of the finite diameter of real strings, the wave dispersion, will be included later in Sec. 2.2.4.

Let us suppose that a lossless and perfectly flexible string is stretched along the x axis
with an initial tension T0 (losses and stiffness will be covered later is Sec. 2.2.4). The string
element that was, in equilibrium, at point (x, 0, 0) will be at point (x + ξ, y, z), where ξ

refers to the longitudinal displacement (x direction), while y and z are the displacements
of the two transverse polarizations (both perpendicular to the string). This part of the
derivation is taken directly from [Morse and Ingard 1968, pp. 857–858]. The vector from
the origin to point (x + ξ, y, z) is

R(x, t) = (x + ξ)ex + yey + zez, (2.1)

where ex, ey, ez are unit vectors along coordinate axes.
The length of the string element labeled x [the element that was originally at (x, 0, 0)],

which was dx in equilibrium (under the initial tension T0) will be

ds = |R(x + dx, t) − R(x, t)| =

∣

∣

∣

∣

∂R

∂x

∣

∣

∣

∣

dx =

√

(

∂ξ

∂x
+ 1

)2

+

(

∂y

∂x

)2

+

(

∂z

∂x

)2

dx. (2.2)

The tension T = T (x, t) of the string is calculated from the relative elongation (ds −
dx0)/dx0 according to the Hooke’s law

T = ES

(

ds

dx0
− 1

)

= ES

(

ds

dx

dx

dx0
− 1

)

, (2.3)

where E is the Young’s modulus, S is the cross-section area of the string, and dx0 is the
length of the string element without tension (T = 0). Note that here we depart from
Eq. 14.3.3 of [Morse and Ingard 1968] (which implicitly assumes dx = dx0) by applying
the equation of tension presented in [Kurmyshev 2003], leading to more precise results. By
knowing that the initial tension is obtained as T0 = ES(dx/dx0−1), dx0 can be eliminated
from Eq. (2.3) as

T = ES

(

ds

dx
− 1

)

+ T0
ds

dx
. (2.4)

If the string is perfectly flexible, the only force acting on the element x is the tension at
its sides T (x, t) and T (x + dx, t). The direction of these force components is given by the
unit vectors es(x, t) and es(x + dx, t) pointing along the tangent to the string

es(x, t) =
∂R

∂x
∣

∣

∂R

∂x

∣

∣

=

(

∂ξ
∂x + 1

)

ex +
(

∂y
∂x

)

ey +
(

∂z
∂x

)

ez
√

(

∂ξ
∂x + 1

)2
+
(

∂y
∂x

)2
+
(

∂z
∂x

)2
. (2.5)

The net force acting on the element x is the difference between the forces at the sides,
which is related to the acceleration of the element according to the Newton’s law

µdx
∂2

R

∂t2
= T (x + dx, t)es(x + dx, t) − T (x, t)es(x, t), (2.6)
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where µdx is the mass of the element x and µ is the linear mass density (i.e., mass per
unit length) of the stretched string.

Writing the difference in Eq. (2.6) by differentials gives

µ
∂2

R

∂t2
=

∂(Tes)

∂x
=

∂T

∂x
es + T

∂es

∂x
, (2.7)

from which it follows that the net force arises from two reasons: because the tension T is
different at the sides of the element and because it pulls at different directions es at the
two sides.

The above equations (Eqs. (2.4), (2.5), and (2.7)) completely characterize the motion
of the flexible string, as no approximations were made so far. Note that the nonlinearity of
Eqs. (2.4) and (2.5) comes from the geometry of the structure and not from the nonlinearity
of the material (as we assumed that the Hooke’s law holds). Therefore, it is often called
“geometric nonlinearity”.

2.2.2 Approximate Nonlinear Equations

Now let us assume that the relative elongation is small, i.e., ∂ξ/∂x, ∂y/∂x, and ∂z/∂x are
small compared to unity. Moreover, we assume that ξ is in the order of y2 and z2, which
holds for metal strings. (For rubber-like strings ξ, y, and z are of same order [Kurmyshev
2003].) In this case Eq. (2.5) can be approximated as

es(x, t) =

[(

∂ξ

∂x
+ 1

)

ex +

(

∂y

∂x

)

ey +

(

∂z

∂x

)

ez

]

[

1 − ∂ξ

∂x
− 1

2

(

∂y

∂x

)2

− 1

2

(

∂z

∂x

)2
]

.

(2.8)
which was obtained by applying the approximations (1 + p)2 ≈ 1 + 2p,

√
1 + p ≈ 1 + 0.5p,

and 1/(1 + p) ≈ 1 − p.
Similar derivations yield the equation for tension from Eqs. (2.2) and (2.4)

T ≈ T0 + (ES + T0)

[

∂ξ

∂x
+

1

2

(

∂y

∂x

)2

+
1

2

(

∂z

∂x

)2
]

. (2.9)

Substituting Eqs. (2.8) and (2.9) into (2.7) and neglecting some higher-order terms
gives

µ
∂2ξ

∂t2
= (ES + T0)

∂2ξ

∂x2
+

1

2
ES

∂

[

(

∂y
∂x

)2
+
(

∂z
∂x

)2
]

∂x
(2.10)

µ
∂2y

∂t2
= T0

∂2y

∂x2
+ ES

∂

{

∂y
∂x

[

∂ξ
∂x + 1

2

(

∂y
∂x

)2
+ 1

2

(

∂z
∂x

)2
]}

∂x
(2.11)

µ
∂2z

∂t2
= T0

∂2z

∂x2
+ ES

∂

{

∂z
∂x

[

∂ξ
∂x + 1

2

(

∂y
∂x

)2
+ 1

2

(

∂z
∂x

)2
]}

∂x
. (2.12)

Note that in Eqs. (14.3.7)–(14.3.9) of [Morse and Ingard 1968] (ES − T0) replaces the
ES of Eqs. (2.10)–(2.12) of this thesis. Having (ES − T0) instead of ES would mean for
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increasing T0 that the nonlinear terms would decrease to zero as T0 reaches ES, then raise
again for higher T0 values, which is unrealistic. Equations (2.10)–(2.12) do not show this
problem, as the nonlinearity drops continuously and it can be considered zero for T0 ≫ ES

only. This difference is rather theoretical, as it is significant only for rubber-like strings,
where T0 ≈ ES. In metal strings we have ES ≫ T0, thus, in the rest of this thesis we will
assume ES + T0 ≈ ES ≈ ES − T0 anyway.

It can be seen that Eqs. (2.10)-(2.12) are three linear wave equations for the three
polarizations with nonlinear forcing terms at their right-hand sides. By looking at their
linear part, the transverse and longitudinal propagation speeds can be expressed as:

ct =

√

T0

µ
cl =

√

ES + T0

µ
. (2.13)

In metal strings we have T0 ≪ ES, therefore the longitudinal propagation speed can be
approximated as cl =

√

ES/µ.
The amount of intermodal coupling in Eq. (2.10) is almost independent of string tension

(as ES + T0 ≈ ES). On the other hand, in Eqs. (2.11) and (2.12) it depends on the ratio
ES/T0, i.e., the lower the tension, the higher the effect of intermodal coupling is.

2.2.3 Linear Equations

If the displacement of the string is so small that the products and powers of the partial
derivatives ∂ξ/∂x, ∂y/∂x, and ∂z/∂x are negligible compared to the terms themselves,
Eqs. (2.10)-(2.12) reduce to three independent wave equations. As the equations for the
three polarizations are of the same form, it is reasonable to perform the derivations for one
polarization. The wave equation for the y polarization is

µ
∂2y

∂t2
= T0

∂2y

∂x2
, (2.14)

or, by using Eq. (2.13)
∂2y

∂t2
= c2

t

∂2y

∂x2
. (2.15)

The Unterminated String

First we consider the infinite, unterminated string. We try to find the solution for Eq. (2.15)
as the real part of the product of two exponential functions

y(x, t) = Re{ejωtejβx}. (2.16)

The substitution of Eq. (2.16) into Eq. (2.15) gives

ω2

β2
= c2

t =⇒ ω

β
= ±ct. (2.17)

Writing this back into Eq. (2.16) yields

y(x, t) = Re{ej(ωt+βx)} = Re{ejω(t±x/ct)} (2.18)
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for arbitrary ω. Equation (2.18) shows that the ideal, unterminated string can vibrate at
arbitrary angular frequencies. However, the wave number β and angular frequency ω are
related by the propagation speed ct. As the wave equation is linear, the superposition of
the two cases of Eq. (2.18) is also a solution:

y(x, t) = Re{C+ejω(t−x/ct) + C−ejω(t+x/ct)}, (2.19)

where C+ and C− are the complex amplitudes of the two components.
By using the notation p = t±x/ct, Eq. (2.18) becomes the basis function of the inverse

Fourier transform. As the wave equation is linear, the superposition of the functions ejωp

are also the solution of the wave equation. This means that arbitrary Fourier expandable
functions

y±(p) = Re

{
∫ ∞

ω=−∞
C±(ω)ejωp

}

(2.20)

are solutions. As both p = t + x/ct and p = t − x/ct holds, the time-domain solution of
the wave equation is written as the superposition of two functions

y(x, t) = y+(t − x/ct) + y−(t + x/ct), (2.21)

where y+ and y− can be considered as two traveling waves, which retain their shape during
their movement. The function y+ is the wave going to the right and the function y− is the
wave going to the left direction. This is the “traveling wave solution” of the wave equation.

Infinitely Rigid Terminations

Rigidly terminating the string at x = 0, i.e., setting y(0, t) = 0, means that the two
traveling waves should cancel each other at x = 0. This yields y−(p) = −y+(p), meaning
that two identical waves of opposite sign travel along the string in the two directions. The
components y+ and y− can be considered as incident and reflected waves.

In reality the string is stretched between the supports x = 0 and x = L, where L is the
string length. For ideally rigid terminations, this gives the constraint y(0, t) = y(L, t) = 0,
leading to y+(t−L/ct) = −y−(t+L/ct). As we have y+(p) = −y−(p) from the termination
at x = 0, we obtain y+(t − L/ct) = y+(t + L/ct). This means that y+(p) is periodic with
period length Tp = 2L/ct. This corresponds to a fundamental frequency f0 = ct/(2L), or
an angular frequency ω0 = ctπ/L.

More interesting to us is the exponential form of Eq. (2.19), where y(0, t) = 0 gives
C− = −C+, leading to

y(x, t) = Re{C+(ejω(t−x/ct) − ejω(t+x/ct))} = Re{2jC+ sin(βx)ejωt}, (2.22)

which shows that if the string is rigidly terminated at x = 0 and is vibrating at a single
angular frequency ω, a standing wave develops, i.e., the different points of the string vibrate
in the same phase. Note that it is still true that arbitrary angular frequencies ω are allowed.

The additional constraint y(L, t) = 0 on Eq. (2.22) gives βL = kπ, leading to

y(x, t) = Re{2jC+ sin(βkx)ejωkt} = C sin(βkx) cos(ωkt + ϕ), (2.23)
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where the allowed angular frequencies ωk and wave numbers βk are

βk =
kπ

L
ωk =

ctkπ

L
. (2.24)

This means that the terminated string can only vibrate at distinct angular frequencies ωk,
which form a perfect harmonic series. These frequencies ωk belong to specific modal shapes
sin(βkt), where k is the mode number.

2.2.4 The Stiff and Lossy String

A wave equation for the stiff and lossy string is

µ
∂2y

∂t2
= T0

∂2y

∂x2
− ESκ2 ∂4y

∂x4
− 2R(ω)µ

∂y

∂t
+ dy(x, t), (2.25)

which is the Helmholtz equation extended by terms describing the stiffness and losses of
the string. The stiffness of the string is characterized by ESκ2, where κ is the radius of
gyration. This term (fourth-order spatial derivative) is essentially the same as what can be
found in the wave equation of bars and rods, but now it has a secondary role, as the main
force on the string comes from the tension (second-order spatial derivative). Accordingly,
the wave equation of the stiff string can be considered as a transition between the wave
equation of the ideal string and that of the ideal bar [Morse 1948, p. 166].

The operator R(ω) is the frequency dependent frictional resistance [Morse 1948, p. 104].
The factor “2” before R(ω) in Eq. (2.25) is chosen in order to make the decay rate σ(ω) of
the partial at the angular frequency ω equal to R(ω), as we will see later in Eqs. (2.27) and
(2.37). External driving forces are included in the excitation force density dy(x, t), which
has the dimension of force per unit length.

Unterminated Case

Let us first consider the case of infinite, unterminated string. Moreover, we assume that
no external driving forces are present, i.e., dy(x, t) = 0. The losses are assumed to be inde-
pendent of frequency, that is, R(ω) = R. The substitution of the trial function Eq. (2.16)
into Eq. (2.25) gives

−µω2 = −T0β
2 − ESκ2β4 − jω2Rµ, (2.26)

which cannot be solved for real ω and β values. However, if we substitute ω with a complex
variable Ω = ω + jσ in Eq. (2.26), we obtain a pair of equations for the real and imaginary
parts. The equation for the imaginary part of Eq. (2.26) becomes

−µ2jωσ = −jω2Rµ, (2.27)

which gives σ = R. The real part of Eq. (2.26) is

−µ(ω2 − σ2) = −T0β
2 − ESκ2β4 + σ2Rµ. (2.28)

The substitution σ = R gives

ω2 =
T0

µ
β2 +

ESκ2

µ
β4 − R2, (2.29)
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where R2 is negligible in comparison with the other two terms in the case of musical
instrument strings.

Accordingly, the final solution becomes

y = Re{ejΩtejβx} = e−σtRe{ejω(t±x/ct(β))}, (2.30)

which differs from Eq. (2.18) in two aspects: first, there is an additional term e−σt meaning
that the propagating waves decay exponentially. Second, the angular frequency ω and wave
number β are no longer related to each other by a constant factor ct as in Eq. (2.17), but
now the propagating speed depends on the wave number:

ct(β) =
ω

β
=

√

T0

µ
+

ESκ2

µ
β2. (2.31)

Equation (2.31) shows that waves at larger wave numbers β (i.e, at larger angular frequen-
cies ω) propagate faster. Accordingly, the high frequency components of a wave will travel
faster than the low frequency ones. As a result, traveling waves will no longer retain their
shapes but disperse.

Termination and Driving Forces

As can be seen in Eq. (2.23), the ideal string rigidly terminated at x = 0 and x = L can
only vibrate at specific wave numbers βk, and the spatial dependence is in the form of
sin(βkx). This property does not change by adding losses, dispersion, and external driving
forces as in Eq. (2.25). However, the temporal dependence of a specific mode is no longer
a cosine function, as was in Eq. (2.23). As the most general case, the string shape y(x, t)

is expressed by the Fourier-like series

y(x, t) =

∞
∑

k=1

yk(t) sin

(

kπx

L

)

(2.32)

where yk(t) is the instantaneous amplitude of mode k.
Note that Eq. (2.32) completely characterizes y(x, t) in the range 0 ≤ x ≤ L for each t

if
∂py(x, t)

∂xp

∣

∣

∣

∣

x=0

=
∂py(x, t)

∂xp

∣

∣

∣

∣

x=L

= 0 (2.33)

holds for even p including p = 0. This constraint comes from the fact that the even
derivatives of the sine functions in Eq. (2.32) are also sine functions, which are zero at
x = 0 and x = L for each n. This corresponds to hinged boundary conditions. The cosine
functions are missing because Eq. (2.32) is considered as the Fourier series of the odd
function y(−x, t) = −y(x, t) with the period length 2L (however, the part −L < x < 0 is
of no interest to us).

The solution of Eq. (2.25) can be separated for the different modes if Eq. (2.32) is
substituted into Eq. (2.25), then multiplied by the modal shape sin(kπx/L) and integrated
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over x from 0 to L. The resulting second-order differential equation covering the behavior
of mode n is

d2yk

dt2
+ a1,k

dyk

dt
+ a0,kyk = b0,kFy,k(t), (2.34)

where

a1,k = 2R(ωk) (2.35a)

a0,k =
T0

µ

(

kπ

L

)2

+
ESκ2

µ

(

kπ

L

)4

(2.35b)

b0,k =
2

Lµ
(2.35c)

Fy,k(t) =

∫ L

x=0
sin

(

kπx

L

)

dy(x, t)dx. (2.35d)

In Eq. (2.34) Fy,k(t) can be considered as the excitation force of mode k, and it is computed
as the scalar product of the excitation force density and the modal shape (see Eq. (2.35d)).

The solution of Eq. (2.34) for Fy,k(t) = δ(t) with zero initial conditions is an exponen-
tially decaying sine function covered by

yδ,k(t) = Ake
− t

τk sin(ωkt) (2.36a)

Ak =
b0,k

ωk
(2.36b)

τk =
2

a1,k
(2.36c)

ωk =

√

a0,k −
a2

1,k

4
≈ √

a0,k. (2.36d)

The decay time τk = 1/σk of mode k is simply related to the frictional resistance by

τk =
2

a1,k
=

1

R(ωk)
. (2.37)

This is in accordance with the result of Eq. (2.27), derived for the unterminated string.
The approximation in Eq. (2.36d) is valid if the frictional resistance is small, i.e., it has a
negligible effect on the angular frequency ωk. In other words, if a2

1,k/4 = 1/τ2
k is negligible

in comparison with ω2
k, which holds for the slowly decaying modes of strings. To this

approximation the angular frequency is given by

ωk =
√

a0,k =

√

T0

µ

(

kπ

L

)2

+
ESκ2

µ

(

kπ

L

)4

= ω0k
√

1 + Bk2, (2.38)

where the the fundamental angular frequency of the string w0 is

ω0 =
π

L

√

T0

µ
= ct

π

L
. (2.39)
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The inharmonicity of the angular frequency series ωk is determined by the inharmonicity
coefficient B, which is computed as

B = κ2 ES

T0

(π

L

)2
. (2.40)

Note that B = 0 corresponds to the case of perfectly flexible string, where the partial
frequencies follow ωk = kω0 (as predicted by Eq. (2.24)). The higher the stiffness of the
string (or the smaller the tension), the larger is the difference with which the partials
depart from the perfectly harmonic series.

As Eq. (2.36) computes the impulse response of the system characterized by Eq. (2.34),
the response to the excitation force Fy,k(t) is obtained by the time domain convolution

yk(t) = yδ,k(t) ∗ Fy,k(t). (2.41)

From Eqs. (2.32), (2.36), and (2.41) the displacement of the string y(x, t) as a response to
the external force density dy(x, t) is computed as

y(x, t) =
1

πLµ

∞
∑

k=1

sin

(

kπx

L

)[

1

fk
e
− t

τk sin(2πfkt) ∗
∫ L

x=0
sin

(

kπx

L

)

dy(x, t)dx

]

, (2.42)

where the angular frequency was substituted by the frequency fk = ωk/(2π). Equation
(2.42) means that first the scalar product of the excitation-force density and the modal
shape has to be computed, then this has to be convolved with the time-domain impulse
response of mode k, leading to the instantaneous amplitude of mode k. Finally, these
modes are summed together multiplied by their modal shapes sin(kπx/L).

2.3 String Modeling Techniques

The following sections discuss the different string modeling approaches. Only the three
most widely used modeling techniques are reviewed, namely, finite-difference, modal-based,
and digital waveguide approaches, as these are the techniques that are applied in this
thesis. For a more comprehensive review of physics-based string modeling techniques, see
[Välimäki et al. 2006]. The first modeling technique is the finite-difference modeling, which
is the direct numerical solution of the wave equation (such as Eq. (2.25)). The other two
approaches are based on the discretization of the continuous time solutions of the wave
equation: digital waveguide modeling presented in Sec. 2.3.2 discretizes the traveling wave
solution of Eq. (2.21), while modal synthesis outlined in Sec. 2.3.3 implements the modal
form of Eqs. (2.32) and (2.42).

2.3.1 Finite-difference Modeling

The first finite-difference string model was presented by Hiller and Ruiz [1971a,b], which
was the first physics-based instrument model, too. Finite-difference modeling has become
popular because it has a direct connection to the wave equation and also because it is
straightforward to use it for two- or three-dimensional structures. Moreover, connecting
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these different structures is a simple task. A drawback of the approach is the high com-
putational complexity and the numerical dispersion, the latter meaning that the modal
frequencies of the model will be different from that of the continuous time system.

The Ideal String

In finite-difference modeling, the solution of a partial differential equation is computed by
substituting derivatives by finite differences. The usual way of discretizing Eq. (2.15) on a
grid xm = m∆x, tn = n∆t is

∂2y

∂x2

∣

∣

∣

∣

xm,tn

≈ ym−1,n − 2ym,n + ym+1,n

∆x2
(2.43a)

∂2y

∂t2

∣

∣

∣

∣

xm,tn

≈ ym,n−1 − 2ym,n + ym,n+1

∆t2
, (2.43b)

where ym,n = y(xm, tn). The substitution of Eq. (2.43) into Eq. (2.15) gives

ym,n+1 =
c2
t ∆t2

∆x2
(ym−1,n − 2ym,n + ym+1,n) − ym,n−1 + 2ym,n, (2.44)

which computes the next value of the element at position m from the past and previous
state of the string. To model infinitely rigid boundary conditions, y0,n and yM,n is set to
zero for all n (where M∆x = L is the string length). The system is numerically stable
for ∆x/∆t ≥ ct, i.e., when the waves do not move more than one spatial interval during
one time step [Chaigne and Askenfelt 1994]. Due to the nature of discretization numerical
dispersion arises on the string, which should not be confused with the dispersion caused
by the stiffness of the string. The numerical dispersion stretches the partials in a way that
they lie at a lower frequency compared to where they should be [see, e.g., Chaigne and
Askenfelt 1994]. This means that the system Eq. (2.44) won’t produce an exact copy of the
analytical solution of Eq. (2.15). However, the difference is negligible for low frequencies
and does not usually lead to the degradation of sound quality.

If ∆x and ∆t are chosen in a way that the wave travels exactly one spatial interval
during one time step as suggested by Hiller and Ruiz [1971a], that is, ct = ∆x/∆t in
Eq. (2.44), we obtain

ym,n+1 = ym−1,n + ym+1,n − ym,n−1. (2.45)

Equation (2.45) is exact in the sense that there is no numerical dispersion in this case. It
is easy to see that when Eq. (2.45) is excited by a unit impulse at the spatial position m,
two unit pulses will develop that travel in the left and right direction without changing
their shapes. This is a great advantage. Another benefit is that with this choice the
finite-difference model can be easily connected to a digital waveguide model, as in digital
waveguides we always have ct = ∆x/∆t [Karjalainen and Erkut 2004].

However, the flexibility is lost: now ∆x, ∆t, and ct are interdependent. Practically, this
means that the fundamental frequency of the string model can only be set by changing the
number of string elements, M , assuming that the sampling frequency fs = 1/∆t is given,
since f0 = fs/(2M). This leads to unnecessarily large M values for low notes. In the case
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of the more general Eq. (2.44) the fundamental frequency can be easily varied by modifying
ct or ∆x = L/M , where the number of string elements M can be set according to how
many partials we wish to compute. This way, the accuracy/complexity of the model and
the fundamental frequency of the tone become independent.

Losses and Dispersion

Modeling the stiff and lossy string requires the discrete-time implementation of Eq. (2.25).
However, Eq. (2.25) has a frequency dependent parameter R(ω), which cannot be imple-
mented directly. Hiller and Ruiz [1971a] and later Chaigne and Askenfelt [1994] suggested
to use the formal substitution

R(ω)
∂y

∂t
⇒ b1

∂y

∂t
− b3

∂3y

∂t3
(2.46)

in Eq. (2.25) as the simplest way for implementing frequency dependent losses. This leads
to the decay times

τk =
1

R(ωk)
=

1

b1 + b3ω
2
k

. (2.47)

This simplified formula has been found to match the decay times of musical instrument
strings quite well [Chaigne and Askenfelt 1994]. Interestingly, it also coincides with the
decay times of the digital waveguide string model if the most common loss filter is used
(see Sec. 3.1).

However, the use of Eq. (2.46) yields a recurrence equation which may not be stable for
all b3 parameters. Therefore, a different way of implementing frequency dependent losses
has been suggested by Bilbao in [Bensa et al. 2003]:

R(ω)
∂y

∂t
⇒ b1

∂y

∂t
− b2

∂3y

∂x2∂t
. (2.48)

This leads to a second-order differential equation for the individual modes of the same
form as Eq. (2.34), but now a1,k = 2b1 + 2b2(kπ/L)2, giving the decay times

τk =
2

a1,k
=

1

b1 + b2

(

kπ
L

)2 , (2.49)

which is the same as Eq. (2.47) for harmonic (nondispersive) strings if b2 = c2
t b3 (see

Eq. (2.24)). For inharmonic strings the decay times given by Eq. (2.49) will be somewhat
higher than that of Eq. (2.47), as ctkπ/L < ωk (see Eq. (2.38)). As the ear is relatively
insensitive to differences in decay times [Tolonen and Järveläinen 2000], this difference
won’t influence sound quality. However, from the practical implementation viewpoint the
form of Eq. (2.48) is more advantageous, as it is stable for arbitrary positive b1 and b2,
while requiring less memory and less computation than the third order system obtained
by the use of Eq. (2.46) [Bensa et al. 2003].

Accordingly, we discretize the following wave equation

∂2y

∂t2
= c2

t

∂2y

∂x2
− ESκ2

µ

∂4y

∂x4
− 2b1

∂y

∂t
+ 2b2

∂3y

∂x2∂t
+

1

µ
dy(x, t), (2.50)
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which is the modification of Eq. (2.25) by applying the substitution Eq. (2.48). For the
discretization, we can use the formulas

∂4y

∂x4

∣

∣

∣

∣

xm,tn

≈ ym−2,n − 4ym−1,n + 6ym,n − 4ym+1,n + ym+2,n

∆x4
(2.51a)

∂y

∂t

∣

∣

∣

∣

xm,tn

≈ ym,n − ym,n−1

∆t
(2.51b)

∂3y

∂x2∂t

∣

∣

∣

∣

xm,tn

≈ (ym−1,n − 2ym,n + ym+1,n) − (ym−1,n−1 − 2ym,n−1 + ym+1,n−1)

∆x2∆t

(2.51c)

together with Eq. (2.43). Inserting the approximations Eqs. (2.43) and (2.51) into Eq. (2.50)
yields a recurrence equation that computes the next value of the string displacement ym,n+1

from the past (ym−1,n−1, ym,n−1, ym+1,n−1) and present (ym−2,n, ym−1,n, ym,n, ym+1,n,
ym+2,n) values. Note that the derivatives can be approximated in other ways as well,
e.g., the temporal derivative ∂y/∂t can also be computed as (ym,n+1 − ym,n)/∆t. Differ-
ent approximations give different output, but these differences are generally negligible for
sufficiently high sampling rates and large number of elements M (i.e., for small ∆t and
∆x).

For implementing the boundary condition, we need a further constraint besides y0,n =

yM,n = 0, since y−1,n and yM+1,n are also required for the computation of the rightmost and
leftmost points of the string (which have the spatial coordinates m = 1 and m = M − 1).
Setting the second-order spatial derivative to zero at the boundaries gives y−1,n = −y1,n

and yM+1,n = −yM−1,n, which corresponds to hinged boundary conditions. More realistic
string terminations can also be implemented by, e.g., computing the string force acting
on the termination and calculating the velocity response by a model of the termination
admittance. A termination model parameterized by a constant reflection coefficient is
presented in [Hiller and Ruiz 1971a].

The force at the termination is of great interest even in the simplified models having
ideally rigid string terminations, as this is the force which is transmitted to the body of the
instrument. In other words, this is the output of the string model. This force is computed
as

Fb(tn) = − T0
∂y

∂x

∣

∣

∣

∣

x=L

≈ − T0

∆x
yM−1,n. (2.52)

It may sound paradoxical that the string termination is infinitely rigid, while it can still
transfer energy to the instrument body. The resolution is that the termination moves at
much smaller amplitude compared to the string, thus, it may be considered as motionless
in the string model. From the instrument body side, however, this small movement is the
excitation, i.e., it cannot be neglected.

Note that when the string is modeled as a series of masses connected with springs and
dampers (which is already discrete system in space), and this is discretized with respect to
time, the same or very similar recurrence equations are yielded as for the finite-difference
model [Rowland and Pask 1999].
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2.3.2 Digital Waveguide Modeling

Digital waveguide modeling introduced by Smith [1983, 1992] has been the most widely
used string modeling technique. This is because the time-domain solution of the one-
dimensional equation provides a very efficient implementation using DSP techniques. (This
is unfortunately not true for structures of two or three dimensions.) Actually, the system
reduces to a delay line and a filter in a feedback loop, similarly to what has been proposed
by McIntyre et al. [1983]. The simplest variation is the Karplus-Strong algorithm, where
the filter is a simple averaging operation [Karplus and Strong 1983; Jaffe and Smith 1983].
A nice feature of digital waveguide modeling is that while it is a simple filtering algorithm
from the DSP point of view, it still retains the physicality of the system. Thus, the
interaction of the different parts of the instrument (e.g., the coupling of different strings)
is easily implemented. A comprehensive overview on digital waveguide modeling can be
found in [Smith 2005].

Ideal String

Digital waveguide modeling is based on the spatial and temporal sampling of the traveling
wave solution of the wave equation. Rewriting Eq. (2.21) with xm = m∆x and tn = n∆t

gives
y(xm, tn) = y+(n∆t − m∆x/ct) + y−(n∆t + m∆x/ct). (2.53)

This can be implemented by storing the samples of two traveling wave components in
two vectors and moving their content into the left or right direction at every time step.
In digital waveguide modeling we always have ∆x = ct∆t. Theoretically, we could have
∆x 6= ct∆t, but moving the content of the vectors by a fractional spatial sample would
require the use of interpolation techniques. Accordingly, substituting ∆x = ct∆t into
Eq. (2.53) leads to a much simpler equation

ym,n = y+
m−n + y−m+n, (2.54)

where y+
m−n = y+(∆t(m − n)) and y−m+n = y−(∆t(m + n)). If the current shapes of the

traveling waves are stored to the vectors y+
m,n and y−m,n, the wave propagation is simply

implemented by shifting the contents of these vectors by one spatial sample at each time
step. Consequently, the next values are computed by

y+
m,n+1 = y+

m−1,n

y−m,n+1 = y−m+1,n, (2.55)

where ym,n = y+
m,n + y−m,n. This is illustrated in Fig. 2.2, where z−1 stands for unit

delays. These unit delays form two delay lines, which can be implemented very efficiently
as circular buffers.

As a result of the linearity of the wave equation, other variables can also be used instead
of displacement. These can be for example velocity, acceleration, slope, curvature or force.
Nevertheless, it is worth turning our attention to the transverse velocity v and the force F ,
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Figure 2.2: The principle of digital waveguide.

since they are proportional to each other. The characteristic impedance Z0 of the string
can be defined as follows [see, e.g., Smith 1992; Morse 1948, pp. 91–93]:

Z0 =
F+

v+
= −F−

v−
, Z0 =

√

Tµ (2.56)

where F+ and v+ are the force and velocity waves traveling to the right, and F− and v−

to the left, respectively. Eq. (2.56) is valid at every position of the string and at every
time instant. If a string with a characteristic impedance Z0 is terminated by an impedance
Z, the traveling waves will be reflected (except when Z = Z0). This is similar to the
termination of a transmission line. The equations for the reflection of force and velocity
waves are the following:

rv =
v−(L, t)

v+(L, t)
=

Z0 − Z

Z0 + Z
, rF =

F−(L, t)

F+(L, t)
= −rv =

Z − Z0

Z0 + Z
(2.57)

An ideally rigid termination corresponds to an infinite terminating impedance Z = ∞.
This implies that force waves reflect with the same amplitude and sign (rF = 1), and
velocity waves reflect with same amplitude but opposite sign (rv = −1). The latter can
also derived from v(L, t) = v+(L, t) + v−(L, t) = 0, which means motionless, i.e., perfectly
rigid terminations.

The excitation force can be taken into account by adding vin = Fin/(2Z0) to both
delay lines at the position of the excitation Min, as the excitation is acting on two pieces of
string, which both have the impedance Z0. On the grounds of these equations the digital
waveguide model of the ideal string can be formulated as shown in Fig. 2.3. The signs of
the form “z−D” stand for delay lines of length D.

Losses and Dispersion

In the case of the lossy and stiff string, the traveling waves no longer retain their shapes, but
dispersed and attenuated, as it is shown in Eqs. (2.30) and (2.31). Frequency independent
losses can be easily incorporated into the digital waveguide model of the ideal string by
inserting constant gain factors between the delay elements in Fig. 2.2. Practically, this
means that the vectors of the traveling waves are not simply shifted but attenuated by a
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Figure 2.3: Digital waveguide model of the ideal string.

constant coefficient in every time step. Frequency dependent losses require the insertion of
digital filters between all the elements. The effect of dispersion can also be implemented by
digital filters that have larger phase delay at low frequencies than at high frequencies. This
leads to virtually larger propagation speed at high frequencies, as required by Eq. (2.31).
However, inserting filters between all the delay elements would be computationally to
demanding.

In fact, the efficiency of digital waveguide modeling lies in consolidating the effect of
these filters into some specific points [Smith 1992]. Usually we are not interested in the
precise motion of each point along the string: the model should only match the wave
propagation between the excitation point and the output. All the filters between these two
points can be moved anywhere in the chain, as the system is linear and time-invariant. The
result is an ordinary delay line and a series of filter elements that we have collected together.
The net phase and magnitude response of these filter elements can be implemented by a
filter that requires significantly lower computation than the separate elements together.

1−

inMz − )( inMMz −−+

+

inF

inM M

)(zHr

bF

inMz − )( inMMz −−

Figure 2.4: Digital waveguide model of the non-ideal string.

It is usual to consolidate the effect of losses and dispersion at one side of the digital
waveguide, as depicted by Hr(z) in Fig. 2.4. This has a physical interpretation, as the
model of Fig. 2.4 is actually an ideal string terminated by a complex impedance Z. It
follows from Eq. (2.57) that if Z is frequency dependent, rv will also depend on frequency
(Hr(z) actually implements −rv in Fig. 2.4). From the signal processing viewpoint, an
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impulse circulating along the string is no longer filtered at every time step but only when
it travels through the termination.

The output of the string model is the force acting on the termination. From Eqs. (2.56)
and (2.57) the force at the termination (i.e., bridge) Fb will be:

F+ = v+Z0

F− = rF F+ = rF v+Z0

Fb = F+ + F− = (1 + rF )Z0v
+ ≈ 2Z0v

+, (2.58)

as rf ≈ 1. We again compute the bridge force by assuming infinitely rigid terminations,
similarly to the case of Eq. (2.52) in finite-difference modeling.

Parameter Estimation

The behavior of the digital waveguide model is determined by the number of delay elements
N = 2M and the reflection filter Hr(z). The digital waveguide model of Fig. 2.4 has the
transfer function

Hwg(z) =
Fb

Fin
= Hc(z)

1

1 − z−NHr(z)

Hc(z) =
(

1 − z−2Min

)

z−(M−Min) (2.59)

where Hc(z) is a comb filter and a delay depending on the position of the excitation along
the string, and Hr(z) is the reflection filter, or loop filter. The partial frequencies and decay
times are determined by Hr(z), while Hc(z) influences the initial phases and amplitudes.

The modal frequencies of the digital waveguide can be estimated by finding the local
maxima of the transfer function Hwg(z), which are at those frequencies where the denom-
inator is close to zero, that is, z−NHr(z) ≈ 1. As the magnitude of the reflection filter
|Hr(z)| is close to unity, this condition is met when the phase of z−NHr(z) is a multiple
of 2π:

ϕ{z−NHr(z)} = ϕ{e−jϑkNHr(e
jϑk)} = −Nϑk + ϕ{Hr(e

jϑk)} = −k2π, (2.60)

which gives a digital angular frequency ϑk for each k. Accordingly, the analog partial
frequencies are fk = [fs/(2π)]ϑk , where fs is the sampling frequency.

The decay time of mode k having the frequency fk can be simply computed by knowing
that mode k is attenuated by |Hr(e

jϑk)| each time it passes the reflection filter. As one
period of mode k fits into the digital waveguide loop k times (see Eq. (2.60)), it is attenuated
at a periodicity of k/fk. This gives the following expression for the decay times:

τk = − k

fk ln |Hr(ejϑk)| , (2.61)

where ϑk = (2πfk)/fs.
In the case of parameter estimation for the digital waveguide the partial frequencies

fk and decay times τk are known and the filter Hr(z) has to be designed and the length
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of the delay line, N , has to be set. The partial frequencies fk and decay times τk are
either computed from the physical parameters of the string (e.g., by the equations given
in Sec. 2.2.4), or estimated from recorded instrument sounds. Estimation techniques in-
clude the work of [Välimäki et al. 1996; Karjalainen et al. 2002]. Substituting the partial
frequencies and decay times into Eqs. (2.60) and (2.61) leads to a complex specification,
which could be directly used for filter design. For this, one should be able to separate the
phase and the amplitude errors of the approximation, since for those different constraints
are needed. The phase response of the reflection filter has to be very accurate at the fun-
damental frequency of the note. On the contrary, at other frequencies it is enough if it
follows the general trend of the prescription to simulate inharmonicity. The decay times
of the partials depend on the amplitude response of the filter. It follows from Eq. (2.61)
that the closer the amplitude response is to 1, the larger error will arise in decay times
for the same amplitude difference. The amplitude response should never be larger than
1, since it would make the feedback loop unstable. Consequently, a complicated filter
design algorithm would be needed, which could handle the magnitude and phase errors
separately. Smith [1983] reviews a number of sophisticated filter design techniques, two
of them are also discussed in [Laroche and Jot 1992]. However, these methods are rarely
used in practice because of their complexity and their instability.

Probably this is the reason why it is common to divide the filter design procedure
to designing the loss filter, dispersion filter and fractional delay filter parts [see, e.g.,
Jaffe and Smith 1983; Välimäki et al. 1996] and using these filters in series as Hr(z) =

Hl(z)Hd(z)Hfd(z). Note that dividing the filter design into different steps cannot give
mathematically optimal results, since the separate parts of the filters have some constrains
on the filter coefficients, like being allpass for the dispersion filter. Now the simplicity of
the analysis will lead to computationally less efficient implementation. It follows that it
might be beneficial to develop robust algorithms that could design one complete reflection
filter based on the previously mentioned amplitude and phase criteria. However, we have
to note that this would only slightly diminish the computational load of the whole model
while it would increase the complexity of parameter estimation.

Loss Filter Design

The specification of the loss filter can be computed by using the inverse of Eq. (2.61):

gk = e
− k

fkτk (2.62)

where τk is the decay time of partial k, and gk is the desired amplitude value of the loss
filter at the angular frequency ϑk of partial k. Fitting a filter to gk coefficients is not trivial,
even if the phase part of the transfer function is not considered. This is because of the
previously mentioned nature of the loop filter: the decay time error is a nonlinear function
of the amplitude error. The stability of the digital waveguide loop is also hard to handle,
since a small deviation from the specification can lead to a magnitude response larger than
unity.
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Because of the above mentioned problems and because it already provides good sound,
it is widespread to use simple loss filters, such as second-order FIR filters [Borin et al.
1997] or first-order IIR filters, among those the one-pole loss filter [Välimäki et al. 1996;
Välimäki and Tolonen 1998] being the most common one. The transfer function of such a
filter is:

H1p(z) = g
1 + a1

1 + a1z−1
(2.63)

where −a1 is the pole of the filter and g refers to the DC gain. The advantage of using a
one-pole filter is that it is always of a lowpass character for a1 < 0. Accordingly, keeping g

below unity assures the stability of the waveguide loop. In [Välimäki et al. 1996; Välimäki
and Tolonen 1998] such a filter was found to be adequate for simulating the acoustic guitar
and other plucked string instruments. Jaffe and Smith [1983] also discussed the use of the
one-pole filter, but without the gain factor, i.e., g = 1. Interestingly, the decay times of the
digital waveguide using the one-pole loss filter are very similar to the decay times of the
simplest finite-difference string model, given by Eq. (2.47). This is discussed in Sec. 3.1.1.
The different approaches for designing the loss filters will be outlined in Chap. 3 in detail,
together with the proposed algorithms.

Dispersion Filter Design

The string dispersion is modeled by Hd(z), which is an allpass filter with largely varying
phase delay as a function of frequency. The phase delay specification for the dispersion
filter can be obtained from Eq. (2.64) as

ϕk = Nϑk − k2π − ϕ{Hl(e
jϑk)}, (2.64)

where ϕk is the prescribed phase response of the dispersion filter Hd(z). Note that the phase
response of the loss filter Hl(z) is subtracted from the specification (last term of Eq. (2.64)).
Van Duyne and Smith [1994] proposed an efficient method for simulating dispersion by
cascading equal first-order allpass filters in the waveguide loop. However, the constraint
of using equal first-order sections does not allow accurate tuning of inharmonicity.

Rocchesso and Scalcon [1996] proposed a design method based on [Lang and Laakso
1994]. Starting from a target phase response, K frequency points fk are chosen corre-
sponding to the partial frequencies. The filter order is Nd < K. For each partial k the
method computes the quantities:

αk = −1

2
(ϕk + Ndϑk) , (2.65)

Filter coefficients an are computed by solving the system

Nd
∑

n=1

an sin(αk + nϑk) = − sin(αk), k = 1 . . . K (2.66)

As Eq. (2.66) is overdetermined, it is solved in the least-squares sense. The error analysis
shows that the phase error is weighted by the magnitude response of the denominator
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|Hden
d (z)|. This can be compensated by the iterative application of an inverse weighting

1/|Hden
d (z)|. It was shown by Rocchesso and Scalcon [1996] that several tens of partials

can be correctly positioned for any piano key, with the allpass filter order not exceeding 20.
Moreover, the fine tuning of the string is automatically taken into account in the design.

Since the computational load for Hd(z) is heavy, it is important to find criteria for ac-
curacy and order optimization with respect to human perception. Rocchesso and Scalcon
[1999] studied the dependence of the bandwidth of perceived inharmonicity (i.e., the fre-
quency range in which misplacement of partials is audible) on the fundamental frequency,
by performing listening tests with decaying piano tones. The bandwidth has been found
to increase almost linearly on a logarithmic pitch scale. Partials above this frequency band
only contribute some brightness to the sound, and can be made harmonic without the
degradation of sound quality.

Järveläinen et al. [2001] also found that inharmonicity is more easily perceived at low
frequencies, even when coefficient B for bass tones is lower than for treble tones. This is
probably due to the fact that beats are used by listeners as cues for inharmonicity, and
even low B’s produce enough mistuning in higher partials of low tones. These findings can
help in the allpass filter design procedure, although a number of issues still need further
investigation.

Fractional Delay Filter Design

As mentioned earlier, the phase delay of the digital waveguide loop should be very accurate
at the fundamental frequency of the note. If it is not so, the corresponding note will be
out of tune. This can be accomplished by dispersion filter design, but it is more flexible
to use a separate filter. Naturally, when the dispersion filter Hd(z) is not implemented,
the application of the fractional delay filter Hfd(z) cannot be avoided. Once the loss and
the dispersion filters are designed, the phase delay (defined as the phase ϕ divided by the
digital angular frequency ϑ) of the delay line at the fundamental frequency ϑ0 = 2πf0/fs

should be

D0 = N + Dfd =
2π

ϑ0
+

ϕ{Hl(e
jϑ0)}

ϑ0
+

ϕ{Hd(ejϑ0)}
ϑ0

. (2.67)

This was derived from Eq. (2.60) for the fundamental frequency, i.e., k = 1. The prescribed
length of the waveguide D0 is not an integer. The solution is to use fractional delay
filters [Välimäki 1995; Laakso et al. 1996] in series with the delay line. The simplest
choice is the first-order allpass filter, as proposed in [Smith 1983; Jaffe and Smith 1983].
The integer part of D0 will be implemented as the delay line of the digital waveguide
with a length of N = ⌊D0 − 0.5⌋, and the fractional part will be realized with the first-
order allpass filter with a phase delay of Dfd = D0 − N at ϑ0. The resulting fractional
delay will be 0.5 ≤ Dfd < 1.5 which is the optimal range for the first-order allpass filter
[Välimäki 1995]. The a1 coefficient of the allpass filter can be approximately calculated as
a1 = (1 − Dfd)/(1 + Dfd) [Smith 1983; Jaffe and Smith 1983; Välimäki 1995].
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2.3.3 Modal-based Approach

Modal synthesis is based on the fact that any vibrating mechanical system can be decom-
posed into a set of mass-spring-damper models. This is analogous to decomposing the
transfer function of the system into parallel second-order sections. This approach has been
used by Adrien [1991]. A new variation of modal synthesis is the Functional Transforma-
tion Method [Trautmann and Rabenstein 1999, 2003], where the continuous-time impulse
response of the vibrating system is computed by using the Laplace and the Sturm-Liouville
transform, resulting in a set of exponentially decaying sinusoids for linear systems. This is
then implemented by resonators in discrete time.

Here we will simply discretize the results of Sec. 2.2.4, where Eq. (2.34) describes the
motion of the different string modes. Discretizing Eq. (2.34) gives an algorithm that can be
directly applied to sound synthesis. Naturally, discretizing the impulse response Eq. (2.36)
gives the same result. The only difference is that Eq. (2.34) is parameterized by the physical
parameters of the strings, while in Eq. (2.36) the modal frequencies ωk and decay times τk

are the free parameters.
The discretization with respect to time can be done by various methods, but as the

impulse response of the modes, Eq. (2.36), can be considered as a band-limited signal, it
is sufficient to use the impulse invariant transform. However, we have to take care of not
implementing any modes having the frequency which is near or above Nyquist rate fs/2.
Accordingly, we are looking for the discrete-time system that has the impulse response

yδ,k(tn) =
1

πLµfk

1

fs
e
− tn

τk sin(2πfktn), (2.68)

where tn = n∆t, ∆t = 1/fs being the sampling interval. Equation (2.68) differs from
Eq. (2.36) in that now frequencies fk = ωk/(2π) are used and in that it is scaled by a
factor of 1/fs. This scaling is required because the discrete time dirac impulse has an area
of 1/fs, while the analog dirac impulse has unity area.

In general, an exponentially decaying cosine with arbitrary initial amplitude Ak and
phase ϕk is written as

ck(tn) = Ake
− t

τk cos(2πfktn + ϕk) = e
−n 1

τkfs
Cke

j2πn
fk
fs + C∗

ke
−j2πn

fk
fs

2
(2.69)

where Ck is the complex initial amplitude, whose phase ϕ{Ck} determines the initial
phase ϕk and its absolute value |Ck| equals the initial amplitude Ak of the decaying cosine
function. The asterisk ∗ stands for complex conjugation. Taking the z-transform of ck(tn)

gives

Z{ck(tn)} = Z{Ck

2
pn

k +
C∗

k

2
p∗k

n} =
1

2

(

Ck

1 − pkz−1
+

C∗
k

1 − p∗kz
−1

)

(2.70)

pk = e
j2π

fk
fs e

− 1

τkfs , (2.71)

where pk and p∗k are the poles of the two complex resonators. After some algebraic trans-
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formations we obtain the second-order transfer function

Hres,k(z) =
b0,k + b1,kz

−1

1 + a1,kz−1 + a2,kz−2
(2.72a)

b0,k = Re{Ck} (2.72b)

b1,k = −Re{Ckp
∗
k} (2.72c)

a1,k = −2Re{pk} (2.72d)

a2,k = |pk|2. (2.72e)

In the case of Eq. (2.68) the parameters Ck take the values

Ck = −j
1

πLµfk

1

fs
. (2.73)

It can be seen from Eqs. (2.73) and (2.72b) that b0,k = 0, as the real part of Ck is zero.
Accordingly, each mode is implemented by a two-pole no-zero discrete-time system.

The computation of the string response is as follows: first, the excitation force Fy,k(tn)

of mode k is computed by the scalar product of Eq. (2.35d). If the excitation force Fexc(tn)

is concentrated to a mathematical point along the string at xexc, it only leads to a scaling
by the modal shapes

Fy,k(tn) = sin

(

kπxexc

L

)

Fexc(tn). (2.74)

These forces Fy,k(tn) are the input signals of the resonators Hres,k(z) calculating the in-
stantaneous amplitudes yk(tn) of the modes. Then, the displacement of the string can be
computed at an arbitrary point 0 ≤ x ≤ L along the string by

y(x, tn) =

K
∑

k=1

yk(tn) sin

(

kπx

L

)

(2.75)

where K is the number of simulated modes. Note that the position of both the observation
point x and the excitation xexc are arbitrary, as the modal approach does not discretize the
space variable, on the contrary to finite-difference and digital waveguide modeling already
discussed in Secs. 2.3.1 and 2.3.2.

The output of the string model is generally the force at the termination, which is
computed by

Fb(tn) = − T0
∂y

∂x

∣

∣

∣

∣

x=L

= −T0π

L

K
∑

k=1

yk(tn)k(−1)k. (2.76)

Naturally, the input and output scaling factors can be incorporated into the b1,k parameter
of the resonator. As an example, if the string is excited at the position xexc by a force
Fexc(tn) and its output is the termination force Fb(tn), then b1,k becomes

b1,k = Re{Ckp
∗
k}

T0π

L
k(−1)k sin

(

kπxexc

L

)

. (2.77)
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This simplifies the computation, as now all the resonators Hres,k have the same input signal
Fexc(tn), and the force at the termination Fb(tn) is calculated by simply summing the out-
puts of the resonators. Note that now these outputs have no direct physical interpretation,
as they are the scaled versions of yk(tn).

A nice feature of the modal approach is that the modal frequencies, amplitudes and
decay times can be controlled individually. This is advantageous when the goal is the
perfect resynthesis of a specific instrument tone, as the measured data can be directly
uploaded to the model. However, some of the physicality is lost. As an example, coupling
of different strings is very straightforward with both finite-difference modeling and digital
waveguides, but here it becomes more complicated. The computational complexity of the
modal approach is somewhere between the finite-difference and digital waveguide models.

2.4 Excitation Modeling

The string and body models are of the same structure for the different string instruments,
although they are parameterized in a different way for the various instruments. On the
contrary, for modeling the excitation, different model structures have to be developed.
This is because the excitation mechanisms of the instruments are completely different, and
their precise implementation is essential for rendering the sonic characteristics of these
instruments.

2.4.1 Struck Strings

As the simplest approach, striking can be modeled by setting the initial velocity of the
string at the excitation point to a given value, while the initial displacement is zero [Smith
1992]. This is based on the assumption that the hammer is in contact with the string for an
infinitesimally short duration, which could happen only if the hammer mass is negligible
in comparison to the string mass. However, this is not the case in real instruments, so
more elaborated models are needed. As the piano is the most important struck stringed
instrument, we will concentrate on modeling the piano hammer.

The piano string is excited by a hammer, whose initial velocity is controlled by the
player with the strength of the touch on the keys. The excitation mechanism of the piano
is as follows: the hammer hits the string, the hammer felt compresses and feeds energy to
the string, then the interaction force pushes the hammer away from the string. Accordingly,
the excitation is not continuous, it is present for some milliseconds only. The hardwood
core of the hammer is covered by wool felt, whose structure is not homogeneous. This is
the reason why playing harder on the piano results not only in a louder tone, but also in
a spectrum with stronger high frequency content [Fletcher and Rossing 1998, pp. 367].

The piano hammer is generally modeled by a small mass connected to a nonlinear
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spring [Boutillon 1988]. The equations describing the interaction are as follows:

Fh(t) = F (∆y) =

{

Kh(∆y)Ph if∆y > 0

0 if∆y ≤ 0
, (2.78a)

Fh(t) = −mh
d2yh(t)

dt2
, (2.78b)

where Fh(t) is the interaction force, ∆y = yh(t) − ys(t) is the compression of the hammer
felt, yh(t) is the position of the hammer, and ys(t) is the position of the string at the
excitation point xexc (i.e., ys(t) = y(xexc, t)). The hammer mass is referred by mh, Kh is
the hammer stiffness coefficient, and Ph is the stiffness exponent.

These equations can be easily discretized with respect to time. However, as seen from
Eqs. (2.78a) and (2.78b), there is a mutual dependence between Fh(t) and yh(t), i.e., for
the calculation of one of these variables, the other should be known. This is generally
overcome by the assumption that the hammer force changes a little during one time step,
that is Fh(tn) ≈ Fh(tn−1). Although it may lead to numerical instabilities for high impact
velocities, the straightforward approach is often used in the literature [see, e.g., Chaigne and
Askenfelt 1994]. The numerical instabilities can be avoided by rearranging the nonlinear
equations to known and unknown terms [Borin et al. 2000], or, by the multi-rate method
presented in Sec. 4.1.

We note that piano hammers are not fully characterized by the model of Eq. (2.78),
as the felt has a hysteretic behavior. The hysteresis has been described by changing the
parameter Ph in Eq. (2.78) by Boutillon [1988]. A more elaborated model was presented by
Stulov [1995], which have shown good agreement with measurements when the hammer is
bouncing into a rigid object. However, the model of Stulov [1995] does not provide accurate
results when compared to real hammers striking piano strings [Giordano and Winans II
2000]. To date, no precise hammer models exist. However, it seems that the ear is less
sensitive to these variations, mostly because the short duration (1–2 ms) of the hammer–
string contact. Accordingly, implementing Eq. (2.78) already produces good sound and
the addition of the hysteretic model of Stulov [1995] only introduces a perceptual effect
comparable to lowpass-filtering. Nevertheless, hammer models based on [Stulov 1995] have
been presented in [Borin and De Poli 1996; Giordano and Jiang 2004].

Although not being a physical approach, it is also possible to measure or precompute the
temporal function of the excitation Fh(t), store it in a memory, and lead this into the string
model when a note is played. Naturally, this can also be done for other types of excitations,
such as plucking. This kind of hybrid approach has been used in [Bensa et al. 2004], where
the strings were modeled by coupled digital waveguides. The source (hammer force) was
extracted by inverse filtering the measured string signal with the transfer function of the
string model. Then, the excitation force was modeled by a static part and a filter that
changes the frequency content of the excitation as a function of dynamic level. Note that
the disadvantage of such an approach is that the features of a real physical model (e.g., it
responds naturally to the restrike of a string still in vibration) is lost.
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2.4.2 Plucked Strings

To the first approximation, when a string is plucked, it is pulled slowly by the finger or the
plectrum at a certain point and then it is suddenly released. This means that plucking can
be modeled by setting the initial displacement of the string to a triangle shape, which is
zero at the terminations and has a maximum at the plucking point [Hiller and Ruiz 1971a].
If the string is plucked at the position 0 ≤ xexc ≤ L with the amplitude Ap at the plucking
point, the initial conditions can be written as

y(x, t) =

{

Ap
x

xexc
if 0 ≤ x ≤ xexc

Ap
L−x

L−xexc
if xexc < x ≤ L

, (2.79a)

∂y(x, t)

∂t

∣

∣

∣

∣

t=0

= 0. (2.79b)

This is very simple from the sound synthesis point of view as there is no need for an
additional dynamic system for excitation modeling. For finite-difference models and digital
waveguides, Eq. (2.79) is implemented as is, while for modal models the Fourier series
of the initial displacement is computed and the initial amplitudes of the modes are set
accordingly. When the Fourier analysis is made, one finds that those modes that have
a node at the plucking point are not excited, meaning that if L/xexc is an integer, then
every L/xexcth mode is missing from the spectrum [see, e.g., Fletcher and Rossing 1998,
p. 41]. Note that this is also true for other types of excitations. In the case of digital
waveguides it is possible to approximate the plucking as a pair of impulses, if the wave
variable is acceleration [Smith 1992]. However, for the plucking model of Eq. (2.79), the
only two parameters are the excitation point xexc (controlling the missing harmonics) and
the plucking amplitude Ap (setting the overall amplitude), which is quite poor compared
to the freedom what a guitar player has during plucking. Especially if we notice that the
role of Ap is to set the overall amplitude of the modes, thus, it has no influence on the
spectral content.

A more realistic model is a modified hammer model presented in [Borin et al. 1992],
where the dynamics of the plectrum is written as Eq. (2.78b), while for the nonlinear
plucking force Eq. (2.78a) is modified in a way that above a certain ∆y level, the force
F (∆y) drops to zero. This corresponds to the point when the plectrum releases the string.
The plucking model is implemented in the same way as the hammer model of Eq. (2.78),
that is, it is discretized and connected the string model at the excitation point xexc. A
more elaborated plucking model has been presented in [Cuzzucoli and Lombardo 1999],
where the finger is modeled as a dynamic system including its damping effect. By varying
the model parameters and the shape of the external force (the force with which the player
moves its finger), different kind of plucking sounds could be synthesized. For the harpsi-
chord, a simple plucking model has been presented in [Giordano and Winans II 1999]. To
conclude, an advantage of the plucking model approach that the model has more degrees of
freedom, but it requires the additional computation of the excitation model. Note that this
additional complexity is generally negligible compared to string modeling as these models
are simple lumped systems and they run only the very first part of the tone (i.e., during
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excitation).

2.4.3 Bowed Strings

In the case of bowed instruments the excitation comes from the friction between the string
and the bow hairs. The bow, moving perpendicular to the string, grips the string (sticking
phase). Due to the increasing displacement of the string, the elastic returning force is also
increasing until its level reaches the sticking friction. At this point the bow releases the
string, the string swings back (slipping phase) and then vibrates freely. This vibration
is damped partly by the own losses of the string and partly by the slipping friction that
develops between the string and the bow hairs. This state lasts as long as the bow grips
the string again, which occurs only when the velocity of the bow and the string equals. In
this case, their relative velocity is zero, the frictional force is maximal. This alteration of
the stick and slip phases is the so-called Helmholtz motion. The excitation is periodical
and generates a sawtooth shape vibration [see, e.g., Fletcher and Rossing 1998, p. 47].

In [Hiller and Ruiz 1971a] a simplified model of bowing was used assuming that the
string either moves along with the bow or it slips away with negligible friction, i.e., vibrates
freely. The switching between these two states was controlled by comparing the string slope
|∂2y/∂x2| with a precomputed constant.

McIntyre et al. [1983] proposed a more physical algorithm later named the “MSW
algorithm”, which is the most often used bowing model in the literature. In the MSW
algorithm the dependence of the excitation force on the velocity difference of string and bow
is described by a viciously nonlinear function. For zero velocity difference (sticking phase),
the friction force can increase until a certain maximal value (the static friction), then the
dynamic friction decreases as the velocity difference increases (slipping phase), similarly
to what is found in reality. The method is well suited for the waveguide formalism, as it
operates with incoming and reflected waves. It computes the required velocity correction of
the string for a given incoming string velocity and bow velocity by finding the intersection
of the nonlinear velocity-force curve of the interaction and the straight line determined by
the impedance of the string. Smith [1986] presented a simplified implementation of the
MSW algorithm by the application of a signal-dependent reflection function at the bowing
point. The reflection coefficient is read from a look-up table as a function of the relative
velocity of string and bow, eliminating the need of an equation solver.

The models based on a memoryless relation of the relative velocity and interaction force
(such as the MSW algorithm) render the most important features of the bow-string inter-
action. However, for some secondary effects, such as hysteresis, more sophisticated models
are needed. Numerous bow modeling techniques are reviewed in [Serafin 2004], including
dynamic friction models where the contact force is modeled by a nonlinear differential
equation.



2.5. INSTRUMENT BODY MODELING 33

2.5 Instrument Body Modeling

Here we treat the instrument body and the bridge (a wooden piece which transmits the
string vibration to the body) as one subsystem. Thus, body modeling refers to modeling
the bridge-body system of the instrument. The effect of the instrument body on the sound
is twofold. Its main role is to lead the vibration of the string to the air, producing the
sound pressure that can be heard. In most of the cases this effect can be characterized by
a frequency-dependent transfer function, describing the sound pressure at a given location
as a function of the string force acting on the instrument body. The other effect of the
body is that it also influences the string vibration itself. This is because the bridge is
not infinitely rigid, it vibrates according to the normal modes of the bridge-body system,
providing a frequency-dependent terminating impedance to the string. This influences the
decay times and the modal frequencies of the string vibration and produces a coupling
between the different strings.

Two main approaches can be distinguished between body modeling techniques, depend-
ing on which one of these effects is implemented. In the physically accurate case, both the
radiation and impedance characteristics are modeled. The input of the body model is the
string force, and the outputs are the bridge velocity acting back on the string and the sound
pressure at a given location in space. On the other hand, when the body is implemented
as a post-processing technique, only the sound pressure is computed as a function of string
force. Thus, the impedance effect (the feedback to the string) is not modeled with this ap-
proach but is taken into account in the string model. The advantage of the post-processing
technique over the physics-based one is that the model structure becomes simpler. More-
over, the parameter estimation is also simplified as now the modal frequencies and decay
times are influenced by the string model only. Conversely, the physics-based body mod-
eling approach is closer to reality and automatically takes into account some interesting
second-order effects, such as the coupling of different strings.

For the string and the excitation, one of the main motivation for using the physics-based
approach is that it takes into account the interaction of the musician in a meaningful way
as the input parameters are physical variables, such as string length or bow velocity. This
factor has no importance in deciding whether a physics-based or a post-processing type
body model should be used, as the player cannot influence the parameters of the instrument
body in real instruments. Naturally, the physics-based approach might have its benefits for
producing never heard synthetic sounds. As an example, such an approach can be made
capable of producing a sound of a virtual instrument whose body is continuously changing
its shape.

2.5.1 Physics-based Modeling

In physics-based body modeling, both the impedance and radiation properties of the bridge-
body subsystem are modeled. A common feature of these models that they are generally
parameterized by physical dimensions and material properties of the instrument body, and
not by transfer function measurements. This way, these models can be used to predict how
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the sound of a real instrument would change by having different shape or being of different
material.

A straightforward choice for modeling the instrument body is finite-difference modeling,
as here the continuous time equations can be directly implemented in discrete time. One
nice example is the piano model of Giordano and Jiang [2004], where the piano soundboard
is modeled by a finite-difference plate model. This model takes into account the effect of
the ribs and the bridge by varying the thickness of the board. The soundboard is excited
by the string force, and it acts back to the string through the bridge movement. An
interesting feature of the model is that its output is taken from a three-dimensional finite-
difference room model, which is excited by the soundboard movement. A finite-difference
guitar model has been presented by Bader [2003]. The novelty of the approach is that the
nonlinear coupling of the transverse and longitudinal waves in the guitar top-plate is also
modeled, together with the vibration of the air cavity. Unfortunately, these finite-difference
body models are computationally so demanding that they cannot be run in real-time.

The instrument body might be also modeled by the modal approach. Woodhouse
[2004a,b] presented a guitar model where the vibration of the body has been simulated by
a modal model, whose parameters were fitted from real measurements. In [Cuzzucoli and
Lombardo 1999] a much simpler model has been used that describes the guitar body with
three modes (the first resonance of the table and the air, and the Helmholtz resonance),
yielding an approximation valid only for the low frequencies.

2.5.2 Post-processing Techniques

In this approach, the radiation effect of the instrument body is taken into account as a
linear filtering operation upon the signal coming from the string model. Here the impedance
effects of the body upon the string (the alteration of modal frequencies and decay times,
the coupling of different strings) are implemented in other parts of the model (i.e., in
the string). This way the modeling problem reduces to filter design. Unfortunately, the
transfer function of real instrument bodies exhibits high modal density, making difficulties
for standard filter design algorithms. For high quality sound, high-order filters are needed.
Their computational complexity can be 10 or 100 times higher than that of needed for a
digital waveguide based string model. As an example, the pressure-force transfer function
of a piano soundboard is shown in Fig. 2.5. The soundboard was excited by hitting the
bridge with an impact hammer. The excitation force and the sound pressure at 2 m distance
from the piano were simultaneously recorded. The ratio of their spectra is depicted in this
figure. Ideally, the last block of Fig. 2.1 (p. 8) should have similar transfer function to
the one displayed here in Fig. 2.5. The different filtering techniques will be reviewed in
Sec. 4.3.

A further difficulty of the filter-design based post-processing approach lies in the fact
that the measurement of body impulse responses is a complicated task, especially at high
frequencies (above 5–10 kHz). This is because impulse hammers generate an excitation
pulse that is of lowpass character, leading to a measured response where the high frequency
part is more noisy, i.e., less reliable. This might be avoided by using periodic excitations
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Figure 2.5: The force-pressure transfer function of a piano soundboard.

generated by shakers. However, it is much harder to properly fit a shaker to the instrument
body than hitting the bridge by a hammer. The discussion of the measurement methods is
out of the scope of this thesis. We only note that the impulse responses obtained by force-
hammer excitation seem to provide perceptually acceptable responses. The most probable
reason for this is that the less reliable high-frequency part of the response is excited by the
string at a smaller amplitude (the string signal is also of lowpass character) and that the
ear is relatively insensitive to the variation of modal parameters at high frequencies.

The computationally most efficient way of implementing the effect of the body filtering
is to model it by a reverberation-like algorithm. As an example, in the model of Garnett
[1987] several digital waveguides were coupled together to give a high-density impulse
response. Borin et al. [1997] suggested the use of feedback delay networks for modeling
the force–velocity response of the piano soundboard, which could be used for modeling the
coupling of different strings, too. A difficulty of these reverberator-based approaches is
that only the statistical distribution and the overall damping of the body normal modes
can be set by the available parameter estimation techniques. Therefore, the sound quality
of these algorithms is usually inferior to the filter-based techniques, but they require less
computational power.
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2.5.3 Commuted Synthesis

To avoid the problems of filter design and high computational demand, the commuted
synthesis technique was presented in [Karjalainen and Välimäki 1993; Smith 1993]. This
is based on the idea that if all the elements of Fig. 2.1 (p. 8) are linear and time-invariant,
and the feedback from the string to the excitation and from the body to the string is
neglected (i.e., the dashed arrows are deleted from Fig. 2.1), the system reduces to three
linear filters in series. The order of these filters can be commuted, which results in a
structure of Fig. 2.6.

Excitation StringBody Sound

Control

Figure 2.6: Commuted synthesis.

As the input signal of the model is a unit pulse, the body filter does not have to be
implemented. Its impulse response can be stored in a wavetable whose content is simply
fed to the string. The effect of excitation filtering can also be taken into account in the
wavetable. In this case, different wavetables have to be stored for the different excitation
types for all the notes. If the excitation table is computed by filtering the recorded sound
with the inverse of the transverse function of the string model, then the output of the model
equals the original up to the length of the excitation table. This is extremely useful when
the goal is the precise resynthesis of the recorded instrument sound. Actually, in this case
commuted synthesis can be considered as a tricky sampling algorithm, which reproduces
the first part of the sound precisely, then it repeats one period of sound and filters it
periodically to produce the approximate frequency and decay of the partials. Astonishing
results have been achieved by this method in the case of the acoustic guitar at relatively
low computational complexity [Välimäki et al. 1996; Välimäki and Tolonen 1998].

The drawback of the method is that the excitation model looses its physicality. Now
the excitation model is either the part of the wavetable, or implemented as a linear filter.
Thus, it is controlled by either switching between wavetables, or changing filter coeffi-
cients, rather than varying a physical parameter such as plucking force. The bidirectional
interaction of the excitation and the string cannot be implemented anymore, therefore
some effects, such as the restrike of a string, cannot be implemented this way. More-
over, complex nonlinear excitations, such as bowing, cannot be linearized. Although an
efficient commuted violin model exists [Smith 1997], it models the main feature of violin
excitation only. More importantly, when the string model itself is nonlinear (see Chap. 6),
then commuted synthesis cannot be applied. Nevertheless, for such applications, where
low complexity is more important than sound quality (multimedia, computer games), the
commuted synthesis with linear string models is still the best option.
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2.6 Conclusion

This chapter has outlined the most common strategies for modeling the different parts of
string instruments.

For string modeling, three main approaches have been described. The first one, finite-
difference modeling, is the direct discretization of the wave equation. It’s main advantage
is the direct connection to the continuos-time equation, making it possible to model such
complicated situations as spatially nonuniform tension (this will be exploited in Sec. 6.4).
On the other hand, it has the largest computational complexity among the three main
string modeling approaches.

The discretization of the traveling-wave solution of the wave equation leads to digital
waveguide modeling. The losses and dispersion of the string are lumped to one point,
resulting in a delay line and a filter in a feedback loop. This allows very efficient imple-
mentation. Indeed, for linear string models, the digital waveguide seems to be the best
choice as it results in the lowest computational complexity for a given quality requirement.
Moreover, it has a strong connection to physical reality, as it operates with incident and
reflected waves, making the coupling of the different strings easy to implement. On the
other hand, it can model nonlinear string behavior with certain limitations (see Sec. 6.3.6).

The third technique is based on the discretization of the modal solution of the wave
equation. Consequently, the string motion is computed by a set of second-order resonators,
implementing the normal modes of the string. The computational complexity of the ap-
proach is between the finite-difference and digital waveguide techniques. The main advan-
tage of the technique is that its parameters can be easily set in a way to mimic a recorded
tone. On the other had, it only has an indirect correction to physical reality, making some
second-order effects (coupling of strings, temporal variation of tension) harder to imple-
ment. In any case, when only a small number of modes have to be implemented (as for
modeling the longitudinal motion in Chap. 6), the modal approach is the most efficient.

The main difference between the various string instruments lies in the excitation mech-
anism. Therefore, the effects and modeling techniques of striking, plucking, and bowing
have been outlined in Sec. 2.4. In general, the excitation is modeled by the discrete-time
implementation of a one-dimensional, nonlinear differential equation.

Then, the most common techniques for modeling the instrument body have been de-
scribed. The physics-based approach models the motion of the different parts of the in-
strument body and is generally parameterized by the geometric and material properties of
the instrument. Therefore, these models are well suited for experimentation (e.g., how the
shape of the body affects the sound), and they model the coupling of the instrument parts
in a physically meaningful way.

On the other hand, the post-processing technique treats the body as a “black box”
model, copying the sound pressure response of the original system for a given input force.
Generally, post-processing techniques provide better sound quality as their parameters
are estimated from the measurement of real transfer functions. Moreover, they can be
efficiently implemented in DSPs, as they are implemented by digital filters.

A special case of instrument body modeling is the commuted synthesis technique, where



38 CHAPTER 2. PHYSICAL MODELING OF STRING INSTRUMENTS

the impulse response of the body is stored in a wavetable, read sample by sample, and fed
to the string. The commutation of body, excitation and string can be done in the case of
linear string and excitation models. In this case, this is the most efficient body modeling
technique, as the body model is reduced to reading samples from a memory. However, the
technique cannot be applied for nonlinear excitation and string models. In that case the
model had to be linearized by converting the time-invariant nonlinear elements to linear
ones with varying parameters. As a result, some of the secondary effects of real instruments,
such as the restrike of a string and the modulation of tension, cannot be modeled.

As we have seen, various approaches are available for physics-based sound synthesis of
string instruments. The choice mainly depends on the quality requirement and the available
computational power. Another factor is that whether the purpose is to experiment by
changing the geometric and material properties of the instrument or to realize a sound
synthesis model whose sound resembles to a given instrument. On the whole, no “perfect
solution” exists, it is always a compromise between the given requirements.



Chapter 3

Loss Filter Design for the Digital

Waveguide

This chapter presents new techniques for decay time-based loss filter design. First the
case of the one-pole filter is discussed, which is the most commonly used loss filter in the
literature. Approximate equations are given that relate the parameters of the one-pole
filter to the coefficients of the lossy wave equation. Based on this relation, a simple and
efficient filter design technique is presented, which applies weighted polynomial regression.
In those cases where the goal is the precise resynthesis of a given sound, the one-pole filter
might not provide sufficient accuracy. Therefore, a simple and robust design method is
proposed for high-order loss filters. Both algorithms minimize the error of decay times
instead of the error of the magnitude response, as suggested in [Smith 1983]. Another
common feature is that both techniques are based on mean squares optimization, leading
to robust and simple implementations.

3.1 The One-pole Loss Filter

As already mentioned in Sec. 2.3.2, the one-pole filter is the most commonly used loss filter
in digital waveguide models. Despite its simplicity, the one-pole loss filter has been found
to be a good approximation for many string instruments [Välimäki et al. 1996; Välimäki
and Tolonen 1998]. The pattern of the decay times, which arises when one uses such a
filter, matches the decay of a real string perceptually well. This was the main motivation
to find the connection between the digital waveguide with a one-pole loss filter and the
wave equation of the lossy string. After presenting the approximate equations for the decay
times, a robust filter design technique is proposed.

3.1.1 Approximate Formulas for the Decay Times

The magnitude response of the one-pole filter H1p(z) of Eq. (2.63) is:

|H1p(ejϑ)| = g
1 + a1

√

a2
1 + 1 + 2a1 cos ϑ

(3.1)

39
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From Eq. (2.61) decay times τk of the partials produced by a digital waveguide with
such a filter are

τk = − 1

f0 ln |H1p(ejϑk)| ≈
1

f0(1 − |H1p(ejϑk)|) , (3.2)

where f0 is the fundamental frequency of the note, and for the logarithm function the
first-order Taylor-series approximation was used. Note that here we assume fk = kf0

and neglect the effect of inharmonicity (originally included in Eq. (2.61)). The effect of
inharmonicity is discussed at the end of this section.

From Eqs. (3.1) and (3.2) the decay rate σk = 1/τk is expressed as

σk ≈ f0(1 − |H1p(e
jϑk)|) = f0

(

1 − g
1 + a1

√

a2
1 + 1 + 2a1 cos ϑk

)

=

= f0

√

a2
1 + 1 + 2a1 cos ϑk − g(1 + a1)
√

a2
1 + 1 + 2a1 cos ϑk

. (3.3)

Using the second-order Taylor-series approximation for the cosine function (cos x ≈ 1−x2/2

for x ≈ 0) gives

σk ≈ f0

√

(a1 + 1)2 − a1ϑ2
k − g(1 + a1)

√

(a1 + 1)2 − a1ϑ
2
k

= f0

√

1 − a1

(a1+1)2 ϑ2
k − g

√

1 − a1

(a1+1)2
ϑ2

k

. (3.4)

By noting that denominator is close to 1 and
√

1 + x ≈ 1 + x/2 for x ≈ 0 we obtain

σk ≈ f0

(
√

1 − a1

(a1 + 1)2
ϑ2

k − g

)

≈ f0

(

(1 − g) − a1

2(a1 + 1)2
ϑ2

k

)

. (3.5)

Finally, the decay times of the digital waveguide with a one-pole loss filter will be

τk =
1

σk
≈ 1

c1 + c3ϑ
2
k

(3.6a)

c1 = f0(1 − g) (3.6b)

c3 = −f0
a1

2(a1 + 1)2
, (3.6c)

where ϑk is the digital angular frequency. The approximation is accurate for g = 1 − ǫg

and a1 = −ǫa, where ǫg and ǫa are small positive numbers. This holds for loop filters used
in practice. Example values are available, e.g., in [Välimäki and Tolonen 1998].

Replacing ϑk with the angular frequency ωk = fsϑk gives

τk =
1

σk
≈ 1

b1 + b3ω2
k

(3.7a)

b1 = f0(1 − g) (3.7b)

b3 = − f0

f2
s

a1

2(a1 + 1)2
. (3.7c)

Equation Eq. (3.7a) is similar to the decay time of a wave equation with the simplest
frequency dependent losses, where the b1 and b3 coefficients correspond to the first- and
third-order time derivatives of the wave equation (see Eqs. (2.46) and (2.47)).
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Equation (3.7) can be reformulated to

τk = τ0
1

1 +
(

fk
fτ/2

)2 , (3.8)

where τ0 is the decay time at DC (which is near to the decay time of the fundamental)
and fτ/2 is the frequency where the decay time decreases to the half compared to τ0.
The parameters of Eqs. (3.7) and (3.8) are related by b1 = 1/τ0 and b3 = b1/(2πfτ/2)

2.
Equation (3.8) shows that the decay times τk evolve as a function of frequency fk similarly
to the magnitude response of a second-order filter, i.e., they fall at a rate of 12 dB/decade
above fτ/2. It is interesting to note that a first-order filter leads to a second-order type
behavior with respect to decay times.

The form of Eq. (3.8) is particularly advantageous for the real-time control of string
decay, as τ0 and fτ/2 are more meaningful than the filter coefficients g and a1 or the
loss parameters b1 and b3 of Eq. (3.7a). The overall decay time is set by τ0, while fτ/2

determines the frequency where the partial decay times start to fall.
So far we have assumed that the tone produced by the string model is perfectly har-

monic, i.e., fk = kf0. If the model contains a dispersion filter Hd(z) introducing significant
inharmonicity, the derived equations Eqs. (3.2)-(3.7) have to be corrected: f0 has to be
replaced by fk/k in every places. As a result, the decay times obtained by Eqs. (3.6)-(3.8)
has to be multiplied by (kf0)/fk, which is the reciprocal of the inharmonicity index

Ik =
fk

kf0
. (3.9)

The inharmonicity index Ik equals unity for perfectly harmonic sounds and it is around
1.05−1.25 for the 30th partial of the piano [see Bank 2000b, Fig. 2.4 on p. 25]. Accordingly,
Eq. (3.6a) becomes

τk =
1

σk
≈ 1

Ik(c1 + c3ϑ2
k)

, (3.10)

while c1 and c3 are still computed as in Eqs. (3.6b) and (3.6c). In the next section we will
see how the “inverses” of Eqs. (3.6) and (3.10) can be used for filter design.

3.1.2 Filter Design Based on Polynomial Regression

In the literature, the two parameters of the one-pole loop filters are set by ad-hoc algo-
rithms. In [Välimäki et al. 1996] the DC gain g was set according to the decay time of the
first few partials. The pole of the filter was determined by continuously adjusting a1 and
searching for the minimum of the approximation error. The magnitude error was computed
in a least squares sense, by using a weighting function 1/(1 − gk) putting more emphasis
on slowly decaying partials. However, the overall decay time is not always matched by this
algorithm. This algorithm has been extended by a complicated nonlinear optimization in
[Erkut et al. 2000], which is based on the amplitude envelope of the synthesized and the
original signal.
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Based on the results of the previous section, a simple and robust design method is
presented that overcomes these problems. Equation (3.10) shows that the decay rate σk

is a second order polynomial of ϑk, multiplied by the inharmonicity index series Ik. This
is the basis of filter design: c1 and c3 are estimated by polynomial regression from the
measured decay rates. Then, the g and a1 coefficients of the one-pole filter can be easily
calculated from c1 and c3 by the inverses of Eqs. (3.6b) and (3.6c).

However, it is perceptually more meaningful to minimize the mean-square error of the
decay times instead of the error of decay rates. The expression of the decay-time error eτ

is:

eτ =
K
∑

k=1

(τ̂k − τk)
2 =

K
∑

k=1

τ̂2
k τ2

k

(

1

τ̂k
− 1

τk

)2

=
K
∑

k=1

τ̂2
k τ2

k (σ̂k − σk)
2 (3.11)

where σk = 1/τk are the prescribed, and σ̂k = 1/τ̂k are the approximated decay rates.
Inserting Eq. (3.10) into Eq. (3.11) gives

eτ =

K
∑

k=1

τ̂2
k τ2

k [Ik(c1 + c3ϑ
2
k) − σk]

2 =

K
∑

k=1

wk

(

c1 + c3ϑ
2
k −

σk

Ik

)2

(3.12)

where ϑk are the angular frequencies of the partials, wk = τ2
k τ̂2

k/I2
k are the weights, and eτ

is the approximation error which should be minimized with respect to the parameters c1

and c3. Note that the weights wk can be approximated by wk = τ2
k τ̂2

k , which is neglecting
the term 1/I2

k . This can be done because Ik has much smaller variation than τk, therefore
it will only produce a slightly different weighting. However, Ik cannot be neglected from
the prescription σk/Ik, as that would result in different decay rates (Ik times larger than
desired).

The problem with Eq. (3.12) lies in the weights wk: the approximated decay times τ̂k

are not known beforehand. This can be solved by first using wk = τ4
k and then running

the polynomial regression algorithm again, now computing τ̂k from the c1 and c3 values
by applying Eq. (3.10). This iteration should be done until the error eτ does not decrease
significantly.

Differentiating Eq. (3.12) with respect to c1 and c3, and setting ∂eτ/∂c1 = 0 and
∂eτ/∂c3 = 0 gives:

c3 =
M(wk)M(wkσkϑ

2
k) −M(wkσk)M(wkϑ2

k)

M(wk)M(wkϑ
4
k) −M2(wkϑ

2
k)

c1 =
M(wkσk) − c3M(wkϑ

2
k)

M(wk)

M(xk) =
K
∑

k=1

xk (3.13)

The advantage of polynomial regression is that it is fast to compute and it does not need
any iteration or nonlinear approximation technique. However, the polynomial regression
should be run at least twice, since the weights wk can be computed accurately only this
way.
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Once the coefficients c1 and c3 are in hand, the filter parameters g and a1 are computed
by the inverse of Eqs. (3.6b) and (3.6c):

g = 1 − c1

f0
(3.14a)

a1 = −1 − f0 −
√

8c3f0 + f2
0

4c3
(3.14b)

Figure 3.1 shows the results of the novel one-pole filter design algorithm for the note A♯
4

(466 Hz). It can be seen that already the first approximation (wk = τ4
k ) gives good results,

but it is biased towards the high decay times (dash-dotted line). The second approxima-
tion was calculated by using the τ̂k values from the output of the first approximation for
wk = τ2

k τ̂2
k (dashed line). It is very close to the graph of the 100th iteration (solid line).

Consequently, there is no need for using the polynomial regression of Eq. (3.13) more than
twice to achieve good results. This has been found to be valid for other tones as well.
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Figure 3.1: Prescribed (dotted line with black points), and approximated decay times
for one (dash-dotted line), two (dashed line) and 100 (solid line) iterations by using the
proposed one-pole filter design algorithm.

By looking at Fig. 3.1 one notes that the decay times of the first 10 partials are matched
quite well but the higher ones are much smaller in the approximation than in the prescrip-
tion. This is because of the nature of the one-pole filter. A more precise approximation
for the higher partials, by e.g., minimizing the relative error of decay times by applying
wk = τ2

k , would lead to a large error in the decay times of the first partials, and thus in
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the overall decay time of the note. It seems that the decay times of strings do not exactly
follow the theoretical curve of the string with first- and third-order time derivatives. This
is mainly because that simple model does not take into account the different sources of
string losses [see Fletcher and Rossing 1998, pp. 53–56]. We have to note that this does
not result in worse sound quality, mostly because the ear is relatively insensitive to the
variation of decay times. The overall decay time of the tone can be varied from -25 to
+40% without audible consequences [Järveläinen and Tolonen 2001]. Naturally, it is pos-
sible that smaller variations in the decay times of the individual partials are perceivable.
Thus, further psychoacoustic research would be necessary to answer this question precisely.

On the whole, the novel algorithm gives good results for designing the one-pole loss
filter. The string model with the one-pole loss filter is able to follow the general trend
of the decay times, but it cannot capture the small variations coming from the effects of
the string termination. The error criterion optimizing for the decay times seems to be
appropriate, but any other kind of weighting can be used, if necessary. However, it will
not improve the approximation significantly: if one wishes to model the measured decay
times more accurately, higher-order filters are needed.

3.2 High-order Loss Filters

The fact that the loss filter has only one pole is a hard constraint itself, since it restricts the
sets of realizable decay times to a great extent. Moreover, applying e.g., a fourth-order loss
filter instead of a first-order one would not increase the computational costs significantly. A
straightforward solution for designing such a filter is to use standard filter design methods
for gk, e.g., by minimizing the mean squared magnitude error

∑K
k=1(|Hl(e

jϑk)| − gk)
2.

Nevertheless, problems arise because the decay times are a nonlinear function of the filter
magnitude response. Therefore, as gk approaches unity, the same amount of magnitude
deviation ĝk − gk will correspond to a larger and larger difference in the decay time τ̂k −
τk. Moreover, if the magnitude response of Hl(z) exceeds unity at one of the partial
frequencies, the digital waveguide becomes unstable, since the loop gain is larger than 1.
Smith [1983] reviews many different filter designing techniques, but, most probably due to
their complexity, they have not been widely used in practice.

In [Bank 2000b] a robust filter design method has been presented for high-order loss
filters. The decay time error is computed from the expression of decay times (Eq. (2.61))
for harmonic strings (fk = kf0) by using the first-order Taylor series approximation for
the logarithm function (ln x ≈ x − 1 for x ≈ 1):

eτ =
K
∑

k=1

(τ̂k − τk)
2 =

K
∑

k=1

(

1

f0 ln ĝk
− 1

f0 ln gk

)2

≈ 1

f2
0

K
∑

k=1

(

1

1 − ĝk
− 1

1 − gk

)2

(3.15)

where gk are the prescribed filter magnitudes at the partial frequencies ϑk and ĝk =

|Hl(e
jϑk)| are the corresponding values of the approximation. Since the gk and ĝk values

are close to 1, the approximation for the error is very accurate. Note that we again assumed
fk = kf0.
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A transformed filter Htr(z) is designed by a least squares filter design algorithm (e.g.,
invfreqz in MATLAB) by using a transformed specification gk,tr. This minimizes the
error

eτ =
1

f2
0

K
∑

k=1

wk

(

Htr(e
jϑk) − gk,tr

)2
, gk,tr =

1

1 − gk
(3.16)

where ϑk refers to the frequency of partial k. The loss filter Hl(z) can be computed from
the transformed filter Htr(z) by the inverse transformation

Hl(z) = 1 − 1

Htr(z)
. (3.17)

The loss filter is either directly implemented as Hl(z) or as a parallel structure having unity
gain at one branch and −1/Htr(z) in the other. Implementing Hl(z) directly leads to a
simpler structure, but it might lead to higher computational complexity (e.g., when Htr(z)

is an FIR filter). The physical interpretation and the stability analysis of the method is
covered in [Bank 2000b] in detail.

A different approach was taken by Erkut [2001]. The idea is similar to the one-pole filter
design of Sec. 3.1.2 but now a high-order polynomial is fit to the decay rates σk = 1/τk,
which contains terms of even order only. Then, instead of analytically computing the filter
coefficients, a magnitude specification is calculated from the decay rate curve defined by
the polynomial and this magnitude response is used as a specification for minimum-phase
filter design. A difficulty of the approach that the decay rates given by the higher-order
polynomials might take unrealistic (e.g., negative) values. This is dealt with parameter
shrinkage algorithms, increasing the complexity of filter design. Recently, two papers have
been published that apply special filter structures (sparse filters) in [Lehtonen et al. 2005;
Rauhala et al. 2005], which use the weighting-based method of Sec. 3.2.1 as a reference
(which has been published in [Bank and Välimäki 2003]).

3.2.1 Weighting Function Based on the Taylor Series Approximation of

Decay Times

A simple yet efficient filter design method is based on the first-order Taylor series approx-
imation of the decay-time error. Here again the error with respect to the time constants is
minimized. For example, in the mean squares sense the error is eτ =

∑K
k=1(τ̂k−τk)

2 where
τk are the prescribed and τ̂k are the approximated decay times. The decay times of the
synthetic tone can be computed from the magnitude of the designed filter ĝk = |Hl(e

jϑk)|
by Eq. (2.61). Writing Eq. (2.61) as a function gives

τ̂k = τ(ĝk) = − k

fk ln ĝk
. (3.18)

If the function τ(ĝk) is approximated by the first-order Taylor polynomial around the
specification gk, we obtain:

eτ =

K
∑

k=1

(τ(ĝk) − τ(gk))
2 ≈

K
∑

k=1

(τ ′(gk)(ĝk − gk))
2 =

K
∑

k=1

wk(ĝk − gk)
2, (3.19)
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which is a simple mean squares minimization with weights wk = (τ ′(gk))2, where τ ′(gk)

is the derivative of the function τ with respect to the specified magnitude gk. Similar
derivations can be performed for other error criteria (e.g., minimax). Note that now the
weights depend on the magnitude specification and not on the frequencies, which is more
common in digital filter design.

The first derivative of τ(gk) is

τ ′(gk) =
k

fkgk(ln gk)2
=

1

Ikf0gk(ln gk)2
, (3.20)

where Ik = fk/(kf0) is the inharmonicity index. For gk = 1 − ǫ, 0 < ǫ ≪ 1, which is
generally the case, τ ′(gk) can be approximated by τ ′(gk) ≈ 1/(Ikf0(gk − 1)2). This comes
from the first-order Taylor series approximation of ln gk. Since 1/f0 does not depend on
k, it can be omitted from the weighting function. Hence, the weighting function becomes

wk =
1

I2
kg2

k(ln gk)4
≈ 1

I2
k(gk − 1)4

. (3.21)

A similar weighting function was obtained for the L∞ norm minimization of the decay-time
error in [Smith 1983, p. 182–183]. If the inharmonicity is moderate, which is the case for
string instruments including the piano, I2

k may be neglected from the weighting function.
This is not the case for simulating the sound of bars.

The approximation of Eq. (1) is accurate only for ĝk ≈ gk, which means that the
magnitude of the designed filter is close to the specification. In many cases the measured
decay times have a great variance, which cannot be followed by filters of reasonable order
(N < 20). Therefore, it is worthwhile to smooth the decay time data τk, e.g., by convolving
them with a short window function before computing the specification gk. This way, the
condition ĝk ≈ gk can be assured.

The Phase

The magnitude specification gk and the weights wk can be directly used for linear-phase
FIR filter design. However, by doing so, half of the degrees of freedom are wasted for
demanding the impulse response to be symmetric. In practice, it is not necessary to have
an exactly linear-phase loss filter, since a nonlinear phase response corresponds to a slightly
inharmonic tone, which does not corrupt the sound quality.

Designing minimum-phase filters is a pleasant choice, since then the phase specification
can be easily computed from the logarithm of the magnitude specification by Hilbert trans-
form [Oppenheim and Schafer 1975]. Note that the Hilbert transform needs magnitude
data for the entire digital frequency band and on a linear frequency scale. The missing
data points in the high frequency region are calculated by designing a one-pole filter for the
specification, e.g., by the method proposed in Sec. 3.1.2. Then, the magnitude response
of the one-pole filter is used as a specification for the high frequencies. This is reasonable
since the loss filter behavior in the high frequency region has no significant influence on
the resulted tone and such a simple specification is easily fulfilled by the filter design. At
the original data points of the highest specified frequencies a crossfade is applied to avoid
discontinuities.
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Design Example

Examples are presented for IIR filter design. For the examples, the weighted least squares
method implemented in MATLAB’s invfreqz function is used [Mathworks 1996]. The
decay time data are smoothed by convolving them with a triangular window [0.25, 0.5, 0.25].
Here, the last five data points of the measured specification are linearly mixed to the
magnitude response of the designed one-pole filter. The magnitude response on a dense
linear grid is calculated by using third-order polynomial interpolation, which was found to
be accurate enough. The phase response on this dense grid is computed by the Hilbert
transform and then resampled at the frequencies of the original specification points.

The decay time data used for this example was calculated from an F ♯
2 piano tone

(f0 = 92.2 Hz), near-field recording. The decay rate of the partials up to 6.57 kHz were
measured, which yielded data for 64 partials. The sampling frequency is fs = 22.05 kHz.
The smoothed decay times are displayed with points in Fig. 3.2 (c). The filter magnitude
specification calculated from the smoothed decay times has been plotted with points in
Fig. 3.2 (a) and (b). IIR filters of order 2, 8, and 16 were designed. The magnitude
responses are depicted in Fig. 3.2 (a), and Fig. 3.2 (b) shows the same curves magnified for
the most relevant frequency and magnitude region. Fig. 3.2 (c) shows the corresponding
decay times. Figure 3.2 reveals that the magnitude error is smaller where the specification
gk is closer to unity, which is necessary for the equal accuracy in decay times. Similar
results have been obtained with several cases of piano and guitar data. The magnitude
response of the designed filters never exceeded unity, that is, the digital waveguide loop
remained always stable.

3.3 Conclusion

In this chapter different loss filter design techniques have been presented, all of them based
on minimizing the decay-time error. In Sec. 3.1.2 a simple technique have been described
for designing one-pole loss filters, which applies the analytical expression of the decay times
of such a filter [published in Bank 2000b]. Section 3.2.1 has proposed a simple and robust
technique for high-order loss filter design, based on the first-order Taylor series of the
decay-time error and suggested the use of smoothing the target response and designing a
minimum-phase loss filter [published in Bank and Välimäki 2003]. The choice between the
one-pole or the high-order loss filters mainly depends on whether the synthetic tone should
highly resemble to a specific recorded one or it should only reproduce the characteristic
sound of a given instrument. As an example, piano sounds synthesized by the one-pole
loss filter still sound piano like. Actually, they do not sound worse than the recorded ones
with respect to tone decay, they just sound different. This difference can be minimized
by applying high-order loss filters. We have to note that the computational complexity
of the loss filter is negligible compared to other parts of the model (e.g., the body, or the
dispersion filter in the case of inharmonic strings), so there is no real drawback of applying
a high-order loss filter with respect to computational complexity. However, the parameters
of the high-order loss filter cannot be tuned intuitively by the user, unlike for the one-pole
loss-filter, where τ0 and fτ/2 in Eq. (3.8) have a physical and perceptual meaning.
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Figure 3.2: IIR loss filter magnitude responses (a) for the full frequency band and (b) at
low frequencies up to 2.5 kHz, and the corresponding decay times (c) for filter orders of 2
(dash-dotted line), 8 (dashed line), and 16 (solid line). The specification is depicted with
dots in each case.



Chapter 4

Multi-rate Techniques for Efficient

String Instrument Modeling

In this chapter multi-rate techniques are applied for increasing the computational efficiency
of string instrument modeling. First, a multi-rate excitation model is presented in Sec. 4.1
which solves the problem of noncomputable loops in a simple and efficient way. This is
followed by a multi-rate resonator bank in Sec. 4.2, which is able to model the beating and
two-stage decay of strings at a fraction of the computational cost needed by earlier methods.
In Sec. 4.3 a multi-rate filtering technique is proposed which decreases the computational
cost of instrument body modeling by an order of magnitude compared to previous filtering
methods. These techniques have been developed for piano modeling, but they can also be
used for other string instruments. The excitation model and the beating and two-stage
decay model can be used for impulsively excited (plucked or struck) string models. The
body model is the most general in this sense, as it can be used for bowed strings, too.

Note that whenever the methods are compared to each other with respect to compu-
tational cost, it is in terms of the numbers of multiplications and additions, and we do
not deal with the necessary overhead coming from loops, conditional jumps, etc., as they
depend on the implementation.

4.1 Excitation Modeling

Let us take the example of a hammer model implementing Eq. (2.78). Here we repeat the
equation

Fh(t) = F (∆y) =

{

Kh(∆y)Ph if∆y > 0

0 if∆y ≤ 0
(4.1a)

Fh(t) = −mh
d2yh(t)

dt2
. (4.1b)

As already noted in Sec. 2.4.1, the problem of discretizing Eq. (4.1) lies in the fact that
there is a mutual dependence between the excitation force Fh and the hammer position
yh. Thus, for computing Fh by Eq. (4.1a), yh should be known, which is, in turn, can be

49
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computed only by Eq. (4.1b) if we know Fh. When the block diagram of this system is
drawn, this fact leads to a noncomputable delay-free loop. Note that the problem is the
same for other types of nonlinear excitation, as they all have a similar form: one equation
describes a nonlinear dependence of force on the position of the exciter (which is not always
memoryless as in Eq. (4.1a)) and the other characterizes the motion of the exciter as a
function of force, which is usually a linear dynamic system.

The straightforward solution to the problem that we compute yh and Fh in an in-
terleaved fashion, meaning that for computing yh(tn), we use the force computed in the
previous time instant, Fh(tn−1). In theory, this means inserting a delay element in the
delay-free loop. This element is called “fictitious” in Borin and De Poli [1996], but actually
it is a real one, which is implemented unintentionally. If the sampling rate is sufficiently
high in comparison with the variation of hammer force (i.e., Fh(tn) ≈ Fh(tn−1)), this does
not present a practical problem. However, if this is not true, numerical instabilities may
arise.

The theory of wave digital filters addresses the problem of noncomputable loops in terms
of wave variables. Every component of a circuit is described as a scattering element with a
reference impedance, and delay-free loops between components are treated by “adapting”
reference impedances. Van Duyne et al. [1994] presented a “wave digital hammer” model,
where wave variables are used. The model was derived for a linear spring. The nonlinear
characteristic of the felt was taken into account by reading the stiffness coefficient from a
lookup-table, according to the compression of the felt. Hysteresis was modeled by offsetting
the pointer in the table, corresponding to the velocity of felt compression. In this model
the “fictitious” delay element appears when the stiffness coefficient is read from the lookup-
table.

Borin and De Poli [1996] have proposed a general strategy named “K method” for
solving noncomputable loops in a wide class of nonlinear systems. The method is fully
described in [Borin et al. 2000] along with some application examples. Here only the basic
principles are outlined. Whichever the discretization method, the hammer compression
∆y(tn) can be written as:

∆y(tn) = p(tn) + KFh(tn), (4.2)

where p(tn) is the linear combination of past values of the variables, namely, Fh, yh, and
ys, where ys refers to the string displacement at the position of the excitation. The value
of coefficient K depends on the numerical method in use. The interaction force Fh at
time instant tn, computed by Eq. (4.1a), is therefore described by the implicit relation
Fh(tn) = F (p(tn) + KFh(tn)). The K method uses the implicit function theorem to solve
this implicit relation:

Fh = F (p(tn) + KFh(tn))
Kmeth.7−→ Fh = h(p(tn)). (4.3)

The new nonlinear map h defines Fh(tn) as a function of p(tn), hence instantaneous depen-
dencies across the nonlinearity are dropped. The function h can be precomputed and stored
in a look-up table for efficient implementation. However, for different hammer parameters
different look-up tables have to be stored.
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4.1.1 The Multi-rate Excitation Model

A simpler approach for avoiding the numerical instability is the multi-rate excitation model.
The idea is that stability of the discretized excitation model with a “fictitious” delay can
always be maintained by choosing a sufficiently large sampling rate fs if the corresponding
continuous-time system is stable. As fs → ∞, the discrete-time system will behave as
the original differential equation. In practice, doubling the sampling rate of the whole
string–excitation system would double the computation cost as well. However, if only
the excitation model operates at double rate, the computational complexity is raised only
by a negligible amount. This is because the excitation models usually require much less
computation compared to the string model. Thus, running the excitation model twice does
not increase the computational load of the whole instrument model significantly.

We stay by the example of hammer modeling. As the hammer model runs at double
sampling rate, the string displacement at the hammer position ys should be computed at
double sampling rate, too, as the felt compression ∆y is computed as yh − ys. Therefore,
the string displacement ys is kept track within the hammer model. The core of the hammer
model is displayed in Fig. 4.1. The hammer model of Fig. 4.1 first computes the velocity
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Figure 4.1: The core of the proposed hammer model.

difference of the string and the hammer ∆v = vh−vs, where vh is the hammer velocity and
vs is the string velocity. The string velocity is computed as vs = vin,h−Fout,h/(2Z0), where
vin,h is the incoming string velocity (the velocity of the string without excitation), Z0 is the
string impedance, and Fout,h is the force signal computed by the power law in the previous
time instant (z−1 refers to the “fictitious” delay element). Then, the felt compression
∆y is calculated by integrating ∆v with respect to time. The integrators used here are
obtained by the impulse-invariant transform of the continuous time integrator [Oppenheim
and Schafer 1975], and the sampling time of the hammer is referred as ∆th. The interaction
force is computed by the law of Eq. (4.1a). The velocity of the hammer vh is calculated
by integrating the hammer acceleration ah = Fout,h/mh, where mh is the hammer mass.
The initial velocity vh0 of the hammer is controlled by sending an appropriate acceleration
pulse to the integrator, or by setting the initial value of the corresponding delay cell to vh0.
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Note that for obtaining the model of Fig. 4.1 we have not made any assumption on the
sampling rate, i.e., the model can be directly used as a hammer model without upsampling.

Figure 4.2: Connecting multi-rate hammer model to the digital waveguide.

In the proposed implementation, the core of the hammer model runs at a double sam-
pling rate, that is, ∆th = ∆t/2, where ∆t = 1/fs is the sampling interval of the string
model. The upsampling (↑ 2 in Fig. 4.2) is implemented by linear interpolation [Schafer
and Rabiner 1973]. In this manner, the unknown samples will be the average of two con-
secutive known values. To be able to do this without introducing a delay, one should
know the next incoming sample, i.e., the next string velocity that would arise without the
hammer excitation. This is easy in the case of the digital waveguide, since the upcoming
values at the excitation point are already in the delay lines, exactly one time-step away
(see Eq. (2.55) and Fig. 2.2). Hence, the input for the hammer model can be calculated
using linear interpolation for upsampling by the following equations:

vin,h(n∆t) = vout(n∆t) = v+(Min, n) + v−(Min, n)

vin,h(n∆t + ∆t/2) =
vout(n∆t) + vout(n∆t + ∆t)

2

=
v+(Min, n) + v+(Min − 1, n)

2
+

+
v−(Min, n) + v−(Min + 1, n)

2
(4.4)

where v+(m,n) = v+(xm, tn) and v−(m,n) = v−(xm, tn) refer to the content of the upper
and lower delay lines, at the time instant tn and position xm, respectively.

The force input for the string is computed simply by averaging the two output samples
of the hammer model, that is,

Fin(n∆t) =
Fout,h(n∆t) + Fout,h(n∆t + ∆t/2)

2
. (4.5)

Fig. 4.3 shows a typical force signal in a hammer–string contact. The overall contact
duration is around 2 ms, the pulses in the signal are produced by reflections of force waves
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Figure 4.3: The interaction force of note C5 (522 Hz) with fs = 44.1 kHz, and hammer
velocity v = 5 m/s, computed by inserting a fictitious delay element (solid line), with the
K method (dotted line), and with the multi-rate hammer (dashed line).

at string terminations. The K method [Borin et al. 2000] and the multi-rate hammer
proposed here produce very similar force signals. On the other hand, inserting a fictitious
delay element drives the system towards instability (the spikes are progressively amplified).
In general, the multi-rate method provides comparable output to the K method for hammer
parameters realistic for pianos, while it does not require the use of precomputed look-up
tables and leads to a simpler implementation. However, when low sampling rates (e.g.,
fs = 11.025 kHz) or extreme hammer parameters are used (i.e., the stiffness of the hammer
is increased ten times), its stability cannot be maintained by upsampling by a factor of 2.
In such cases, either the upsampling factor has to be increased, or the K method should
be used.

Note that the multi-rate method can be used for increasing the numerical stability of
other kind of excitation models, as only the excitation model of Fig. 4.1 has to be replaced
by the model of the new excitation. The only important thing is that the string velocity
vs or displacement ys at the excitation position xexc = L(Min/M) has to be computed
within the excitation model. If this has been already included in the development of the
straightforward, single-rate model, then it can be a direct replacement of Fig. 4.1.

The method has been presented in connection with a digital waveguide string model.
However, it can be used with finite-difference string models, too. Here the input of the
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excitation model vin,h(n∆t) is the velocity of the string at the position of the hammer
vout(n∆t), that is already known. The next value of the string velocity vout(n∆t + ∆t)

required for computing vin,h(n∆t + ∆t/2) is calculated by running the string (actually
only the corresponding string element) for the next time-step, which gives the next string
velocity value without the excitation force.

4.2 Modeling Beating and Two-stage Decay

In string instruments, the coupling of the two transverse polarizations (y and z) through the
bridge leads to beating and two-stage decay, the first referring to an amplitude modulation
overlaid on the exponential decay, and the second meaning that the tone decays faster in
the early part than in the latter. These phenomena were studied by Weinreich [1977]. This
is even more complicated in the case of the piano, where two or three slightly mistuned
strings of the same note are sounded together when a single piano key is pressed (except
for the lowest octave), leading to a four or six vibrating modes for one partial.

In the digital waveguide string modeling paradigm, the simplest way for modeling
beating and two-stage decay is to use two digital waveguides in parallel for a single note.
Varying by the type of coupling used, many different solutions have been presented in the
literature. In [Karjalainen et al. 1998] the two digital waveguides were coupled by constant
coefficients, while in [Smith 1993] a frequency-dependent termination impedance was ap-
plied, and the loss filters of the strings were omitted. A more refined method was presented
in [Aramaki et al. 2002; Bensa 2003] that connects the two or three coupled waveguides
by frequency dependent filters. This latter method provides accurate resynthesis of the
coupling phenomena, but requires significantly larger computational cost compared to a
single string model. Here a different approach is presented that combines the advantages
of digital waveguides and modal modeling.

4.2.1 The Parallel Resonator Bank

In the resonator bank approach, presented first in [Bank 2000b; Bank et al. 2000], second-
order resonators R1(z) . . . RK(z) are connected to the basic string model Sv(z) (e.g., digital
waveguide) in parallel. This is displayed in Fig. 4.4. The idea comes from the observation
that the behavior of the coupled y and z polarizations can be described by a pair of
exponentially damped sinusoids [Weinreich 1977]. Although more modes would be required
for the perfect reconstruction of piano partial envelopes (due to the unison triplets), it was
found that a two mode model can reproduce the main features of the phenomenon (see
Fig. 4.5).

In this model, one sinusoid of the mode-pair is simulated by one partial of the digital
waveguide and the other one by one of the resonators Rk(z). These resonators can be
realized by using Eq. (2.72). The advantage of the structure is that the resonators Rk(z)

are implemented only for those partials whose beating and two-stage decay are significant.
The others will have simple exponential decay, determined by the digital waveguide model
Sv(z). Five to ten resonators have been found to be enough for high quality sound synthesis



4.2. MODELING BEATING AND TWO-STAGE DECAY 55

Figure 4.4: Modeling beating and two-stage decay by a digital waveguide Sv(z) and a
parallel resonator bank R1(z) . . . RK(z).

for the piano. As a radical example, only one resonator has been implemented for the
harpsichord model of Välimäki et al. [2004].

The choice of those partials where the phenomenon is most prominent can be automated
by computing the energy (i.e., mean square value) of the beating modes and selecting the
ones with the largest energy value. This results in a synthesized tone that is most similar
to the original one in a mean squares sense. Naturally, a psychoacoustic selection of the
dominant beating modes that incorporates the masking effect similarly to perceptual coders
could result in a better sound quality, but would also complicate the parameter estimation
significantly. After the beating partials are selected, the parameters of the resonator bank
are determined by first fitting an exponential decay on the amplitude envelopes of the
partials. This is done by linear regression in the logarithmic amplitude scale, as proposed in
[Välimäki et al. 1996]. Then, the relative deviation of the real amplitude envelope from this
simple exponential decay is computed as a ratio of the two signals. Then, an exponentially
increasing or decaying sinusoid is fitted to this deviation signal. The parameters of this
“beating sinusoid” determine the parameters of the resonators. The procedure is outlined in
[Bank 2000b, Sec. 6.4] in detail. Note that methods based on ARMA modeling [Karjalainen
et al. 2002; Bensa 2003] could also be used for the parameter estimation of mode pairs.

In Fig. 4.5 (a) the first 8 partial envelopes of a recorded A♯
4 note (466Hz) are displayed.

Figure 4.5 (b) shows the output of the synthesis model with one digital waveguide and five
resonators. It can be seen in Fig. 4.5 (b) that the characteristics of beating and two-stage
decay are well preserved for the first five partials (where the resonators are implemented),
and the other partials have simple exponential decay determined by the digital waveguide.
Note that the initial amplitudes of the partials for the original and synthesized tones are
different. This is because the initial amplitudes are determined by a physics-based string
and excitation model, where the goal is to simulate a piano-like behavior, and not the
reproduction of a given tone. On the other hand, the beating and two-stage decay are
modeled by a signal model, whose parameters are determined by the analysis of a specific
tone, therefore, they can be more similar to the original.

The general shapes of the partial envelopes are well reproduced, while some details are
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missing in Fig. 4.5. This is because now we are fitting a lower order model to a higher
order system, since the A♯

4 note has three strings both with two transverse polarizations
(i.e., a total number of six modes). When more precise results are desired, more resonators
should be used for one partial. Note that for all the other stringed instruments (guitar,
lute, harp, harpsichord, etc.), where one string belongs to one note, the two-mode model
can perfectly resynthesize the string decay for the two transverse polarizations (here we
neglect the effect of longitudinal vibration).
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Figure 4.5: Partial envelopes of an A♯
4 piano tone: original (a) and synthesized by a digital

waveguide and five resonators in parallel (b).
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Multi-rate Modeling

The computational complexity can be even more decreased if the resonator bank is imple-
mented by the multi-rate approach, running the resonators at a much lower sampling rate,
e.g., the 1/8 or 1/16 part of the original sampling frequency. The structure is depicted
in Fig. 4.6, where first the force signal coming from the hammer model is downsampled,
filtered by the second-order resonators, and then upsampled to the original sampling rate.
Since, for one note, resonators with different sampling rates are used, it is beneficial to
implement the multi-rate system by cascading half-band downsampling and upsampling
filters. This also simplifies the filter design. The sign ↓2 in Fig. 4.6 refers to the down-
sampling operation with prior antialiasing filtering, and the sign ↑2 stands for upsampling
operation with an interpolation filter. For simplicity, Fig. 4.6 shows only one resonator
at every downsampled sampling rate, but in practice, many resonators are connected in
parallel within the same branch.

Figure 4.6: The multi-rate resonator bank.

In the filter design we can take the advantage that the downsampled signal is imposed
to filtering by a second order resonator, which has a very narrow amplitude response.
The input signal of the resonator (the excitation force) is a short pulse, and its only
role is to set the initial amplitude and phase of the resonator. This means that a small
aliasing after downsampling is acceptable. Having 20 dB stopband attenuation leads to
an amplitude change of 0.8 dB, which has been found to be inaudible in practice. The
upsampling filters cannot be simplified this way, there 60 dB stopband attenuation is
needed to avoid audible aliasing. On the other hand, all the output signals having the
same sampling rate can be summed before upsampling, therefore the same interpolation
filters can be used for all the notes (this is not shown in Fig. 4.6). The computational
complexity can be reduced further by using filters having less tight specification in the
passband, leading to lower filter orders. This can be done because the amplitude and
phase errors of the downsampling and upsampling filters can be corrected by changing the
amplitudes and phases of the resonators. The total transfer function error Ek coming from
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the downsampling and upsampling filters for the kth resonator is computed as follows:

Ek =

N
∏

n=1

Hdn

(

2πfk2
n−1

fs

)

Hup

(

2πfk2
n−1

fs

)

(4.6)

where Hdn(ϑ) and Hup(ϑ) are the transfer functions of the downsampling and upsampling
filters, and they are computed by substituting z = ejϑ. The total downsampling factor is
2N , i.e., the resonator runs at fs/2N . The estimated amplitude Ak and phase ϕk parameters
of the resonators have to be modified by the magnitude and phase of 1/Ek.

In practice, for a passband of 0 < ϑ < 0.4π and stopband of 0.6π < ϑ < π, the
remez algorithm in MATLAB [Mathworks 1996] gives a third-order FIR filter with 5 dB
passband ripple and 20 dB stopband attenuation. For the interpolation filters 60 dB
stopband attenuation is required, leading to 13th-order filters. Because of the passband
goes only up to 0.4π, in the region 0.4π < ϑ < 0.5π no resonators should be implemented.
In this way, we loose 20% of the downsampled frequency range but this leads to low-order
downsampling and upsampling filters. Note that linear phase FIR filters are only used for
simplicity of their design, as the phase errors of the downsampling and upsampling filters
are easily corrected by changing the phases of the resonators.

The computational complexity is reduced compared to having a parallel waveguide even
if the resonators are running at the sample rate of the digital waveguide string model, as
only a few of them (5–10) have to be implemented. Realizing the resonators in a multi-rate
fashion decreases the computational load significantly. The average computational cost of
the method for one note is around ten multiplications per sample. This is because the
highest computational load is the first downsampling filter (four tap FIR filter), then the
second one runs at every second time instant (two operations per sample), the third at
every fourth (one operation per sample), etc. A second-order resonator Rk(z) requires two
multiplications, but as it runs at fs/8 or fs/16, its computational load is negligible. So is
the load of the 14 tap upsampling filters, as they are shared by all the notes played. The
complexity is even lower (around five multiplications per sample) if the first or first few
downsampling filters are omitted. This can be done because the input signal (excitation
force) is of a lowpass character. In this case, the method requires an order of magnitude
smaller computational resources compared to implementing a second digital waveguide.
Moreover, the parameter estimation becomes simpler, since only the parameters of the
mode-pairs have to be found by one of the methods presented in [Bank 2000b; Karjalainen
et al. 2002; Bensa 2003], and there is no need for coupling filter design. Although the
method have been presented in connection with a digital waveguide string model, it can
be directly used to augment finite-difference or modal-based string models.

4.3 Instrument Body Modeling

The different techniques for modeling the instrument body have been already outlined in
Sec. 2.5. The most realistic sound can be achieved by filtering-type body models, where
the body filter is designed with the help of recorded impulse responses. This approach is
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generally applied as a post-processing technique, modeling the radiation properties of the
body only, while the impedance properties are treated within the string model. Here we
will review the possible modeling methods.

4.3.1 FIR Filters

The most straightforward approach for implementing the body response is to use the win-
dowed and truncated version of the measured impulse response as an FIR filter. This
technique is simple and capable to provide the best sound quality from a given measure-
ment. On the other hand, high filter orders are required to reach high quality sound.

In the case of the acoustic guitar, it was found that filter orders lower than 1000 do not
produce satisfactory sound [Karjalainen et al. 1999]. For modeling the piano soundboard
at a sampling rate of fs = 44.1 kHz, the present author have found that the sound changes
only slightly when the filter length is raised over 2000 tap. Under filter order 1000, the
sound starts to loose its character. Consequently, having a filter order between 1000 and
2000 seems to be a reasonable choice. These results coincide with the ones presented in
[Karjalainen et al. 1999] for the guitar.

The transfer function of a 2000 tap filter is displayed in Fig. 4.8 (b), implementing the
transfer function of Fig. 4.8 (a) (which is the same as presented in Fig. 2.5, p. 35). It
is easy to notice in the low frequencies that the resonances have been smeared. This is
because the long decaying low modes have been truncated. In practice, this does not alter
the sound significantly. However, for precise synthesis even larger impulse responses are
required, as even the 2000 tap filter cannot reproduce the knocking sound of high piano
tones, because the “knock” is much longer (0.2–0.5 sec, requiring ca. 10000–20000 taps).

The computational requirements can be somewhat reduced if the lowest resonances of
the instrument body are factored out from the FIR filter and implemented as second-order
resonators [Karjalainen et al. 1999]. In the case of the acoustic guitar, this resulted in 500
tap FIR filters.

4.3.2 IIR Filters

For modeling the violin body, many different filter design techniques were compared by
Smith [1983]. The final choice was an eighth-order IIR filter designed by minimizing the
Hankel norm on Bark scale. Nowadays the implementation of higher-order filters have
become possible, but the quality requirements have also been increased.

In [Karjalainen et al. 1999], two IIR filter design methods were compared for modeling
the guitar body. It has turned out that IIR filters perform almost the same as FIR filters
with the same computational cost. Similar results have been found for the piano, i.e., filter
orders less than 500 do not produce appropriate sound. As also noted by Karjalainen et al.
[1999], minimum-phase equalization is not a good option, since it destroys the reverberant
character of the response. Moreover, in the case of the piano, when experiments were made
with minimum-phase filters, it has turned out that they ruin the characteristic attack of
the piano and result in an unnatural sound.
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Frequency warping can also be used in filter design to give more emphasis to the
psychoacoustically more important low frequencies. For the violin model of Smith [1983],
this approach was used. In [Karjalainen and Smith 1996], warped filter design was proposed
for modeling the body response of the acoustic guitar. By this technique, the required
filter orders can be reduced significantly. However, either these warped filters need special
structures for implementation, or they have to be converted to conventional structures.
During conversion, numerical instabilities may arise, especially when high filter orders are
used.

4.3.3 Multi-rate Body Modeling

Among the filter design approaches, the FIR filter is capable to produce the best sound
quality for a given transfer-function measurement. This is because that it preserves not
only the overall magnitude response of the instrument body, but also the phase informa-
tion. Having accurate time-domain response seems to be crucial for the realistic attack of
synthesized sounds.

Here, a multi-rate approach is presented to avoid the high computational cost of the FIR
filter, while still maintaining its benefit of preserving the sound characteristics. As shown
in Fig. 4.7, the string signal Fstring is split into two frequency bands. The lower is filtered
by a long FIR filter Hlow(z) running at a considerably lower sampling rate (f ′

s = fs/8),
precisely synthesizing the body impulse response up to 2 kHz. This means that the same
impulse response length (in ms) consumes only the 1/64 part of computation compared to
a single-rate filter. This is because the filter length is reduced by a factor of 8 compared to
a single-rate FIR filter with the same length in ms, and this shorter filter is run at every
eighth time instant.

In the high frequency band only the overall magnitude response of the body is modeled,
using a low-order filter Hhigh(z) running at the sampling rate of the system (fs = 44.1 kHz).
This part of the signal flow is delayed by N samples to compensate for the delay of the
downsampling and upsampling operations. The simplification in the high frequency region
is motivated by the fact that here the human ear has been found to be less sensitive to the
position of the modes.

Figure 4.7: The multi-rate body model.

For the decimation and interpolation filters, a polyphase FIR filter Hdi(z) has been
used. Note that the interpolation and decimation filters could be different in principle,
but here the same filter Hdi(z) is used for both operation. In a general multi-rate system,
large stopband attenuation and small passband ripple would be required, but this would
result in long interpolation and decimation filters. However, here having ca. 5 dB passband
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ripple have been found to be an appropriate solution, as it can be corrected by changing
the magnitude response of the low frequency body filter Hlow(z). For stopband attenua-
tion, 80 dB is sufficient in practice. The filter Hdi(z) is designed by the remez algorithm
implemented in MATLAB [Mathworks 1996] giving a filter order of 192, which results in
24 operations per cycle in polyphase implementation.

The body filters Hlow(z) and Hhigh(z) can be designed from the measurement of real
instruments. The target impulse response Ht(z) is a 2000 tap FIR filter obtained by
truncating the measured impulse response. This is lowpass-filtered by a linear-phase FIR
filter and then decimated by a factor of 8. This results in a 250 tap FIR filter H̃low(z).
Now the passband errors of the decimation and interpolation filters have to be corrected.
This is computed as follows:

Hlow(ejϑ) = H̃low(ejϑ)
1

H2
di(e

j ϑ
8 )

e−jϑN , (4.7)

where we have used the substitution z = ejϑ. The multiplication by e−jϑN comes from
the fact that we have already compensated the delay of the interpolation and decimation
filters by delaying the other signal flow in Fig. 4.7. Neglecting this term from Eq. (4.7)
would lead to a noncausal filter. The filter Hlow(z) corresponds to the body filter to be
implemented in Fig. 4.7.

Now the impulse response of the low frequency chain of Fig. 4.7 is known. The remain-
ing high frequency part can be easily calculated by subtracting this low frequency response
from the target impulse response Ht(z). This way, a 2000 tap FIR filter arise containing
energy mainly at frequencies above 2 kHz. This response is then made minimum-phase,
e.g., by the rceps function in MATLAB [Mathworks 1996]. This concentrates the energy
to the beginning of the impulse response. Then this minimum-phase response is truncated
to a length of 50 tap to form the high frequency body filter Hhigh(z).

As an example, the magnitude response of a multi-rate piano soundboard model is
depicted in Fig. 4.8 (c). The magnitude response of the target FIR filter Ht(z) is depicted
in Fig. 4.8 (b) for comparison. It can be seen from the figures that the magnitude response
is accurately preserved up to 2 kHz. Although not shown, but so is the phase response.
Above 2 kHz, only the overall magnitude response is retained.

The model consumes around 130 operations per cycle. This is because Hlow(z) requires
250 operations in every eighth cycle, while the downsampling and upsampling filters require
2 × 192. The high-frequency filter Hhigh(z) is an 50 tap filter running in each cycle. This
gives the average load (250 + 2 × 192)/8 + 50 = 129.25. Despite its significantly lower
computational cost, the model has a very similar spectral character to the 2000 tap target
filter Ht(z). This is because the main features of the instrument body are reproduced. One
such feature is the proper overall magnitude response, which seems to be accomplished.
Another important feature of the instrument body is providing the proper attack of the
sound. This is partly fulfilled, since up to 2 kHz the time-domain response of the model
equals that of the target response. The attack of high notes sounds sharper compared
to the 2000 tap target filter. This is because the energy of the soundboard response is
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Figure 4.8: The magnitude transfer function of the piano soundboard (a) implemented by
a 2000 tap FIR filter (b) and by the multi-rate body model (c).

concentrated to the first 1.1 ms above 2 kHz. Therefore, the attacks of high frequency
partials are not smoothed enough by the body filter.

A different way of utilizing the idea of multi-rate filtering is increasing the quality,
rather than decreasing the computational complexity. When 2000 operation per sample
is acceptable, the strategy is as follows: the signal below 4.4 kHz is downsampled by a
factor of 4 and filtered by a 4000 tap (meaning 360 ms length at fs/4) FIR filter Hlow(z).
The signal above 2.2 kHz is filtered by a 1000 tap (ca. 20 ms at fs = 44.1 kHz) FIR
filter, Hhigh(z). The filter Hhigh(z) is computed by subtracting the impulse response of
the low frequency chain from the target response Ht(z) (which now has the length of
16000 taps) providing a residual response containing energy above 4.6 kHz. This residual
response windowed to a shorter length (1000 tap). Note that the residual response does
has not have to be made minimum-phase prior to windowing, as in this case the largest
part of the energy in the impulse response is contained within the first 1000 tap. Now
the model reproduces both the overall magnitude and the transient behavior of the tone
even for the higher partials, as the attack time is 20 ms instead of the 1.1 ms of the low
complexity solution. The characteristic “knock” of the high notes are also reconstructed
by the long (0.36 s) low frequency response. Indeed, the sound produced by this model is
indistinguishable from that calculated by a 16000 tap FIR filter directly implementing the
soundboard impulse response, while it requires “only” about 2000 operations per sample.
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This computational load is now acceptable for string modeling, as it consumes about 10 %
of an average personal computer when the code is written in C++. However, for multimedia
applications where the sound has a secondary role, the low complexity solution is preferred.

4.4 Conclusion

In this chapter the multi-rate approach has been utilized for string instrument modeling.
The multi-rate excitation model of Sec. 4.1 [published in Bank 2000a; Bank et al. 2003]
provides a comparable solution to the K method for avoiding numerical instabilities in
excitation models, but it results in a simpler structure. This is because it only requires
that the existing excitation model runs at a higher sampling rate, and there is no need
for the rearrangement of the model to known and unknown terms. Moreover, the need
for a lookup-table is also avoided, which is particularly advantageous when the excitation
parameters are varied in real-time.

The multi-rate resonator bank of Sec. 4.2 [published in Bank 2001; Bank et al. 2003]
models beating and two-stage decay by augmenting the basic string model with second-
order resonators. An advantage of the technique is that the second-order resonators are
required only for those partials that are dominated by the effect (typically 5–10). The
computational complexity is further reduced by running the resonators at a lower sampling
rate. The decimation and interpolation filters can be of low order, as their passband errors
are corrected by changing the amplitudes and phases of the resonators.

Section 4.3 presented a multi-rate filtering technique for instrument body modeling
[published in Bank et al. 2002, 2003]. The low frequency part of the body response is
modeled by a long FIR filter running at a lower sampling rate, while the high frequency
part is modeled by a shorter filter running at normal sampling rate. Similarly to the
multi-rate resonator bank, the decimation and interpolation filters can be of low order as
their passband ripple is corrected by the filter implementing the low frequency part of the
body response. The multi-rate technique decreases the computational requirement by an
order of magnitude compared to previous filtering methods for the same impulse response
length. This can be utilized either for computational savings or for increasing the response
length leading to higher sound quality.
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Chapter 5

Modeling of Geometric

Nonlinearities

This chapter is about the physics behind the nonlinear behavior of musical instrument
strings. These theoretical and experimental results form the basis of sound synthesis
methods presented in Chap. 6. Here we deal with geometric nonlinearities, and the non-
linearities arising from the string material are neglected. The reason for the geometric
nonlinearities is that above a certain amplitude of vibration the length of the string cannot
be assumed constant. The change of string length varies the tension of the string, leading
to the generation of longitudinal motion and new transverse components.

The classification of the different nonlinear phenomena has not been given in the liter-
ature. Section 5.1 fills this gap by discussing the main features of geometric nonlinearities
and presenting a “nonlinearity map” that helps to estimate the nature of string behavior
as a function of material properties and the amplitude and bandwidth of vibration. Sec-
tion 5.2 reviews the literature describing the phenomenon with spatially uniform tension.
This is followed by the main scientific contribution of this chapter, namely, the investiga-
tion of the motion of longitudinal modes in Sec. 5.3. A new theoretical model is presented
that is based on the modal formulation of the transverse and longitudinal vibration, and on
the assumption that the longitudinal to transverse coupling can be neglected. Due to this
approximation it is possible to analytically compute the longitudinal components for arbi-
trary transverse vibrations. The results show good agreement with the measurements of
other authors and give the theoretical explanation of the experiments. Section 5.4 presents
some findings about the bidirectional coupling of transverse and longitudinal modes. The
results of Sec. 5.4 are preliminary, as this research is still going on.

5.1 Classification of Nonlinear String Behavior

This section investigates the factors that influence the significance of nonlinear behavior.
The goal is to give a classification of the geometric nonlinearity of the string. For that, we
estimate the relative significance of the nonlinear components in the bridge force compared
to the standard linear components.

65
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5.1.1 String Equations

For simplicity, it is assumed in this section that the string is vibrating in one plane, i.e.,
one transverse and one longitudinal polarization are present. Losses and dispersion are
neglected and we assume that T0 ≪ ES, which holds for metal strings. For rubber-like
strings, the following derivations are not accurate. However, they still show the qualitative
behavior of such strings.

From Eqs. (2.4) and (2.9), with the above assumptions in mind, the string tension is
approximated as

T = T0 + ES

(

ds

dx
− 1

)

= T0 + ES

[

∂ξ

∂x
+

1

2

(

∂y

∂x

)2
]

. (5.1)

From Eq. (2.10) with ES + T0 ≈ ES the equation for the longitudinal displacement
ξ(x, t) is

µ
∂2ξ

∂t2
= ES

∂2ξ

∂x2
+

1

2
ES

∂
(

∂y
∂x

)2

∂x
. (5.2)

We recall that Eq. (5.2) is a standard one-dimensional wave equation with an additional
force term nonlinearly depending on the transverse vibration y(x, t).

From Eq. (2.11) the wave equation for the transverse motion can be written as

µ
∂2y

∂t2
= T0

∂2y

∂x2
+ ES

∂

{

∂y
∂x

[

∂ξ
∂x + 1

2

(

∂y
∂x

)2
]}

∂x
, (5.3)

which is again a one-dimensional wave equation with an additional force term depending
on the product of the transverse slope and the tension variation.

From the musical acoustics point of view it is more important to know what the force
is at the termination (e.g., bridge of the instrument), as the radiated sound pressure is pro-
portional to this force. Note that we assume that the string termination cannot exchange
energy between the two polarizations. The bridge force in the longitudinal direction can
be approximated by the tension variation at the termination of the string (x = L) as

Fl(t) = −[T (L, t) − T0] = −ES

[
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, (5.4)

showing that the force Fl(t) depends not only on the longitudinal motion but on the
transverse vibration as well. Note that T0 has been subtracted from T (L, t) because it
only acts as a constant strain on the instrument body, which does not appear in the
radiated sound.

The transverse force Ft(t) at the bridge is the product of the string slope ∂y/∂x and
the tension T (x, t):

Ft(t) = −T (L, t)
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again showing that the transverse force at the bridge depends on both the transverse and
longitudinal string motion. However, for small vibration amplitudes (linear behavior) only
the first term is significant.

Note that Eqs. (5.1)–(5.5) become more complicated in the case of rubber-like strings,
where the assumption ES ≫ T0 does not hold. The correct equations could be simply
derived from Eqs. (2.9)–(2.11), but then we would also sacrifice the simplicity of Eqs. (5.7)
and (5.8).

5.1.2 Classification

It can be seen from Eqs. (5.2)–(5.5) that the character of string vibration depends not only
on the physical properties, but also on the amplitude of vibration. As musical instrument
strings are generally excited in the transverse polarization, we will concentrate on the effect
coming from the variation of the transverse slope ∂y/∂x. The magnitude of the transverse
force at the termination (x = L) is computed by the Euclidean norm (root mean square
value), and is referred as ||∂y/∂x||.

By looking at Eqs. (5.2)–(5.5), the amplitude of the different nonlinear components can
be expressed as a function of the amplitude of transverse slope and the physical parameters
of the string. The derivation and some simulations are included in the Appendix A.1,
here only the results are presented. From Eq. (5.5) it follows that the linear transverse
component (the component which would arise if the string was ideal) of the bridge force
Ft,lin has the magnitude

||Ft,lin|| = T0
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From Eqs. (5.2) and (5.4) the magnitude of longitudinal force at the bridge ||Fl|| is ap-
proximately described by

||Fl|| ≈ ClES
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where Cl is a constant in the order of unity, which depends on the type of string excitation.
From Eqs. (5.3) and (5.5) the magnitude of the nonlinear transverse component can be
approximated as a third order function of transverse slope:

||Ft,nonlin|| ≈ CtES
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where Ct is a constant in the order of unity.

Let us assume that the longitudinal force Fl is significant, if its Euclidean norm
||Fl|| reaches the 10% (–20 dB) of the transverse linear component ||Fl|| = 0.1||Ft,lin||
in Eqs. (5.6) and (5.7), giving
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Similarly, the parameter values where the nonlinear transverse component is 20 dB lower
than the linear one are on the line
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Note that the choice of 0.1 (–20 dB) is almost arbitrary, as far as it is lower than unity.
It was mainly motivated by the fact that the theoretical curves of Eqs. (5.7) and (5.8) are
reasonable approximations when the nonlinear transverse component is smaller than the
linear transverse one. It does not refer to a definite value where the specific component
starts to be audible. However, we can still say that these are a kind of “underestimates”,
meaning that nonlinear components under this limit are most probably masked by the
transverse components, thus, are inaudible. Unfortunately, no research results exist in the
literature that could estimate the perceptual significance of these components precisely.

In Eqs. (5.9) and (5.10) the parameter dependence is written as a function of
√

ES/T0,
as
√

ES/T0 equals the ratio of the longitudinal and transverse fundamental frequencies

fξ,0

f0
=

√

ES

T0
, (5.11)

where f0 is the transverse and fξ,0 is the longitudinal fundamental frequency (this follows
from Eq. (2.13) with ES ≫ T0). The change of fξ,0 may change the string behavior
significantly, as discussed in the next subsection.

For musical instruments, fξ,0/f0 =
√

ES/T0 values around 3–5 are typical for nylon
strings, while this value is around 10–20 for metal strings. Note that

√

ES/T0 values in the
order of 100 correspond to loosely stretched strings, which are often used in experimental
setups, as in this case the nonlinearity is larger, i.e., more easily observable. As for the
slope, the value ||∂y/∂x|| = 10−2 corresponds to a fortissimo hammer strike (5 m/s hammer
velocity) in the case of a piano string.

The curve of Eq. (5.9) is plotted by a solid line in Fig. 5.1 and the function of Eq. (5.10)
by a dashed line. Above these lines the longitudinal and nonlinear transverse components
are considered to be significant. The longitudinal component is generated by the trans-
verse to longitudinal coupling, while the nonlinear transverse one by the longitudinal to
transverse coupling mechanism (see the arrows in the right hand side of Fig. 5.1).

Spectral Content of the Excitation

Another important factor that influences the nature of nonlinear vibration is the spectral
content of the transverse vibration. If all the longitudinal modes are excited under their
resonance frequency, the tension can be considered uniform along the string, as will be
discussed in Sec. 5.2. Here we only note that in this case the term µ(∂2ξ/∂t2) in Eq. (5.2)
equals zero, i.e., the inertial effects of longitudinal modes are negligible. The string tension
can be computed from the elongation of the string, which depends on y(x, t) directly.
Accordingly, the longitudinal motion does not have to be computed to obtain the transverse
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Figure 5.1: Classification of the nonlinear string behavior. At parameter values above the
solid line the longitudinal component becomes significant compared to the linear transverse
one. Above the dashed line the nonlinear transverse component starts to appear. The
arrows between “Tran.” and “Long.” show which directions of coupling are significant.
On the right-hand side of the dotted line, the tension can be considered spatially uniform
along the string (assuming 10 significant transverse partials).

and longitudinal bridge force, leading to a large simplification from the sound synthesis
point of view.

The bandwidth of the force exciting the longitudinal modes is the double of that of
the transverse motion, as it is generated by a second-order nonlinearity (see Eq. (5.2)).
Thus, the excitation bandwidth is 2Nf0 for harmonic strings, if all the transverse modes
are significant up to the mode number N . The longitudinal components responsible for the
inertial effects are assumed to be negligible if all the longitudinal modes are excited below
the half of their resonance frequency (this will be outlined in Sec. 5.3.4 in detail). Conse-
quently, we can suppose that the tension is uniform along the string if the bandwidth of
the excitation, 2Nf0, is lower than the half of the lowest longitudinal resonance frequency,
fξ,0/2, leading to

4N <
fξ,0

f0
. (5.12)

This is indicated in Fig. 5.1 as a dotted line for a transverse vibration containing the first
10 partials. Thus, for fξ,0/f0 =

√

ES/T0 values higher than 40 the string tension can be
considered uniform. This dashed line should be shifted to the right or to the left depending
on whether there are more or less significant partials in the transverse vibration. Again,
this line is a rough limit, as the real significance of the inertial effects depends both on the
relative amplitudes of transverse modes and on the decay times of longitudinal modes.

It is interesting to note that while increasing
√

ES/T0 complicates the string motion
by increasing the effect of the nonlinear terms, it also changes the nature of string behavior
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by raising the longitudinal modal frequencies. Above a certain value the tension becomes
spatially uniform along the string, leading to a motion which can be explained by simpler
equations.

Dependence on Inharmonicity

The perceptual significance of the nonlinear components also depends on the inharmonicity.
When B is negligible, the partial series is almost harmonic, thus, the nonlinearly generated
frequencies, which are generally the sum or difference of transverse modal frequencies,
appear at the same frequencies as the original modes, thus, their effect is less audible. If B is
large, these nonlinear sum and difference components appear between the transverse ones,
leading to beating, thus, to a more audible effect. On the other hand, the nonlinear energy
exchange between the transverse modes might be more efficient for small B values, as in
that case the excitation frequencies are close to the resonant frequencies. For homogenous,
unwrapped strings the inharmonicity coefficient is computed by Eq. (2.40). As can be seen
from Eq. (2.40) the inharmonicity is a second order function of

√

ES/T0. This means that
the increasing inharmonicity coefficient B reinforces the perceptual effect of the nonlinear
components which increase with

√

ES/T0 anyway. In any case, the nonlinear behavior of
the string and the inharmonicity are interdependent, which is not included in Fig. 5.1.

5.1.3 Short Discussion of the Regimes of Nonlinearity

Figure 5.1 can be used to estimate whether a specific nonlinear phenomenon is significant
for a given parameter set of the string. The borders separating the different regimes are at
approximate positions, which may vary from instrument to instrument. In any case, the
topology of Fig. 5.1 should be similar for all string instruments.

This section outlines the most important properties of the different regimes displayed
in Fig. 5.1. These are also summarized in Table 5.1, showing whether the transverse to
longitudinal and the longitudinal to transverse coupling is significant for a class of Fig. 5.1
or not. The last column signs if the longitudinal inertial effects are significant, i.e., if
the longitudinal modes have to be modeled or not. If not, then the tension is spatially
uniform along the string and can be simply computed from the transverse displacement.
The detailed descriptions of the different classes and the corresponding modeling methods
will be given later in the next sections.

Linear Motion

When
√

ES/T0 and ∂y/∂x are small, the string obeys the standard linear wave equation.
In this case the transverse and longitudinal polarizations are independent. Therefore, if
only the transverse polarization is excited (which is generally the case), the longitudinal
motion is negligible. This kind of motion has been discussed in Sec. 2.2.3.
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Tran. to long. coupl. Long. to tran. coupl. Long. inertial effects

Linear motion

Double freq. terms ×
Tension modulation × ×
Longitudinal modes × ×
Bidirectional coupling × × ×

Table 5.1: Main features of the different regimes of string behavior according to Fig. 5.1.
The “×” sign means that the specific feature of vibration is significant, i.e., it has to be
included in the model.

Double Frequency Terms

In this case the longitudinal modes are excited under their resonant frequency, hence the
string tension varies with time but spatially uniform along the string. This means that the
tension can be computed directly from the transverse displacement. The tension variation
is significant compared to the transverse force at the bridge, but it is negligible compared
to the initial tension T0, so it cannot excite any “nonlinear” transverse modes. The longitu-
dinal force component will include terms having double the frequency of transverse modes.
This type of motion will be covered in Sec. 5.2.

Tension Modulation

This case is similar to the previous one in a way that the tension is spatially uniform
along the string, but now the temporal variation of the tension is no longer negligible in
comparison with T0. The temporal modulation of tension leads to the nonlinear excitation
of transverse modes, nonplanar motion, and pitch glide. This regime of string motion is
studied in Sec. 5.2.

Modeling of Longitudinal Modes

In this case the frequencies of the excitation terms in Eq. (5.2) are around or above the
longitudinal modal frequencies. As a result, the tension varies with both time and space
along the string. This leads to the appearance of odd and even phantom partials and the
free motion of longitudinal modes. As the tension variation is significant compared to the
transverse bridge force but small compared to T0, the longitudinal motion has a significant
contribution to the sound but does not influence the transverse vibration. For modeling,
the largest difference from the previous two cases is that now the motion of longitudinal
modes also has to be computed. On the other hand, the longitudinal to transverse coupling
does not have to be implemented. This type of string behavior is discussed in Sec. 5.3.

Bidirectional Coupling

Here neither the tension is uniform along the string, nor its variation is negligible in
comparison with T0. This is the most complex situation, since odd and even phantom
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partials and the longitudinal free modes also appear and they influence the transverse
motion by generating new transverse components. A model describing such a motion
should thus include the precise computation of longitudinal motion and the implementation
of the longitudinal to transverse coupling. This is further investigated in Sec. 5.4.

5.2 Spatially Uniform Tension

In this section we will review the findings of the literature about the “Tension modulation”
regime of Fig. 5.1. For the “Double frequency terms”, the tension variation is computed in
the same way but the transverse vibration is calculated by assuming T = T0, as the tension
variation is so small that it has a negligible effect on the transverse vibration. Note that
it can still be audible as it provides a longitudinal force variation at the instrument body.

5.2.1 Theories and Experiments

This kind of nonlinear string motion has been already investigated by Kirchhoff in the late
19th century, then revisited by Carrier in the middle of the last century. Therefore, the
governing equations are referred as Kirchhoff-Carrier equations by some authors.

Oplinger [1960] states that when T0/ES ≪ 1, then the inertial effects of longitudinal
modes can be neglected, the tension is spatially uniform along the string and can be directly
computed from the elongation of the string according to the Hooke’s law

T = T0 + ES[(L′ − L)/L], (5.13)

where L′ is the actual length of the string and L is the minimum length at equilibrium.
The overline in T emphasizes that the tension is spatially uniform along the string. The
length L′ equals the length of the curve y(x, t) for a given t and 0 ≤ x ≤ L and is given by

L′ =
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The substitution of Eq. (5.14) into Eq. (5.13) gives

T = T0 +
1

2

ES

L

∫ L

0
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∂y
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)2

dx. (5.15)

It is an interesting result that this is the same as spatially averaging (i.e., integrating from
0 to L along x and dividing by L) the space-dependent equation of tension of Eq. (5.1).

The approximate equation describing the transverse motion is

µ
∂2y

∂t2
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∂
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T ∂y
∂x

)

∂x
. (5.16)

Inserting Eq. (5.15) into Eq. (5.16) yields
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which is the Kirchhoff-Carrier equation used by most of the papers as a starting point (al-
though sometimes extended to the z polarization). Oplinger [1960] has given the frequency
response curves of the string based on the solution of Eq. (5.17), showing the warped peaks
typical of nonlinear forced vibrations. This type of response curve gives rise to the jump
phenomenon, where the string can suddenly shift from one state of behavior to another at
a given frequency. For example, it can shift from the first to the second mode, resulting in
an amplitude jump. This has been also observed experimentally in [Oplinger 1960].

The same equation has been derived by Anand [1969] for the three dimensional case by
assuming ∂2ξ/∂t2 = 0 in Eq. (5.2). Integrating the such modified Eq. (5.2) with respect to
x twice gives a memoryless relation of ξ and y, meaning that the longitudinal displacement
ξ(x, t) for a given t can be directly computed when y(x, t) is known. Inserting the equation
for ξ(x, t) into Eq. (5.1) gives the same result as Eq. (5.17). The three dimensional version
of Eq. (5.17) takes the form
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As for the applicability of Eq. (5.18), Anand [1969] states that the condition ES/T0 ≫ 1

given by Oplinger [1960] is sufficient only if the order of the transverse modes is small
compared to

√

ES/T0. Anand [1969] investigates the nonplanar motion of the string and
finds that the nonlinearity leads to intermodal coupling but does not generate modes that
are not present at the initial instant. He also suggests that the planar vibration of an
undamped string is not stable.

Narasimha [1968] also arrives at the same equations through a different demonstration,
but adds the effect of damping. He investigates the critical amplitudes and frequencies
where the planar motion becomes unstable, finding that a slight damping raises the critical
amplitudes and frequencies. As a result, planar motion of a damped string may be stable,
as opposed to the undamped string, where the critical amplitude is zero at the fundamental
frequency of the string.

The analysis of Gough [1984] (based again on Eq. (5.18) with damping) confirms the
prediction of Anand [1969] that the nonlinearity leads to a precession of the orbital motion.
He shows both theoretically and experimentally that the precessional frequencies can be
simply related to the geometric properties of the orbital motion.

A more sophisticated analysis is given by Watzky [1992], describing the damped free
vibration of the stiff string. Its main novelty is the inclusion of torsional vibration as
coupling term between the transverse modes. He suggests that the effect of longitudinal
modes can be neglected (i.e., the tension can be considered spatially uniform) if all the
transverse modes are far from half of a longitudinal resonance frequency. (We will see in
Sec. 5.3.4 that the right condition is a bit more complicated). In any case, the inertial
effects are neglected in [Watzky 1992], too.

Hanson et al. [1994] have made thorough experiments on the vibration of a loosely
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stretched red brass harpsichord wire. Most of their results are in agreement with the
theoretical studies quoted above. One exception is that they suggest that there is no critical
frequency for the onset of motion perpendicular to the driving force (which they call “z
motion”). They have found “z motion” quite far below resonance, which continuously grows
as the driving frequency approaches the resonance frequency, and that this “z motion” does
not necessarily mean nonplanar vibration.

5.2.2 Nonlinear Generation of Missing Modes

The literature quoted in the previous section investigates only the first (or the first few)
transverse modes. As in a musical instrument string dozens of transverse modes vibrate,
the above works cannot be directly applied in musical acoustics. There is one paper,
however, which deals with the problem from this point of view. The purpose of Legge
and Fletcher [1984] was to investigate the intermodal coupling of strings. That is, how a
specific transverse mode can gain energy from another transverse mode.

We reproduce the derivation of tension in [Legge and Fletcher 1984] in a more general
formulation, by writing the transverse displacement in its modal form

y(x, t) =

∞
∑

n=1

yn(t) sin
(nπx

L

)

, (5.19)

where yn(t) is the instantaneous amplitude of the transverse mode n, as introduced in
Sec. 2.2.4. Inserting Eq. (5.19) into Eq. (5.15) gives

T (t) = T0 +
1

2

ES

L

∫ L

0

[

∞
∑

n=1

yn(t)
nπ

L
cos
(nπx

L

)

]2

dx =

T0+
π2ES

4L3

∫ L

0

{

∞
∑

m=1

∞
∑

n=1

m n ym(t) yn(t)

[

cos

(

(m + n)πx

L

)

+ cos

(

(m − n)πx

L

)]

}

dx.

(5.20)

After performing the integration, all the terms cancel out, except the rightmost cosine term
for m = n, giving

T (t) = T0 +
π2ES

4L2

∞
∑

n=1

n2y2
n(t) (5.21)

Writing the instantaneous amplitudes as in [Legge and Fletcher 1984], i.e., in the form of
exponentially decaying sinusoidal functions

yn(t) = An sin(ωnt + ϕn)e−
t

τn , (5.22)

yields the expression for tension

T (t) = T0 +
π2ES

8L2

∞
∑

n=1

n2A2
n[1 − cos(2ωnt + 2ϕn)]e−

2t
τn . (5.23)
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The first time-dependent part of Eq. (5.23) is a quasistatic increase of tension

Tqs =
π2ES

8L2

∞
∑

n=1

n2A2
ne−

2t
τn , (5.24)

which decays slowly. This leads to a proportional increase in modal frequencies, giving a
relative change of

√

(T0 + Tqs)/T0. This shift decreases as a function of time, leading to a
pitch glide effect. That is, the initial pitch of the string is higher than in the latter part,
due to the decaying amplitude of vibration.

The second part contains the double frequency terms

Tdf = −π2ES

8L2

∞
∑

n=1

n2A2
n cos(2ωnt + 2ϕn)e−

2t
τn , (5.25)

leading to a continuous modulation of tension, built up of sinusoidal functions having
double the frequencies of transverse modes. The amplitude of this modulation decays
exponentially, and the decay times of its components are the half compared to that of the
originating transverse modes.

Substituting Eq. (5.23) into Eq. (5.16) and concentrating on the effects of double fre-
quency terms leads us to the observation that the different transverse modes cannot effi-
ciently exchange energy if the string is rigidly terminated. This can be explained when we
consider the motion of transverse mode m. The driving force T∂2y/∂x2 for mode m will
contain the frequencies 2ωn ±ωm for all n. However, for effective excitation the excitation
frequency should be near to the resonant frequency ωm, which is satisfied only in the case
of n = m. Thus, mode m can only act on itself and the other modes cannot influence
its motion. As a practical result, if a mode is missing from a vibrating string, it cannot
be generated by nonlinear coupling in the case of infinitely rigid terminations [Legge and
Fletcher 1984].

If the bridge is not infinitely rigid, but has the admittance Y (ω) at x = L, then
a different situation occurs. The most important difference is, besides a change in the
transverse modal frequencies and decay times, that the spatial distribution of modes also
changes. Practically, L has to be replaced by L + δLn in Eq. (5.19). The string behaves
as a lossy string rigidly supported at 0 and L + δLn. This virtual change of length can be
different for all the modes, and approximately computed as

δLn ≈ T0

ωn
Im{Y (ωn)}. (5.26)

In this case the force acting on the bridge contains the frequencies 2ωn ± ωm. However, a
significant difference arises from the rigid bridge because now the string modes are virtually
supported at L + δLn, but excited by the bridge movement at x = L, thus, all the modes
can gain energy from the bridge motion. Strong coupling arises when the excitation and
resonance frequencies are near, thus, the mode p can gain energy from modes p = 2m±n,
as ωp ≈ 2ωm ± ωn [Legge and Fletcher 1984].

For a more realistic bridge, when the string passes the bridge at an angle, the tension
Eq. (5.23) directly appears in the bridge movement. This means that the double frequency
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terms 2ωn can directly excite any of the transverse modes. Naturally, effective excitation
will arise when p = 2n, as in this case the excitation frequency 2ωn will be close to the
resonance frequency ωp of mode p [Legge and Fletcher 1984].

Under these circumstances, it is possible that an initially unexcited mode can gain
energy from the other transverse modes. This has been justified by experiments in [Legge
and Fletcher 1984]. Moreover, they note that things get even more complicated when the
modal frequencies of the string are not harmonic, as in that case the different coupling
mechanisms (2ωm ± ωn and 2ωn) excite mode p at slightly different frequencies, which
both are a bit different from ωp, resulting in beating and amplitude fluctuations.

5.3 Modeling of Longitudinal Modes

In Sec. 5.2 the tension was considered spatially uniform along the string and could be
directly computed from the transverse displacement, as the dynamics (inertial effects) of
longitudinal modes were negligible. However, this assumption is no longer acceptable for
the class “Longitudinal modes” of Fig. 5.1 as there the longitudinal modes are excited
near or above their resonance frequency. Therefore, in this section we investigate how the
longitudinal vibration is excited by the transverse string motion. As the tension variation
is negligible in comparison to T0, the longitudinal to transverse coupling is neglected. As
a result, both the transverse and longitudinal wave equations can be considered as linear
systems, where the excitation of the latter is a nonlinear function of the transverse string
shape. Thus, the equations of Sec. 2.2.3 can be directly applied, leading to an analytical
solution. The tension will be decomposed into a spatially uniform part (for what the results
outlined in Sec. 5.2 hold) and to a space-dependent part, at which we look in more detail.
We assume that the string is vibrating in one plane, i.e., one transverse polarization is
present.

5.3.1 Prior Work

As for the theories and numerical simulations, the motion of longitudinal modes has been
investigated numerically in [Leissa and Saad 1994] by the Galerkin method, showing non-
periodic regimes of motion for low strain (i.e., loosely stretched strings) or/and large vi-
bration amplitudes. Leamy and Gottlieb [2000] describe the whirling motion of strings, in-
cluding longitudinal vibrations and material nonlinearities for rubber-like strings. Kurmy-
shev [2003] investigates rubber-like strings too, showing that the single-mode motion of a
rubber-like string may evolve to multi-mode motion due to the coupling of the different
polarizations. We note that for rubber-like strings T0 ≈ ES, meaning that the longitudinal
fundamental frequency is not much higher than the transverse one. In this case nonlinearity
arises only at extremely large amplitudes, i.e., when the string displacement is in the order
of string length. Although nylon strings of musical instruments are almost rubber-like, in
those cases the nonlinearity is negligible because of much smaller string displacement.

It is a general feature of the studies cited above that they investigate only the first
few modes and also consider longitudinal to transverse coupling. Therefore, their results
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cannot be directly applied for the present purposes. This is because the present problem
is more complex in the sense that not only the first few but 20 to 100 transverse modes
have to be taken into account in the case of musical instruments. On the other hand,
it is simpler in the way that the longitudinal to transverse coupling and the coupling
of different transverse modes are not investigated, as the primary interest is now on the
longitudinal vibration itself. Therefore, in this section a new modal model is developed
that computes the spectrum of the longitudinal vibration in the case of arbitrary transverse
modal frequencies.

From the musical acoustics point of view, the importance of longitudinal vibration of
piano strings was recognized long ago by piano builders. Conklin [1996] demonstrated
that the pitch relation of the transverse and longitudinal component strongly influences
the quality of the tone and described a method to tune these components. Giordano and
Korty [1996] found that the amplitude of the longitudinal vibration is a nonlinear function
of the amplitude of transverse vibration, confirming the assumption that the longitudinal
component is generated by the nonlinearity of the string and not by the “misalignment” of
the hammer.

Nakamura and Naganuma [1993] found a second series of partials in piano sound spectra
having one-fourth of inharmonicity compared to the main partial series. They attributed
these to the horizontal polarization of the string, but they have actually found the series
that was later named “phantom partials” by Conklin [1999]. Conklin has pointed out that
the phantom partials are generated by nonlinear mixing and their frequencies are the sum
or difference of transverse modal frequencies. He named “even phantoms” those having
double the frequency (2fn) of a transverse mode, and “odd phantoms” those which appear
at the sum fm + fn or difference fm − fn frequencies of two transverse modes. Conklin’s
measurements have shown that odd phantoms generally originate from adjacent parents,
i.e., can be found at f5 + f6 rather than at f4 + f7. Phantom partials have also been
found in the spectrum of guitar tones [Conklin 1999]. In a recent paper about guitar
transients, Woodhouse [2004b] states that the amplitude of phantom partials seems to be
modulated according to the longitudinal modal frequencies. This section gives a theoretical
explanation for these experimental findings and provides some new measurement results.

5.3.2 Equations of Motion

The wave equation for the longitudinal motion can be derived from Eq. (5.2) by adding
losses similarly to Eq. (2.25):

µ
∂2ξ

∂t2
= ES

∂2ξ

∂x2
− 2Rξ(ω)µ

∂ξ

∂t
+

1

2
ES

∂
(

∂y
∂x

)2

∂x
, (5.27)

where Rξ(ω) in Eq. (5.27) is the frequency dependent frictional resistance of the longitudi-
nal polarization. Here we assume that the longitudinal polarization is not affected by the
excitation directly, but gains energy from the transverse polarization. By comparing with
Eq. (2.25) it can be noticed that the two equations are of the same form, and they differ
only in their parameters: T0 is substituted by ES, and the dispersion term (fourth order
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spatial derivative) is missing. The external force density dy(x, t) is replaced by

dξ(x, t) =
1

2
ES

∂
(

∂y
∂x

)2

∂x
. (5.28)

Note that we again assume that the string is metallic, i.e., ES ≫ T0. This is reasonable, as
in the case of rubber like strings the longitudinal motion is negligible for transverse slopes
typical in musical instruments.

The formal similarity to Eq. (2.25) means that the results of Sec. 2.2.4 can be directly
used. By assuming infinitely rigid terminations, the longitudinal displacement can be
written in its modal form

ξ(x, t) =

∞
∑

k=1

ξk(t) sin

(

kπx

L

)

. (5.29)

Accordingly, the instantaneous amplitude ξk(t) of the longitudinal mode k is obtained as

ξk(t) = Fξ,k(t) ∗ ξδ,k(t), (5.30a)

Fξ,k(t) =

∫ L

0
dξ(x, t) sin

(

kπx

L

)

dx, (5.30b)

ξδ,k(t) =
2

Lµ

e−σξ,k

ωξ,k
sin (ωξ,kt) , (5.30c)

where the ∗ sign denotes time-domain convolution and Fξ,k(t) is the excitation force acting
on the longitudinal mode k. The time-domain impulse response of longitudinal mode k is
denoted by ξδ,k(t), where ωξ,k = 2πfξ,k and σξ,k = 1/τξ,k stand for the angular frequency
and decay rate of the longitudinal mode k. Note that the subscript ξ in fξ,k, ωξ,k, σξ,k,
and τξ,k is used to distinguish the longitudinal variables from the transverse ones.

For small frictional resistance, the longitudinal modal frequencies are

fξ,k = kfξ,0 =
k

2L

√

ES

µ
, or, ωξ,k = kωξ,0 =

πk

L

√

ES

µ
, (5.31)

where fξ,0 = fξ,1 is the fundamental frequency of the longitudinal vibration. The decay
rates and decay times are simply written as

σξ,k = R(ωξ,k) and τξ,k =
1

R(ωξ,k)
. (5.32)

The first step in calculating the longitudinal motion is the computation of the excitation
force Fξ,k(t) by Eq. (5.30b), which is the scalar product of the excitation-force density
dξ(x, t) and the longitudinal modal shape. Expressing the transverse string shape in its
modal form

y(x, t) =

∞
∑

n=1

yn(t) sin
(nπx

L

)

(5.33)

and inserting Eq. (5.33) into Eq. (5.28) gives

dξ(x, t) =
1

2
ES

∂
[
∑∞

n=1 yn(t)nπ
L cos

(

nπx
L

)]2

∂x
, (5.34)
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which, after some derivations, takes the following form:

dξ(x, t) = −ES
π3

4L3

∞
∑

m=1

∞
∑

n=1

ym(t)yn(t) m n ×

×
[

(m + n) sin

(

m + n

L
πx

)

+ (m − n) sin

(

m − n

L
πx

)]

. (5.35)

Note that the indices m and n belong to variables of transverse modes throughout the
chapter. The variables of longitudinal modes are indexed by k.

From Eqs. (5.35) and (5.30b) it follows that Fξ,k(t) is nonzero for m + n = k and
|m − n| = k only, since in all other cases the spatial distribution of the excitation dξ(x, t)

is orthogonal to the modal shape of mode k, which is sin(kπx/L). In other words, a
longitudinal mode with mode number k is excited by such transverse mode pairs, for
which either the sum or the difference of their mode numbers equal to k.

The two cases can be computed separately by defining Fξ,k(t) as a sum of two compo-
nents, i.e., Fξ,k(t) = Fξ,k(t)

+ + Fξ,k(t)
−. The component originating from the transverse

modes that satisfy m + n = k is

Fξ,k(t)
+ = −ES

π3

8L2

k−1
∑

n=1

yk−n(t)yn(t) k(k − n)n. (5.36a)

The component coming from |m − n| = k becomes

Fξ,k(t)
− = −2ES

π3

8L2

∞
∑

n=1

yk+n(t)yn(t) k(k + n)n. (5.36b)

The factor of 2 in Eq. (5.36b) comes from the fact that there are two equal series m = k+n

and n = k + m, since both satisfy |m − n| = k.
If the instantaneous amplitudes yn(t) of the transverse modes are known, the longitu-

dinal string displacement can be directly computed by the use of Eqs. (5.36), (5.30) and
(5.29).

5.3.3 Longitudinal Motion in the Case of Exponentially Decaying Trans-

verse Modes

For the freely vibrating, dispersive, lossy, and rigidly terminated string the transverse
displacement for a given position 0 ≤ x ≤ L and time t ≥ 0 can be written in the following
form:

y(x, t) =

∞
∑

n=1

yn(t) sin
(nπx

L

)

=

∞
∑

n=1

An cos(ωnt + ϕn)e−σnt sin
(nπx

L

)

, (5.37)

where ωn is the angular frequency, σn is the decay rate, An is the initial amplitude, and
ϕn is the initial phase of the transverse mode n. This form is of particular interest since
the motion of the struck or plucked strings can be described similarly after the excitation
(which, for example, lasts for 1–2 ms in the case of the piano). The steady state vibration
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of a continuously excited (e.g., bowed) string can also be approximated by Eq. (5.37) with
σn = 0.

In Eq. (5.36) all the terms are products of two transverse modal amplitudes:

ym(t)yn(t) = Am cos(ωmt + ϕm)e−σmtAn cos(ωnt + ϕm)e−σnt =

=
1

2
AmAne−t(σm+σn) [cos ((ωm + ωn)t + ϕm + ϕn) + cos ((ωm − ωn)t + ϕm − ϕn)] .

(5.38)

It can be seen from Eq. (5.38) that two sinusoidal terms arise with the sum and difference
frequencies of the originating modes. Both terms have the same amplitude 0.5AmAn and
the same decay rate, which is the sum of σm and σn.

The excitation force of mode k can be computed by inserting Eq. (5.38) into Eq. (5.36).
This will lead to a sum of exponentially decaying sinusoidal terms

Fξ,k(t) =
P
∑

p=1

Ape
−σpt cos(ωpt + ϕp), (5.39)

where the parameters Ap, σp, ωp, and ϕp can be computed from Eqs. (5.36) and (5.38).
As the equation describing the longitudinal modes is linear (see Eq. (5.30)), its response

can be computed for the individual terms of Eq. (5.39) separately.
The Laplace transform of the impulse response of longitudinal mode k (covered by

Eq. (5.30c)) is

L{ξδ,k(t)} =
2

Lµ

1

s2 + 2σξ,k s + σ2
ξ,k + ω2

ξ,k

, (5.40)

The system characterized by Eq. (5.40) has a free response (or, the homogenous solution
of the corresponding differential equation) that is an exponentially decaying sinusoidal
function with the angular frequency ωξ,k and decay rate σξ,k = 1/τξ,k. Its forced response
(the particular solution of the differential equation) to the terms of Eq. (5.39) is again an
exponentially decaying sinusoidal function with the frequency fp and decay time τp.

If we assume that τp ≫ τξ,k, then we can compute the amplitude and phase of the forced
response easily, since the transfer function derived from Eq. (5.40) (with the substitution
s = jωp = j2πfp) describes the amplitude and phase change of the excitation signal when it
passes through the system of Eq. (5.40). It can be seen from Eq. (5.40) that the longitudinal
modes can be considered as second-order lowpass filters with a resonance around fξ,k.
Excitation frequencies ωp around ωξ,k are largely amplified, while for ωp ≪ ωξ,k there is a
small gain, and for ωp ≫ ωξ,k there will be no output signal. Example frequency responses
for the first two longitudinal modes of a piano string are displayed in Fig. 5.2 with dashed
lines, giving an idea on how much the excitation terms are emphasized depending on their
relation to the resonance frequency.

Note that the assumption τp ≫ τξ,k usually holds for stringed instruments, as the decay
time of the longitudinal modes are an order of a magnitude lower than that of the transverse
modes. If one wishes to compute the amplitude and phase of the forced response more
precisely, it can be done in an analytical way by taking the Laplace transform of Eq. (5.39),
multiplying by Eq. (5.40) and performing the inverse Laplace transform.
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Excitation Frequencies

For qualitative understanding of the longitudinal components, it is useful to look at the
spectra of the excitation force series Fξ,k(t). The most important question is where the
frequency peaks can be found.

To the first approximation, the instantaneous amplitudes yn(t) are decaying sinusoidal
functions with the frequencies fn = ωn/(2π), as described by Eq. (5.37). By observing
Eqs. (5.36) and (5.38), the frequencies of the mixing terms in Fξ,k(t) can be calculated as

Frequencies

in Fξ,k(t)
+ :

{

fn + fk−n ≈ fk,

fn − fk−n ≈ f|2n−k|,

in Fξ,k(t)
− :

{

fn + fk+n ≈ f2n+k,

fn − fk+n ≈ fk,

(5.41)

where the form fa refers to the frequency of the transverse mode with mode number a.

Harmonic Transverse Vibration

The approximations in Eq. (5.41) become equalities if the transverse frequencies fn are
perfectly harmonic, i.e., fn = nf0, which is the case for string instruments having negligible
inharmonicity. In this case, there is a strong peak at the frequency fk, and a series of
partials at f2n−1 for odd k and at f2n−2 for even k, with n = 1, 2, .. . This means that the
odd longitudinal modes are excited by components having the same frequencies as the odd
transverse modes. Similarly, the even longitudinal modes are excited at the even transverse
modal frequencies.

These frequencies form the inputs of the time-domain impulse responses ξδ,k(t), which
can be considered as second-order resonators. As we have noted earlier, the output of
a resonator has two types of components: one component is the free response, which is
a decaying sinusoid at the frequency fξ,k. The other component is the forced response
consisting of the frequency series f2n−1 or f2n−2 with n = 1, 2, .. . The amplitudes of these
spectral lines are amplified around the peak of the resonator fξ,k. As the responses of all the
longitudinal modes are summed together, the output becomes similar to having formants
on a rich harmonic spectrum. The forced longitudinal components are indistinguishable
from the transverse ones since they are exactly at the same frequencies.

Inharmonic Transverse Vibration

For stiff strings, as derived in Sec. 2.2.4, the transverse partial frequencies do not form a
perfect harmonic series but are described by the equation

fn = f0n
√

1 + Bn2, (5.42)

where B is the inharmonicity coefficient and f0 ≈ f1 is the fundamental frequency of the
string.
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In this case the terms fn +fk−n and fn−fk+n do not have the frequency of fk but form
a bunch of peaks around fk. The peaks at the frequencies fn − fk−n lie somewhat higher
compared to f|2n−k| and the frequencies fn + fk+n are lower than f2n+k. This means that
these peaks depart from the transverse partials in a rate determined by the inharmonicity
coefficient B and the longitudinal mode number k. However, it is still true that odd
longitudinal modes are excited by an odd-like partial series, while even longitudinal modes
are excited by an even-like one.

The force exciting the first longitudinal mode Fξ,1(t) is displayed in Fig. 5.2 (a) by a
solid line, computed by the discrete-time implementation of the modal model described
by Eqs. (5.36) and (5.30) (see Sec. 6.3.5). The simulation example is a G1 piano string.
Note that the excitation force has an odd-like partial series and a lower inharmonicity
compared to the spectrum of the transverse bridge force, which is displayed by dots to
show the transverse modal frequencies as a reference. The dashed line indicates the Fourier
transform of the impulse response of the first longitudinal mode ξδ,1(t), amplifying the
frequencies around 690 Hz. Figure 5.2 (b) shows the excitation-force spectrum of the
second longitudinal mode for the same example. It can be seen that here the excitation
spectrum contains even partials only and that the peak of the longitudinal mode (dashed
line) is located at a higher frequency (1380 Hz in this case).

The longitudinal motion is the sum of the motion of different modes. This means that
spectra similar to Figs. 5.2 (a) and (b) should be superimposed with slightly shifted excita-
tion frequencies and very different longitudinal modal frequencies. The result is similar to
formants on a quasi-harmonic spectrum but here the peaks are somewhat smeared as they
are made up of many close frequencies. The most important difference from the case of
harmonic transverse vibration is that these smeared peaks appear between the transverse
ones and therefore they can be easily distinguished.

5.3.4 String Tension

The longitudinal component of string vibration is transmitted to the instrument body by
the force acting on the bridge in the longitudinal direction. To the first approximation,
this equals the tension at the termination Fl(t) = −T (L, t).

The string tension is computed according to Eq. (5.1). Equation (5.1) is made up
of three terms. By defining T0 as the tension at rest, Tl(x, t) as the tension component
proportional to the longitudinal slope, and Tt(x, t) as the tension component proportional
to the square of the transverse slope, the total tension can be written as

T (x, t) = T0 + Tl(x, t) + Tt(x, t). (5.43)

The tension component coming from the longitudinal motion is

Tl(x, t) = ES
∂ξ

∂x
= ES

π

L

∞
∑

k=1

ξk(t) k cos

(

kπx

L

)

, (5.44)

which was obtained by substituting Eq. (5.29) into Eq. (5.1).
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Figure 5.2: The force spectrum exciting the first (a) and the second (b) longitudinal modes
(Fξ,1(t) and Fξ,2(t)) of a simulated G1 piano string (solid line). The transverse bridge force
(dotted line) is displayed to show the transverse modal frequencies. The dashed line shows
the frequency response of the first (a) and the second (b) longitudinal modes. The relative
levels of the signals are arbitrary.

Inserting Eq. (5.33) into Eq. (5.1) gives the tension component coming from the trans-
verse vibration:

Tt(x, t) = ES
1

2

(

∂y

∂x

)2

= ES
1

2

[

π

L

∞
∑

n=1

yn(t) n cos
(nπx

L

)

]2

=

= ES
π2

4L2

∞
∑

m=1

∞
∑

n=1

ym(t)yn(t) m n

[

cos

(

m + n

L
πx

)

+ cos

(

m − n

L
πx

)]

. (5.45)

Calculating the string tension T (x, t) by Eqs. (5.44) and (5.45) is quite complicated and
do not provide a qualitative insight to the phenomenon. Therefore in the next subsections
we decompose the tension into a spatially uniform part T (t) and into a space-dependent
part T̃ (x, t). This is advantageous because the effects of the spatially uniform tension
variation are well described in the literature (see Sec. 5.2).

Decomposing the String Tension

It can be seen from Fig. 5.2 that the longitudinal modes have a constant gain under their
resonance frequency. Moreover, we know from the literature (see Sec. 5.2) that if all the
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longitudinal modes are excited under resonance, the tension will be spatially uniform along
the string. Therefore, it seems reasonable to decompose the longitudinal modal response
ξδ,k(t) into a constant part ξδ,k(t) representing this constant gain and into a dynamic part
ξ̃δ,k(t) corresponding to the dynamics of longitudinal modes. We will see that the constant
part ξδ,k(t) of the longitudinal response will be responsible for generating the spatially
uniform part of the tension T (t), while the space-dependent part of the tension T̃ (x, t) is
coming from the dynamic response ξ̃δ,k(t).

Accordingly, the impulse response ξδ,k(t) is written as

ξδ,k(t) = ξδ,k(t) + ξ̃δ,k(t), (5.46)

where ξδ,k(t) can be computed from Eq. (5.40) by s → 0 for ω ≪ ωξ,k:

ξδ,k(t) =
2

Lµ

1

ω2
ξ,k + σ2

ξ,k

δ(t) =
2L

ESk2π2
δ(t). (5.47)

From Eqs. (5.40) and (5.47) the Laplace transform of the “dynamic response” ξ̃δ,k(t)

(the correction term containing the system dynamics) is

L{ξ̃δ,k(t)} = L{ξδ,k(t) − ξδ,k(t)} = − 2

Lµ
(

σ2
ξ,k + ω2

ξ,k

)

s2 + 2σξ,k s

s2 + 2σξ,k s + σ2
ξ,k + ω2

ξ,k

=

= − 2L

ESk2π2

s2 + 2σξ,k s

s2 + 2σξ,k s + σ2
ξ,k + ω2

ξ,k

, (5.48)

which corresponds to a second-order highpass filter with a resonance at ωξ,k. Example
frequency responses of ξ̃δ,k(t) are displayed in Fig. 5.3 by solid line, where the parameters
of the longitudinal modes are the same as in Fig. 5.2, but now the frequency axis is in a
logarithmic scale. The dashed line shows the constant response corresponding to ξδ,k(t),
while their sum (which is the complete response ξδ,k(t)) is displayed by a dotted line. Note
that the phase of the dynamic response is the opposite of that of the static response at
high frequencies, therefore they cancel out.

Similarly to the decomposition of the impulse response, we may also decompose the
modal amplitude ξk(t) into a part coming from the static response, referred as ξk(t), and
into a part coming from the dynamic response, referred as ξ̃k(t). We may also do the same
with the longitudinal tension component by writing Tl(x, t) = T l(x, t) + T̃l(x, t).

Tension Coming From the Constant Response

From Eqs. (5.47) and (5.30a) the static part of the instantaneous amplitude ξk(t) of lon-
gitudinal mode k is obtained as

ξk(t) =
2L

ESk2π2
Fξ,k(t). (5.49)

From Eqs. (5.44) and (5.49), the tension component that comes from the longitudinal
motion takes the form

T l(x, t) = − 2

π

∞
∑

k=1

1

k
Fξ,k(t) cos

(

kπx

L

)

. (5.50)
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Figure 5.3: Frequency responses of the first (a) and the second second (b) longitudinal
modes of a G1 piano tone. The solid line shows the Fourier transform of the dynamic
response ξ̃δ,k(t), while the constant response ξδ,k(t) is displayed by a dashed line. The
complete response ξδ,k(t) = ξδ,k(t) + ξ̃δ,k(t) is displayed by a dotted line.

Calculating the excitation force Fξ,k(t) = Fξ,k(t)
+ + Fξ,k(t)

− with the help of Eq. (5.36)
and eliminating k by substituting m + n = k and |m − n| = k gives

T l(x, t) = −ES
π2

4L2

∞
∑

m=1

∞
∑

n=1

ym(t)yn(t) m n cos

(

m + n

L
πx

)

−

− ES
π2

4L2

∞
∑

m=1

∞
∑

n=1
n 6=m

ym(t)yn(t) m n cos

(

m − n

L
πx

)

, (5.51)

where n 6= m in the second term comes from the fact that the longitudinal mode number
k = |m − n| cannot be zero. Note that there is no such constraint for the first term as
k = m + n in that case.

Comparing Eq. (5.51) with (5.45) shows that they contain the same terms but with
opposite sign. The only difference is the n 6= m under the last sum of Eq. (5.51). Indeed,
if Eqs. (5.45) and (5.51) are substituted into Eq. (5.43), all the terms cancel out, except
some with m = n giving

T (t) = T0 + T l(x, t) + Tt(x, t) = T0 + ES
π2

4L2

∞
∑

n=1

y2
n(t) n2, (5.52)
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where the tension does not depend on x, i.e., it is uniform along the string. This is the
same as Eq. (5.21) obtained by computing the tension from the elongation of the string
by Eq. (5.15). The temporal variation of this spatially constant tension T (t) in the case of
sinusoidally decaying transverse modes have been already discussed in Sec. 5.2.2.

Tension Coming From the Dynamic Response

From Eq. (5.44), by writing ξk(t) = ξk(t)+ ξ̃k(t), the tension coming from the longitudinal
motion is obtained as

Tl(x, t) = ES
π

L

∞
∑

k=1

[ξk(t) + ξ̃k(t)] k cos

(

kπx

L

)

= T l(x, t) + T̃l(x, t), (5.53)

where T l(x, t) is the tension coming from the constant response and can be computed
by Eq. (5.51), and T̃l(x, t) is the tension component originating from the dynamics of
longitudinal modes, and it is obtained as

T̃l(x, t) = ES
π

L

∞
∑

k=1

[ξ̃δ,k(t) ∗ Fξ,k(t)] k cos

(

kπx

L

)

, (5.54)

where the substitution ξ̃k(t) = ξ̃δ,k(t) ∗ Fξ,k(t) means that the dynamic part of the motion
of longitudinal mode k is computed by convolving the dynamic impulse response ξ̃δ,k(t)

with the excitation force acting on mode k.
The total tension is given by

T (x, t) = T0 + Tt(x, t) + T l(x, t) + T̃l(x, t) = T (t) + T̃l(x, t), (5.55)

where T (t) is the spatially uniform tension (both transverse and longitudinal) computed
by the static response of longitudinal modes, as given in Eq. (5.52). Accordingly, the total
tension is made up from a spatially uniform part T (t) which comes from the transverse
motion and the constant response of longitudinal modes, and a spatially non-uniform part
T̃l(x, t) coming from the dynamics of longitudinal modes.

Let us turn our attention to this dynamic part: according to Eq. (5.48), the dynamic
impulse response ξ̃δ,k(t) corresponds to a second-order highpass filter. This filter has a free
response that is an exponentially decaying sinusoid at the longitudinal modal frequency
ωξ,k and a forced response, whose amplitude and phase can be computed from Eq. (5.48)
by s = jωp. The excitation terms of Fξ,k(t) have been already discussed in Sec. 5.3.3. Note
that the excitation signal of ξδ,k(t), ξδ,k(t), and ξ̃δ,k(t) are all the same (that is, Fξ,k(t)).

From Eq. (5.48) and from Fig. 5.3 we can conclude that for ωp ≪ ωξ,k the forced
response is zero. For ωp ≫ ωξ,k, the forced response is small, as its contribution to the
tension is comparable to that coming from the constant response. However, for ωp ≈ ωξ,k,
the longitudinal mode is excited around resonance, leading to a strong component of the
frequency ωp in the tension, having a spatial distribution of the form cos(kπx/L).

The free response of longitudinal mode k is an exponentially decaying sinusoidal func-
tion with the frequency ωξ,k and decay rate σξ,k, which adds a further component to the
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tension, again with the spatial distribution of cos(kπx/L). The amplitude of the free re-
sponse is in the order of that of the forced response. This means that when forced response
is negligible, so is the free response.

Some Notes on the Uniform Tension Approximation

We have already reviewed the conditions given by the literature when the tension can be
considered uniform along the string in Sec. 5.2. However, the decomposition of the string
tension into a spatially uniform part T (t) and into a space-dependent part T̃l(x, t) helps
us to understand this phenomenon better. Actually, the uniform tension approximation of
Sec. 5.2 can be applied if the spatially nonuniform part of the tension T̃l(x, t) is negligible
compared to the spatially uniform part T (t). This happens when the dynamic responses
of all the longitudinal modes (which generate the space-dependent part T̃l(x, t)) are signif-
icantly lower than the static responses (which determine the spatially uniform part T (t)).
That is, the longitudinal modes are excited at only those frequencies, where the solid lines
are significantly below the dashed ones in Fig. 5.3. This happens if all the longitudinal
modes are excited by frequencies that are considerably smaller than the corresponding
longitudinal modal frequency fξ,k. As the dynamic responses (solid lines in Fig. 5.3) corre-
spond to second-order high-pass filters, it is reasonable to require that all the longitudinal
modes are excited below the half of their modal frequencies.

Thus, the validity of the uniform tension approximation should be evaluated by com-
paring fξ,k with the excitation frequencies calculated by Eq. (5.41) for each k. Having
small order transverse vibrations in comparison to the ratio of longitudinal and transverse
propagation speeds [see, e.g., Anand 1969] is a sufficient, but not a necessary, condition
for the applicability of the uniform tension approximation.

As a special case, if the transverse vibration contains only one mode, the uniform
tension approximation can always be applied. This is because the transverse mode n

excites longitudinal mode k = 2n at the frequency 2fn ≈ 2nf0, and the modal frequency
fξ,2n ≈ 2nfξ,0 of the 2nth longitudinal mode is much larger than 2fn (as fξ,0/f0 ≫ 1 holds
for metal strings). Note that this is true for all the transverse modes, and not only for the
first few.

Another special case occurs when the transverse partials are present up to a mode num-
ber N . Here the assumption of the uniform tension can be applied only if the excitation
force does not contain significant components around and above fξ,0/2. The excitation
forces Fξ,k(t) have approximately double the bandwidth (≈ 2Nf0) compared to the band-
width of the transverse vibration (≈ Nf0). This gives the constraint 2Nf0 < fξ,0/2, which
is equivalent to Eq. (5.12).
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5.3.5 Longitudinal Bridge Force

The longitudinal bridge force can be approximated as the tension at the termination (x =

L):

Fl(t) = −T (L, t) = −[T (t) + T̃l(L, t)] = −
[

T0 + ES
π2

4L2

∞
∑

n=1

y2
n(t) n2+

+ES
π

L

∞
∑

k=1

{ξ̃δ,k(t) ∗ Fξ,k(t)} k cos(kπ)

]

. (5.56)

In the case of exponentially decaying sinusoidal transverse modes, the first part T (t) is made
up of a slowly decaying average tension and of a tension variation having double frequency
terms (see Sec. 5.2.2). The slow tension variation of Eq. (5.24) yields a change in the strain
of the instrument body, but it is not radiated to the air, i.e., it has no importance in this
case (if we were considering longitudinal to transverse coupling, it would have). On the
other hand, the sinusoidal terms of Eq. (5.23) are effectively radiated by the instrument
body. This means that terms having double the frequency of transverse modes will appear
in the sound generated by the instrument.

The part covering the dynamics of longitudinal modes T̃l(L, t) can be computed by
taking the Laplace transform of the excitation Eq. (5.39), multiplying by Eq. (5.48), and
performing an inverse Laplace transform. However, for qualitative understanding it is
enough to notice that T̃l(L, t) contains the free and forced response of those modes which
are excited around or above their resonance frequency. The dominant components in
T̃l(L, t) will come from those excitation terms which are near resonance.

Note that the components originating from the excitation of longitudinal modes have
much higher amplitude than the double frequency terms. This is because these “resonance
terms” are originating from the dynamic response of longitudinal modes (solid line in
Fig. 5.3), where the gain is 30–40 dB larger compared to the static response (dashed line
in Fig. 5.3), which generates the double frequency terms.

5.3.6 Possible Extensions and Limitations

Nonrigid String Terminations

The termination of musical instrument is not perfectly rigid, contrary to the assumptions
made here. As the impedance of the bridge is usually much larger compared to the im-
pedance of the string, its main effect is a change in the transverse partial frequencies fn

and decay times τn, which can be easily incorporated in Eq. (5.37). The modal shapes
also change slightly, which can be taken into account by substituting L with L + δLn in
Eqs. (5.33) and (5.37), where δLn is computed by Eq. (5.26), meaning that none of the
longitudinal modal shapes are completely orthogonal to the modal shapes of the excitation-
force density. However, it is still true that the dominant force components are those com-
puted by Eq. (5.36).

It is proven in Appendix A.2 that the equations derived by assuming infinitely rigid
string terminations are good approximations to the reality for longitudinal modal numbers
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in the order of 1-10, which are actually the most important ones from the musical acoustics
point of view (these are the ones that can be heard). This has also been confirmed by finite-
difference simulations showing only a small change in the output when a more realistic
termination model is applied.

The termination of musical instrument strings can also contribute to the energy transfer
between the transverse and longitudinal motion, if the string passes the bridge at an angle
[Legge and Fletcher 1984]. As such a coupling is linear, it does not introduce new terms by
itself. The transverse frequencies can appear in the longitudinal motion, and conversely, the
longitudinal frequencies may turn up in the transverse vibration. However, those transverse
and longitudinal components that have the same frequency cannot be distinguished in the
sound pressure. The coupling through the bridge in combination with the transverse to
longitudinal coupling along the string could produce new terms, but they are of fourth
order in the amplitude of the transverse vibration.

Extension to Two Transverse Planes

Real strings vibrate in two transverse polarizations. The modal frequencies for these po-
larizations can be different for the same modes, mostly because of the direction-dependent
termination impedance. This produces beating and two-stage decay in piano sound [Wein-
reich 1977]. The three-dimensional version of Eq. (5.27) is

µ
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, (5.57)

where z is the string displacement in the direction perpendicular to the already considered
transverse y and longitudinal x directions.

It follows from Eq. (5.57) that the excitation-force density dξ(x, t) is the superposi-
tion of the excitation-force densities computed for the two transverse planes separately.
After performing similar derivations as for Eq. (5.35), the excitation force density of the
longitudinal vibration becomes

dξ(x, t) = −ES
π3

4L3

∞
∑

m=1

∞
∑

n=1

[ym(t)yn(t) + zm(t)zn(t)] m n ×

×
[
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(

m + n

L
πx

)
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(

m − n

L
πx

)]

, (5.58)

where zn is the instantaneous amplitude of the mode n in the z direction:

z(x, t) =
N
∑

n=1

zn(t) sin

(

kπx

L

)

. (5.59)

By replacing ym(t)yn(t) with [ym(t)yn(t)+zm(t)zn(t)] in Eq. (5.36), the excitation force
of longitudinal mode k is obtained. The component originating from the transverse modes
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that satisfy m + n = k is

Fξ,k(t)
+ = −ES

π3

8L2

k−1
∑

n=1

[yk−n(t)yn(t) + zk−n(t)zn(t)] k(k − n)n. (5.60a)

The component coming from |m − n| = k becomes

Fξ,k(t)
− = −2ES

π3

8L2

∞
∑

n=1

[yk+n(t)yn(t) + zk+n(t)zn(t)] k(k + n)n. (5.60b)

The total excitation force of mode k is the sum of the two components, i.e., Fξ,k(t) =

Fξ,k(t)
++Fξ,k(t)

−. As the force exciting the longitudinal modes is known, the longitudinal
motion can be readily computed by Eq. (5.30). The equations covering the string tension
could also be obtained by slightly modifying the equations of Sec. 5.3.4. Actually, terms
of the form ym(t)yn(t) have to be replaced by [ym(t)yn(t) + zm(t)zn(t)] in all the places.

It is useful to take a short look at the excitation frequencies. If two modes vibrate in two
planes perpendicular to each other, their sum and difference frequencies do not appear in
the excitation force. In reality the vibrating planes of the different modes are not perfectly
perpendicular to each other because of the direction- and frequency-dependent terminating
impedance, meaning that mode m vibrating in one plane will mix with mode n vibrating
in a different plane.

The modal frequencies fn,1 and fn,2 of the two transverse polarizations are slightly
different for the same mode number n. Thus, the excitation components coming from
the transverse modes m and n consist of four different frequencies. For example, the
sum-frequency components have the frequencies fm,1 + fn,1, fm,1 + fn,2, fm,2 + fn,1, and
fm,2 + fn,2. The difference-frequency components can be expressed similarly.

The Effect of Neglecting the Longitudinal to Transverse Coupling

The assumption of neglecting the longitudinal to transverse coupling is valid until the
longitudinal vibration is small compared to the transverse one. However, if one of the
excitation frequencies of the longitudinal mode k (see Eq. (5.41)) is very close to the
resonant frequency fξ,k of that mode, the longitudinal motion can have extremely large
amplitude. This does not happen in reality since the longitudinal motion diminishes the
amplitude of those transverse modes from which it originates (the total energy of transverse
and longitudinal vibrations cannot increase). This stabilizing effect is not included in this
model. Some of its aspects will be covered in Sec. 5.4.2.

The longitudinal to transverse coupling would also introduce some terms of third order
in the amplitude of the transverse vibration, but their contribution is less significant in
this regime of vibration, as already discussed in Sec. 5.1.2.

Accordingly, the frequencies predicted by the model of Sec. 5.3 should be in quantitative
agreement with the dominant peaks found in real string spectrum. The amplitude behavior
is described properly for those peaks that do not coincide with the resonant frequency of
the excited longitudinal mode. (This holds for most of the peaks.)
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Note that the coincidences of longitudinal modal and excitation frequencies have a small
practical significance from the sound synthesis viewpoint since they produce an unpleasant
ringing sound even when computed with full bidirectional coupling, e.g., by the model of
Sec. 6.4.2. Therefore, when synthesizing string sounds with this paradigm, the longitudinal
modal frequencies have to be tuned in a way that they are not too close to their excitation
frequencies (see Sec. 6.3.4 for details). This fact implies that these annoying coincidences
should also be avoided in real musical instruments (mostly in pianos) by careful string-
and scale design.

5.3.7 Connections to Measurements

In this section the theoretical results of Sec. 5.3 are related to the measurements of other
authors, namely Nakamura and Naganuma [1993]; Conklin [1999]; Giordano and Korty
[1996]. On the one hand, this confirms the theoretical model developed here. On the
other hand, it helps to understand the theoretical reasons underlying the findings of these
experimental studies.

Parentage of Phantom Partials

From the theoretical point of view, phantom partials are coming from the forced motion
of longitudinal vibrations. An interesting property of odd phantom partials discovered
by Conklin [1999] is that they originate from adjacent parents, i.e., they can be found at
frequencies fm + fn where |m − n| = 1.

By looking at Fξ,k(t)
− in Eq. (5.41) it turns out that the frequencies fn+fm = fn+fk+n

are quite close to each other for m + n = p (they would actually coincide in the case of
a perfectly harmonic transverse vibration, and would have the frequency f2n+k). The
question is which fm +fn combination has the largest amplitude in the resulting sound. It
follows from Eq. (5.41) that the different fm+fn components belonging to the same smeared
peak (i.e., m + n = p) excite different longitudinal modes. Namely, the frequency fm + fn

excites the longitudinal mode having the mode number k = |m − n|. Accordingly, that
fm+fn component results in the largest longitudinal motion which excites the longitudinal
mode having a modal frequency fξ,k close to the frequency fm + fn. In other words, if the
frequency of a phantom partial group is close to the frequency fξ,k of the kth longitudinal
mode, it mainly originates from parents having mode number difference of k.

The lower odd phantom partials, which were measured by Conklin [1999], most prob-
ably have frequencies to which the first longitudinal mode is the nearest. In this case the
fm + fn terms satisfying |m − n| = 1 dominate, which actually originate from adjacent
parents fn and fn+1.

Similar considerations apply for even phantoms, that is, they are generated by parents
having mode number difference of 2, 4, 6, etc., depending on the frequency of the phantom
partial. However, there is an important difference that double frequency terms 2fn also
occur in the spectrum. These 2fn components would arise even when the bandwidth of
transverse components was significantly lower than the frequency of the first longitudinal
mode, i.e., when the tension was uniform along the string (see Sec. 5.3.4). Actually, these
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are the only components that can be explained by the uniform tension approximation of
Sec. 5.2, while for the sum- and difference frequency components the inertial effects of
longitudinal modes have to be included in the model. The double frequency terms have a
lower amplitude compared to the phantom partials originating from adjacent parents, as
the latter are generated by the resonance of longitudinal modes, while the 2fn components
correspond to the excitation of a specific longitudinal mode under resonance (see Secs. 5.3.4
and 5.3.5).
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Figure 5.4: Spectrum of the first (a) and the second second (b) of a F1 piano tone. Trans-
verse partials are marked by crosses and the second longitudinal mode is marked by a
circle. Two prominent phantom partial groups are indicated by a square and a diamond
(the latter is magnified in Fig. 5.5).

The spectrum of a recorded F1 piano tone (having only one string) is displayed in
Fig. 5.4. Transverse partials are indicated by crosses. Note that two crosses belong to one
partial, as there are two transverse polarizations with slightly different modal frequencies.
The free response of the second longitudinal mode is marked by a circle. The remaining
peaks are the forced response of the longitudinal motion, i.e., they are the phantom partials.
Figure 5.4 (a) shows the first second of the tone and Fig. 5.4 (b) displays the second,
giving an insight to the evolution of the spectrum. Note that the free response of the
longitudinal mode (circle) disappears fast in the noise (the decay time is ca. 0.15 s), while
the phantom partials remain significant and their decay rate is comparable to that of the
transverse partials (1–2 s). In general, it has been found that the highest nontransverse
peaks in the long-term spectrum are phantom partials amplified by a longitudinal mode
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Figure 5.5: The spectrum of an even phantom partial group in the F1 piano tone of Fig. 5.4.
Sum frequencies of transverse modes fm +fn are marked by circles, and the mode numbers
of the parent partials are labeled in the form of m + n. The phantom group is displayed
by a diamond in Fig. 5.4.

(one prominent example is marked by a square). This suggests that the forced response of
the longitudinal motion may have a larger perceptual significance than the free response
itself. Most probably the pitch of the longitudinal component is determined by these
amplified phantom partials (like the one marked by a square in Fig. 5.4) and not by
the fast decaying free response. The interested reader may listen to the sound examples
demonstrating the relative significance of these components [Sound examples n.d.].

The “single” phantom partial marked by a diamond in Fig. 5.4 becomes a group of
partials when plotted at a higher frequency resolution in Fig. 5.5. In this case the data
length is 16 seconds (705 600 samples at fs = 44.1 kHz), which was zero padded to 222

samples after applying a Hanning window. The most prominent peaks of the phantom
group are marked by circles. The label “m + n” beside a circle indicates that the circle
is located at the sum frequency of the transverse modes m and n (i.e., at fm + fn). The
frequencies of the transverse modes were determined by finding peaks in the spectrum.
Note that the same m + n combinations can be found at several peaks: the reason is that
the two different frequencies fm,1 and fm,2 of the two transverse polarizations of mode m

mix with the two different frequencies fn,1 and fn,2 of mode n, as predicted in Sec. 5.3.6.
It can be seen in Fig. 5.5 that the highest peak comes from the 12th and 14th transverse

modes and not from the 13th mode itself, although the amplitude of the latter is only 10
dB smaller. Other even phantoms show the same phenomenon: they principally originate
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from parents having mode-number difference of 2, 4, etc., and not from a single mode
by frequency doubling. This contradicts the findings of Conklin [1999] but confirms the
analysis of Sec. 5.3.5.
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Figure 5.6: Spectrum of the first (a) and the second second (b) of an A1 harpsichord tone.
Transverse partials are marked by crosses. All the other peaks correspond to phantom
partials (the one with the largest amplitude is marked by a diamond).

The spectrum of the first and second second of an A1 harpsichord tone1 is displayed
in Fig. 5.6, showing that phantom partials can be found in other instruments, too. The
displayed part of the spectrum has the largest nonlinear components, meaning that in other
parts of the spectrum the nonlinearity is less prominent. Note that even in this region the
nonlinear components have lower amplitude compared to those in the piano, displayed in
Fig. 5.4. Other example spectra of instruments with phantom partials can be found in
[Conklin 1999].

Inharmonicity of Phantom Partials

Nakamura and Naganuma [1993] found that the inharmonicity of phantom partials (which
they call “lower series”) is one-fourth of that of normal transverse partials. This can be
explained by knowing that phantom partials are mainly produced by parents with mode
numbers close to each other. This means that even phantoms have an approximate fre-
quency of fp = 2fn, where p = 2n is the “mode number” of the phantom partial. (See

1Sound sample provided by the Laboratory of Acoustics and Audio Signal Processing, Helsinki Univer-

sity of Technology.
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Fig. 5.5 as an example, where f12 + f14 ≈ 2f13.) Writing fp = 2fn according to Eq. (5.42)
and expressing the frequencies by the phantom mode number p = 2n gives

fp ≈ 2fn = 2f0n
√

1 + Bn2 = f0p

√

1 +
1

4
Bp2. (5.61)

For even phantoms, the expression is quite accurate. For odd phantoms, n = p/2 is not an
integer number. However, as the inharmonicity curve is a smooth function, the frequencies
of odd phantom partials are also close to the ones predicted by Eq. (5.61).

Amplitude of Longitudinal Vibration

Giordano and Korty [1996] found that the amplitude of the longitudinal vibration in
recorded piano sound is a nonlinear function of the amplitude of the transverse component.
They noted that the nonlinear curve is faster than a simple quadratic function.

Equation (5.35) shows that a peak in the excitation spectrum of a longitudinal mode
is a quadratic function of the overall amplitude of the generating transverse modes m and
n. However, the amplitude of longitudinal motion is mostly determined by parents having
sum frequencies fm + fn around the longitudinal modal frequencies fξ,k. The amplitude of
these parents (with mode numbers around 10–20 in practice) is a nonlinear function of the
overall amplitude of the transverse vibration. This is because of the nonlinear nature of the
hammer–string interaction [see, e.g., Fletcher and Rossing 1998, p. 367]. The presence of
this second kind of nonlinearity explains why Giordano and Korty [1996] could not measure
a second-order relationship.

5.4 Bidirectional Coupling of the Transverse and Longitudi-

nal Polarizations

In this section we will briefly overview the bidirectional coupling of longitudinal and trans-
verse polarizations in the case of spatially nonuniform tension. The papers that consider
the bidirectional coupling are those already mentioned in Sec. 5.3.1. It is a general feature
of these studies [Leissa and Saad 1994; Leamy and Gottlieb 2000; Kurmyshev 2003] that
they investigate the first few modes of vibration, thus, they cannot be used directly. We will
rather concentrate on the basic equations, which can be formulated similarly to Sec. 5.3,
and give a qualitative explanation to the stabilizing effect, namely, that the amplitude of a
longitudinal mode cannot grow to infinity, even if it is excited at its resonance frequency.

5.4.1 Equations of Motion

The equations presented in Sec. 5.3 gave analytical solutions as there the nonlinear coupling
between two linear subsystems was unidirectional. Here the coupling is bidirectional, which
cannot be treated analytically for arbitrary number of modes. Therefore, we will examine
the nonlinear transverse force assuming a specific transverse and longitudinal vibration of
the string. In reality, this nonlinear transverse force acts back and modifies the transverse
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motion and the longitudinal motion through the transverse one. Therefore, only qualitative
results are expected.

The equation of motion for the longitudinal polarization is described by Eq. (5.27).
From Eqs. (2.25) and (5.3), the wave equation for the transverse motion (y polarization)
is written as

µ
∂2y

∂t2
= T0

∂2y

∂x2
− ESκ2 ∂4y

∂x4
− 2R(ω)µ

∂y

∂t
+ ES

∂

{

∂y
∂x

[

∂ξ
∂x + 1

2

(

∂y
∂x

)2
]}

∂x
, (5.62)

where the right-most term is the nonlinear excitation-force density

dy(x, t) = ES

∂

{

∂y
∂x

[

∂ξ
∂x + 1

2

(

∂y
∂x

)2
]}

∂x
=

∂
{

[T (x, t) − T0]
∂y
∂x

}

∂x
= dy(x, t) + d̃y(x, t).

(5.63)
Similarly to decomposing the tension T (x, t) = T (t)+T̃l(x, t) (see Sec. 5.3.4), the excitation-
force density dy(x, t) is decomposed into two parts. The part that comes from the spatially
uniform part of the temporal modulation of the tension is

dy(x, t) =
∂
{

[T (t) − T0]
∂y
∂x

}

∂x
= [T (t) − T0]

∂2y

∂x2
. (5.64)

Note that T0 is subtracted from T (t) as it is already included in the term T0(∂
2y/∂x2) of

Eq. (5.62). The part dy(x, t) can be considered as the excitation force coming from the
temporal variation of the spatially uniform part of the tension.

The part that comes from the space-dependent component of the tension is

d̃y(x, t) =
∂
(

T̃l(x, t)∂y
∂x

)

∂x
. (5.65)

As the total nonlinear excitation force is the superposition of dy(x, t) and d̃y(x, t), we will
take a look at the effect of these two components separately.

Excitation Force Coming From the Temporal Variation of the Spatially Uniform

Tension

By using Eq. (5.52) and writing the transverse vibration in its modal form, the first
excitation-force density component dy(x, t) becomes

dy(x, t) = {T (t) − T0}
∂2y

∂x2
= −

(

ES
π2

4L2

∞
∑

n=1

y2
n(t) n2

)(

π2

L2

∞
∑

n=1

yn(t) n2 sin
(nπx

L

)

)

.

(5.66)
The excitation-force F y,m(t) acting on the transverse mode m is given by the scalar product
of the excitation force density and the modal shape

F y,m(t) =

∫ L

x=0
dy(x, t) sin

(mπx

L

)

dx = −ES
π4

8L3
ym(t) m

∞
∑

n=1

y2
n(t) n2. (5.67)
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As this part of excitation is coming from the spatially uniform part of the tension, its
effects are discussed in Sec. 5.2 and the references cited therein. Here we only recall
that the quasistatic decaying part of tension modulation leads to a pitch glide, while the
double-frequency terms lead to the excitation frequencies 2ωn±ωm for all n, where effective
excitation happens if m = n. It is more interesting to turn our attention to the effect of
tension variation that comes from the dynamics of longitudinal modes.

Excitation Force Coming From the Space-dependent Part of the Tension

The excitation-force density d̃y(x, t) is given as

d̃y(x, t) =
∂
(

T̃l(x, t)∂y
∂x

)

∂x
=

∂2y

∂x2
T̃l(x, t) +

∂y

∂x

∂T̃l(x, t)

∂x
, (5.68)

which, by using Eq. (5.54) and writing the transverse and longitudinal displacement in the
modal form, becomes

d̃y(x, t) = −ES
π3

L3

∞
∑

n=1

∞
∑

k=1

n2 k yn(t) ξ̃k(t) sin
(nπx

L

)
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(

kπx
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−
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∞
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= −ES
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(
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)

+ (n − k) sin

(

n − k

L
πx

)]

(5.69)

It is a nice example of the symmetry in nature that Eq. (5.69) has exactly the same form as
the excitation force of the longitudinal motion Eq. (5.35), with the substitutions m → n,
n → k, k → m, ym(t) → yn(t), and yn(t) → ξ̃k(t). Accordingly, the excitation force
F̃y,m(t) acting on transverse mode m can be directly written from Eq. (5.36), by defining
F̃y,m(t) = F̃+

y,m(t) + F̃−
y,m(t). The component originating from m = n + k is

F̃y,m(t)+ = −ES
π3

4L2

m−1
∑

k=1

ym−k(t)ξ̃k(t) m(m − k)k. (5.70a)

The component coming from m = |n − k| becomes

F̃y,m(t)− = −2ES
π3

4L2

∞
∑

k=1

ym+k(t)ξ̃k(t) m(m + k)k. (5.70b)

The factor of 2 in Eq. (5.70b) comes from the fact that there are two equal series n = m+k

and k = m + n, since both satisfy |n − k| = m. It follows from Eq. (5.70) that transverse
mode m is excited effectively by such longitudinal and transverse mode pairs, for which
either the sum n + k or the difference |n − k| of their mode numbers is equal to m.

If we assume that the linear transverse component is built up by exponentially decaying
sinusoidal functions, as in Eq. (5.37), and so is the longitudinal motion (but including the
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forced response of longitudinal modes, too), it is possible to find the excitation frequencies
of transverse mode m similarly to Eq. (5.41), given as

Frequencies

in F̃y,m(t)+ :

{

fξ,k,p + fm−k,

fξ,k,p − fm−k,

in F̃y,m(t)− :

{

fξ,k,p + fm+k,

fξ,k,p − fm+k,

(5.71)

where the form fm±k refers to the frequency of the transverse mode with mode number
m ± k, and the form fξ,k,p refers to the pth frequency component of longitudinal mode k,
corresponding to the frequency of the free response fξ,k and to all the frequencies of the
forced response, given by Eq. (5.41), which can be summarized as fq±fk±q, for q = 1, 2, .. .

Concentrating on the forced response of the longitudinal modes (the phantom partials),
i.e., letting fξ,k,p = fq ± fk±q in Eq. (5.71) gives the excitation frequencies of mode m as

fq ± fk±q ± fm±k (5.72)

for all q and k. For harmonic transverse modal frequencies, the excitation frequencies
given by 5.72 will coincide with the modal frequencies fn, but for inharmonic strings they
will provide a wideband excitation spectra. Naturally, those terms will have the largest
influence on mode m in both cases, whose frequency equals the modal frequency of mode
m.

From the free response of the longitudinal modes, which means fξ,k,p = fξ,k in Eq. (5.71),
the excitation frequencies are

fξ,k ± fm±k. (5.73)

These frequencies are different from the transverse modal frequencies even in the case of
perfectly harmonic transverse vibrations. Efficient excitation of transverse mode m occurs
if this frequency is near fm, which happens, e.g., if the sum fm + fm±k ≈ f2m±k of two
transverse modes with the distance k is near to the longitudinal modal frequency fξ,k.

5.4.2 The Stabilization Effect

We know from Sec. 5.3.6 that in a model where the longitudinal to transverse coupling
is neglected, the amplitude of longitudinal motion can grow to unrealistically large value
when the longitudinal mode is excited at its resonance. This does not happen in reality, as
due the longitudinal to transverse coupling the rising longitudinal mode will influence the
motion of its transverse parent modes significantly. In this section we aim at the qualitative
explanation of this “stabilizing effect”. First we investigate whether this growing forced
component of longitudinal motion (which is actually a phantom partial) can act on its
parents. For that, the nonlinear excitation force of the parent modes should contain a
term at their natural frequency. Then, we check whether this excitation term decreases
or increases the amplitude of the parent by comparing the phase of the parent and its
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excitation force. As it can be seen in Eq. (5.67), the excitation force coming from the
spatially uniform tension does not depend on the longitudinal displacement. Thus, the
“stabilization effect” must originate from the excitation force F̃y,m(t) coming from the
space-dependent tension T̃ (x, t).

Excitation Frequency

Let us suppose that we have two transverse modes m and n with the frequencies fm and fn,
with m 6= n. It follows from Eq. (5.41) that these modes will excite the longitudinal modes
k = |m−n| and l = m + n. The excitation terms of both longitudinal modes will have the
frequencies fm+fn and fm−fn. As the fundamental frequency of the longitudinal vibration
is much larger than that of the transverse vibration, the longitudinal mode l = m+n with
the modal frequency fξ,m+n will not be effectively excited by the frequencies fm ± fn. On
the other hand, it is possible that longitudinal mode k = |m−n| has a resonance frequency
fξ,|m−n| that is near to fm + fn, leading to an efficient excitation.

In Eq. (5.71) the only significant longitudinal component is now fξ,k,p = fm + fn with
k = |m − n|. For the transverse components, fm−k = fm−(m−n) = fn is present, while
fm+k = fm+(m−n) = f2m−n is not, as we have assumed that the only significant transverse
modes are m and n (we exclude the coincidences m = 2m−n or n = 2m−n, as they would
only occur if m = n). Accordingly, we only have to concentrate on F̃y,m(t)+ in Eq. (5.71),
where the two excitation frequencies are (fm+fn)−fn = fm and (fm+fn)+fn = 2fn+fm.
The latter have no significant effect, but the term with the frequency fm will largely
influence the motion of the transverse mode m. To sum up, one of the parents of a phantom
partial together with the phantom partial itself create a mixing term in the excitation force
which influence the other parent. The phantom partial have the sum frequency fm + fn of
the two transverse modes, thus, subtracting the frequency of either parents from this sum
will give the frequency of the other parent.

Increase or Decrease

It has been clarified that a phantom partial can act back to its parent transverse partial
by mixing with the other parent. However, it is still not clear whether this “feedback”
increases or decreases the amplitude of the parent mode.

Let us assume that the two transverse modes m and n < m have the instantaneous
amplitudes ym = Am cos(ωmt + ϕm) and yn = An cos(ωnt + ϕn). From Eq. (5.36), the
excitation force of longitudinal mode k = m − n will have the form

Fξ,k(t) = Fξ,k(t)
− = −2ES

π3

8L2
AmAnym(t)yn(t)(m − n)mn =

= −2ES
π3

8L2
(m − n)mnAmAn cos(ωmt + ϕm) cos(ωnt + ϕn) =

−ES
π3

8L2
(m−n)mnAmAn [cos((ωm + ωn)t + ϕm + ϕn) + cos((ωm − ωn)t + ϕm − ϕn)] ,

(5.74)
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where only the first term with the frequency ωm + ωn will effectively excite longitudinal
mode k = m − n, as the other has a frequency which is much lower than ωξ,k, where
the dynamic response of the longitudinal mode is negligible (see Fig. 5.3). Note that
Fξ,k(t) = F−

y,k(t) in Eq. (5.74) because F̃+
y,k(t) is zero, since the two transverse modes that

are present on the string have mode numbers m and n that does not satisfy k = m + n (as
k = m − n and m 6= n).

Accordingly, the first term (ωm +ωn) of Eq. (5.74) is filtered by the transfer function of
the dynamic response of longitudinal mode k, which is given in Eq. (5.48). By substituting
s = jω in Eq. (5.48), one obtains

F{ξ̃δ,k(t)} = − 2L

ESk2π2
· −ω2 + j2σξ,k ω

−ω2 + 2jσξ,k ω + σ2
ξ,k + ω2

ξ,k

. (5.75)

For ω ≈ ωξ,k, i.e., around resonance, this gives

F{ξ̃δ,k(t)} =
L

ESk2π2
·

ω2
ξ,k

jσξ,k ωξ,k + (ω2
ξ,k − ω2)/2

, (5.76)

which was obtained by assuming ω ≈ ωξ,k ≫ σξ,k.
For ω = ωξ,k, by using Eq. (5.31), we get

F{ξ̃δ,k(t)}|ω=ωξ,k
=

L

ESk2π2
· ωξ,k

jσξ,k
= −j

1

kσξ,kµ
√

ES
. (5.77)

The more ω departs from ωξ,k, the less is the gain. For ω < ωξ,k, the phase shift is smaller
than −π/2, while for ω > ωξ,k, it is larger.

If the longitudinal mode is excited by the sum term (ωm + ωn) of Eq. (5.74) exactly at
resonance, the forced response of the longitudinal motion of mode k (or, the full motion
after the transient response has died out) will be

ξ̃k(t) =
π3

√
ES

σξ,k8L2µ
mnAmAn cos[(ωm + ωn)t + ϕm + ϕn + π/2]. (5.78)

Now it is possible to calculate the force acting on mode m originating from the motion
of longitudinal mode k and transverse mode n by the help of Eq. (5.70a)

F̃y,m(t) = F̃y,m(t)+ = −ESπ3

4L2
ξ̃k(t)yn(t) m n k =

− ESπ3

4L2

π3
√

ES

σξ,k8L2µ
m2 n2 kAmA2

n cos((ωm + ωn)t + ϕm + ϕn + π/2) cos(ωnt + ϕn) =

π6(ES)1.5

σξ,k64L4µ
m2 n2 k AmA2

n[cos((2ωn + ωm)t + 2ϕn + ϕm − π/2) + cos(ωmt + ϕm − π/2)],

(5.79)

where the second term with the frequency ωm will have a strong effect on mode m, as it
excites mode m exactly at resonance.
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The velocity of transverse mode m is

vm(t) =
dym(t)

dt
= Amωm cos(ωmt + ϕm + π/2), (5.80)

which can be used to write F̃y,m as a function of vm(t)

F̃y,m(t) = −
(

π6(ES)1.5

σξ,k64L4µ
m2 n2 k A2

nωm

)

vm(t), (5.81)

where we have neglected the term 2ωn + ωm of Eq. (5.79), as it cannot effectively act on
mode m.

Equation (5.81) shows that the force acting on mode m is directly proportional to the
instantaneous velocity of mode m (as all the terms in the bracelets are constants), but it
has an opposite sign. This means that the phenomenon will indeed decrease the amplitude
of the parent mode m. The effect is similar to a damping term coming from friction. It
is interesting to see that this damping term is proportional to the square of the amplitude
A2

n of the other parent. This means that if there are two parents with different amplitudes,
the “stabilization effect” will mostly act on the smaller one. Then, as the amplitude of
the two parents gets smaller, so does the amplitude of the forced longitudinal component,
decreasing this “stabilizing force” until a kind of energy balance is obtained.

Simulation Results

The motion of a G1 piano string was computed by the discrete-time implementation of the
equations of Sec. 5.3. The transverse vibration is calculated by finite-difference modeling,
and the motion of longitudinal modes are computed by a modal model (see Sec. 6.4.2 for
implementation details).

Figure 5.7 (a) solid line shows the evolution of the amplitude envelope of ξ1(t) for a
G1 piano string, where the coupling from the transverse to the longitudinal polarization
is unidirectional, i.e., the longitudinal to transverse coupling is neglected. The transverse
vibration is excited by the initial condition

y(x, 0) = 0, (5.82)
∂y

∂t

∣

∣

∣

∣

t=0

= 10
[

sin
(mπx

L

)

+ sin
(nπx

L

)] m

s
, (5.83)

with m = 9 and n = 10, meaning that only modes m and n are present in the transverse
motion. The amplitude envelopes of these two modes are displayed by dashed and dotted
lines, respectively. The frequency of the first longitudinal mode fξ,1 is set in a way that it
almost coincides with fm+fn (the difference is less than 5 Hz). It can be seen in Fig. 5.7 (a)
that the transverse modes have a simple exponential decay, while the amplitude of the first
longitudinal mode increases as it is excited near resonance.

Figure 5.7 (b) shows the same example but now the longitudinal to transverse coupling
is also included in the model, leading to the “stabilization effect”. Here the increase of
the longitudinal motion leads to a faster decay of the transverse modes. As predicted
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by the theory, the effect is stronger for that mode which has smaller initial amplitude
(dotted line). The amplitude decrease of the transverse modes leads to the decay of the
longitudinal motion. Note that after the amplitude of longitudinal motion reaches a certain
smaller value, the transverse modes start to decay at their linear decay rate, which is the
same as in Fig. 5.7 (a). It is interesting to see that two stage decay can occur in the
amplitude envelopes of transverse modes not only because of the linear coupling of two
transverse polarizations, but also because of the nonlinear coupling of one transverse and
the longitudinal polarization. It is probable that even more complicated envelopes would
arise if the other transverse (z) polarization was also taken into account in the nonlinear
model.
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Figure 5.7: Amplitude of the first longitudinal mode (solid line), the ninth transverse
mode (dashed line) and the tenth transverse mode (dotted line) with unidirectional (a)
and bidirectional (b) coupling.

5.5 Conclusion

In this chapter the geometric nonlinearities of strings have been investigated. Section 5.1
has given the classification of the phenomenon by proposing a nonlinearity map as a func-
tion of longitudinal/transverse fundamental frequency ratios, the amplitude of string vi-
bration, and the number of significant transverse modes. Four nonlinear regimes have been
separated depending on whether the longitudinal to transverse coupling is significant and
whether the tension can be considered spatially uniform on the string. These results have
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been published in [Bank and Sujbert 2005a].
The two classes with spatially uniform tension have been covered in Sec. 5.2 by de-

scribing the results of the literature. Some nonlinear phenomena, such as the appearance
of phantom partials, cannot be described by the spatially constant tension approximation.
Therefore, a new theoretical model had to be developed.

The main results of this chapter are connected to the regime with spatially nonuniform
tension but with negligible longitudinal to transverse coupling. In Sec. 5.3, a modal model
has been proposed, which computes the longitudinal motion with an arbitrary number of
transverse modes. The applied assumption, that the longitudinal to transverse coupling
is negligible, is valid for most of the string instruments (piano, guitar, harpsichord, etc.).
For both helping qualitative understanding and increasing the efficiency of sound synthesis
models of Chap. 6, the tension computed by the modal model has been decomposed into
a spatially uniform and a space-dependent part. The spatially uniform part equals the
tension computed from the elongation of the string. Therefore, the spatially uniform
approximation can be considered as a special case of the modal model. The model has
been justified by showing good agreement with the measurement results. It has been
shown that, for explaining phantom partials, the dynamic response (inertial effects) of
longitudinal modes cannot be neglected. It also comes from the presented theory that
longitudinal modes are continuously excited by the transverse motion, and not only during
the excitation (i.e., hammer–string contact). As the model with rigid termination describes
the phenomenon, it was found that the string termination has less significance. We note
that the accuracy of the model has also been verified by the discrete-time implementations
of the equations (this will be presented in Sec. 6.4.2). Most of these findings have been
published in [Bank and Sujbert 2003, 2005b].

Section 5.4 has presented some recent results on the bidirectional coupling of the trans-
verse and longitudinal polarizations. Particularly, the “stabilization effect” has been inves-
tigated, showing the qualitative reason why the longitudinal modes cannot grow infinitely
even if they are excited at their resonance.
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Chapter 6

Sound Synthesis of Geometric

Nonlinearities

This chapter is about the sound synthesis of geometric nonlinearities of musical instrument
strings, applying the physical principles presented in Chap. 5. In Secs. 6.1 and 6.2 sound
synthesis methods based on the spatially uniform tension approximation are discussed. As
the main part of this chapter, Sec. 6.3 presents various novel techniques for modeling the
motion of longitudinal modes. The basic idea of the models is that the longitudinal mo-
tion is computed by nonlinearly excited second-order resonators. The methods have been
developed with the applications to the piano, as the perceptual effect of the longitudinal
component is the strongest for that instrument. However, they can be directly used to im-
prove the sound quality of the models of other string instruments, such as the harpsichord
or the guitar. Finally, Sec. 6.4 presents an efficient technique for modeling the bidirectional
coupling of transverse and longitudinal polarizations.

6.1 Double Frequency Terms

In this case the string tension varies with time but spatially uniform along the string.
Consequently, the longitudinal force component includes terms having double the frequency
of transverse modes (see Sec. 5.2.2). These are called even phantoms in the notation of
Conklin [1999]. As we have noted in Sec. 5.1.3, the tension variation is negligible compared
to the initial tension T0, so it cannot excite any “nonlinear” transverse modes.

A straightforward modeling approach would be a linear string model for the transverse
polarization, from which the tension is computed at every time instant by Eq. (5.15). Note
that the longitudinal motion ξ(x, t) does not need to be computed, since the temporal
variation of the longitudinal bridge force is simply obtained as the tension variation Fl(t) =

−[T (L, t) − T0] = −[T (t) − T0].
A computationally much more efficient approach was proposed by Karjalainen et al.

[1993] for modeling the Kantele, a traditional Finnish instrument. There the output of
the transverse string model (implemented by a digital waveguide) is lead to a second-order
nonlinearity and a lowpass filter, and the result is mixed with the string output. The
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nonlinearity adds the required double-frequency components, but some unwanted sum-
and difference frequencies too. In [Karjalainen et al. 1993] the main motivation was to add
a reinforcement to the second harmonic. As a result, efficient lowpass filtering could be
used after the nonlinearity, suppressing the unwanted peaks. This model can be considered
as a very efficient perception based approach, which works for the Kantele, but it is likely
that it would give less agreeable results for other instruments, especially for inharmonic
strings.

6.2 Tension Modulation

In this modeling paradigm the tension is spatially uniform along the string as in Sec. 6.1,
but the temporal variation of the tension is no longer negligible in comparison with T0.
This leads to the nonlinear excitation of transverse modes. The theory of this regime
of string motion has been reviewed in Sec. 5.2. For modeling, the tension is computed
by the discretization of Eq. (5.15) and then fed back to the transverse string model. The
longitudinal force at the bridge equals the tension variation, similarly to the case of Sec. 6.1.

The most efficient approach for modeling the temporal modulation of tension is based
on digital waveguides. In this case the effect of tension variation can be taken into account
by varying the delay line length, which is done by a variable allpass filter at the termination
[Tolonen et al. 2000; Erkut et al. 2002]. A computationally more demanding, but more
accurate method is distributing the variable length delays between the delay elements
[Pakarinen et al. 2003, 2005b]. Recently, an energy conserving variation of the technique
have been presented in [Pakarinen et al. 2005a; Välimäki et al. 2006].

It is straightforward to implement tension modulation in finite-difference modeling,
as the tension T0 is an independent parameter of the model (see Sec. 2.3.1), which can
be varied according to the tension computed from the string length. Bilbao [2004a] has
presented such a model with energy-conserving property, which is beneficial as the stability
of the model is guaranteed. Finite-difference schemes applying the constraint ∆x = c∆t

are generally not well suited for modeling the modulation of tension, as the tension and the
number of string elements are interdependent (see Sec. 2.3.1). However, Pakarinen et al.
[2005b] have proposed a somewhat complicated solution to the problem, where the tension
modulation is implemented by interpolating the string state between consecutive samples.

A modal-based tension modulation string model have been presented by Trautmann
and Rabenstein [2000] that apply the Functional Transformation Method. Bilbao [2004b]
has provided an energy conserving modal method for computing the response of tension
modulated strings.

6.3 Modeling of Longitudinal Vibrations for Sound Synthesis

In this case the frequencies of the terms exciting the longitudinal modes are around or above
the longitudinal modal frequencies. As a result, the tension varies with both time and space
along the string. As the tension variation is small compared to T0, the longitudinal motion
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does not influence the transverse vibration. For modeling, the largest difference from the
cases of Secs. 6.1 and 6.2 is that now the motion of longitudinal modes also have to be
computed.

In this Section, after the review of others work, the theoretical findings of Sec. 5.3 are
used for sound synthesis purposes. As the goal is efficient sound synthesis, the theoretical
model is simplified in a way that the most important features of the phenomenon are
retained, while the less significant ones are neglected. We proceed from computationally
more complex, physics-based approaches to more efficient, but less physical models.

6.3.1 Methods Proposed by Other Researchers

The first attempt for modeling the longitudinal component of the piano tone was made by
Borin [2001] in the mid-nineties. In that model the transverse vibration of the string was
computed by a digital waveguide. The hammer-string interaction force computed by the
transverse string model was lead to an auxiliary digital waveguide, tuned at a much higher
frequency, aimed at simulating the longitudinal components. A shortcoming of this model
is that it is based on the assumption that the longitudinal string motion is excited during
the hammer-string contact only. (We know from Sec. 5.3 that the longitudinal motion is
continuously excited during the whole string motion.) As a result, only the free response
of the longitudinal motion is simulated, while the forced response (phantom partials) is
neglected. This reproduces some of the features of the longitudinal component, but the
longitudinal component sounds as a separate tone, unlike in real pianos. Informal listening
tests show that the simulation of phantom partials is even more important than modeling
the free response (see Sec. 5.3.7).

A very efficient method for modeling the phantom partials was proposed by Bensa and
Daudet [2004]. In that model some of the transverse modes of the string output are filtered
by narrow bandpass filters, then these components are multiplied by the transverse string
signal itself. As a result, sum- and difference frequency components arise between the
transverse peaks, simulating the perceptual effect of phantom partials. The shortcoming
of the approach is that it is based on a wrong physical model. In [Bensa and Daudet 2004]
the tension is considered to be uniform along the string (which is not the case for the
piano), and the main source of tension variation is a linear coupling from the transverse
motion. As a result, the frequencies of these mixing terms are different from that found
in real pianos. Although it is physically not correct, this is the most efficient approach for
modeling the perceptual effect of phantom partials.

In [Caramaschi 2004] the idea of the composite string model of [Bank and Sujbert
2004] (presented here in Sec. 6.3.4) have been applied for the digital waveguide. That
is, the transverse string displacement has been computed by a digital waveguide string
model instead of the finite-difference scheme. Although being more efficient, this way of
computing the excitation force of the longitudinal modes produces audible artifacts. This
is discussed in Sec. 6.3.6.
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6.3.2 Finite-difference Modeling

A straightforward approach for modeling the vibration of musical instrument strings is
implementing the simultaneous differential equations (5.27) and (5.62) by finite-difference
approach. Actually, this approach is capable of simulating the bidirectional coupling of
the transverse and longitudinal polarizations, so it “knows more” than required (it rather
belongs to Sec. 6.4). In an earlier work [Bank and Sujbert 2003] such a model was de-
veloped. The computational demand of such an approach is large because high sampling
frequency (fs ≈ 500 kHz) is required due to the higher propagation speed in the longitudi-
nal direction. Another reason of waste of resources is that the longitudinal displacement is
computed at each point, while this is not necessary, as here we assume that the feedback
from the longitudinal to the transverse vibration is negligible. All we need to know is the
longitudinal bridge force, which is the tension at the termination. (Note that the trans-
verse displacement has to be known at each point along the string for the computation of
the longitudinal excitation force by the scalar product of Eq. (5.30b).) Still, this approach
can be very useful for experimental purposes. A commercial computer program based on
a finite-difference string model was written by Stopper [2003] helping piano tuners in scale
design.

6.3.3 Tension Decomposition

An equally precise but computationally less demanding way of computing the longitudinal
force at the bridge is using the idea of tension decomposition presented in Sec. 5.3.4.

In this model the transverse vibration is computed by any of the standard techniques,
e.g., by finite-difference modeling. The spatially uniform part of the tension is computed
from the elongation of the string by Eq. (5.15). This is followed by calculating the excitation
forces Fξ,k(t) of the longitudinal modes by Eqs. (5.28) and (5.30b). Then, the dynamic
response ξ̃k(t) of the first few (e.g., 5–20) longitudinal modes is computed by feeding
these excitation forces into second-order highpass filters, which implement Eq. (5.48). By
knowing ξ̃k(t), the bridge force (which equals the tension at the termination) is obtained
as

Fl(t) = −T (L, t) = −
[

T0 +
1

2

ES

L

∫ L

0

(

∂y

∂x

)2

dx + ES
π

L

K
∑

k=1

k ξ̃k(t) (−1)k

]

. (6.1)

Naturally, the derivatives and the integration in Eq. (6.1) have to be substituted by finite-
differences and summation, respectively. This also holds for the rest of this chapter, i.e.,
when a continuous-time equation appears, it has to be discretized for implementation.

The method provides almost the same output as the full finite-difference model (see
Sec. 6.4) while its computational cost is around the 20% of the full finite-difference model
(the computational cost is estimated by the number of additions and multiplications). This
is because now the longitudinal modes are computed by second-order highpass filters and
not by a finite-difference scheme, which eliminates the need for high sampling rates. The
sampling rate is now a function of the transverse string model, where 44.1 kHz is usually
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sufficient even for a finite-difference transverse string model. However, it is possible to
decrease the complexity even more by some perceptual simplifications.

6.3.4 The Composite String Model

The composite string model is a simplification of the tension decomposition model of
Sec. 6.3.3. The model structure is depicted in Fig. 6.1. The transverse deflection y(x, t) is
computed by a finite-difference string model running at audio sampling rate (e.g., fs = 44.1

kHz), which implements the differential equation of Eq. (2.50). The discretization is done
as discussed in Sec. 2.3.1. A finite-difference hammer model (see Secs. 2.4.1 and 4.1) is
also attached to the string. The initial velocity of the hammer is denoted by v0 in Fig. 6.1.

String slope

Soundboard
model

Hammer

Finite-difference string model

)(1 zR

tF

Excitation-force calculation

)(2 zR

)(zRK

)(zHl

.

.

lF
resF

0v

P

Figure 6.1: The composite string model applying finite-difference modeling and second-
order resonators R1, ..., RK .

The excitation-force density of the longitudinal motion, dξ(x, t), is computed according
to Eq. (5.28) from the transverse displacement calculated by the finite-difference transverse
string model. Then the excitation force Fξ,k(t) of each longitudinal mode k is computed by
a scalar product with the longitudinal modal shape as in Eq. (5.30b). The instantaneous
amplitudes ξk(t) of the longitudinal modes are calculated according to Eq. (5.30a), which
is implemented by second-order resonators (R1, ..., RK in Fig. 6.1). The computationally
heavy part of longitudinal-vibration modeling lies in Eqs. (5.28) and (5.30b). Especially
the load of Eq. (5.30b) is heavy, as the force input Fξ,k(t) is computed by scalar products
for all the modes (N ≈ 10 in practice) separately. Therefore, further simplifications are
necessary.

The excitation spectrum (the Fourier transform of Fξ,k(t)) of all the odd and all the
even longitudinal modes are very similar, respectively. It can be seen in Fig. 6.2 that the
only difference is that the frequency peaks are slightly shifted as a function of mode number
k because of the inharmonicity of the string. The amplitudes are also somewhat different,
but the general envelopes are of quite similar structure. Therefore, it is a reasonable choice
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Figure 6.2: The spectrum of the excitation forces of longitudinal modes. (a): The excitation
force of longitudinal mode 5 (solid line) and 9 (dotted line). These modes contribute to
odd phantoms. (b): The excitation force of longitudinal mode 6 (solid line) and 10 (dotted
line). These modes give a rise to even phantoms.

to substitute the excitation force Fξ,k(t) of all the odd longitudinal modes by the excitation
force of one odd longitudinal mode (e.g., Fξ,k(t) = Fξ,5(t) for odd k). The same can be
done for the even longitudinal modes. It follows from Eq. (5.41) that odd phantoms arise
from the vibration of odd longitudinal modes and even phantoms from the vibration of even
ones. Therefore, it is important to incorporate at least one odd and one even modal shape.
Having only one modal shape in the model would lead to an excitation spectrum with odd
or even harmonics only. Accordingly, the model can be simplified by computing the force
input for two modes (e.g., Fres = Fξ,5 + Fξ,6, but any other odd and even mode would
do) and using this as a common excitation for all the resonators. This way the multiple
(or smeared) peak of a real phantom partial (as depicted in Fig. 5.5) is substituted by a
single exponentially decaying sinusoid. The double-frequency terms are also neglected in
this model. However, it seems that the ear is insensitive to this small variation, as the
simplified model leads to almost identical perceptual results compared to the full model of
Sec. 6.3.3, but requires a significantly lower computational power.

As already noted in Sec. 5.3.6, if the longitudinal modes are excited at resonance, the
longitudinal motion can have unrealistically high magnitude, leading to unrealistic sound.
This would not happen in reality, as the feedback from longitudinal to transverse motion
would diminish the amplitude of the transverse parents, thus, the longitudinal mode as well
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(see Sec. 5.4.2). However, this feedback is not included in the model, as it would increase
the computational complexity, and its effect is only significant in this situation. It is much
simpler to set the frequencies fξ,k of the resonators R1, ..., RK in a way that they do not
coincide with the peaks of their excitation signal Fres(t). This can be done automatically by
computing the excitation frequencies of the longitudinal modes by Eq. (5.41) and slightly
shifting those longitudinal modal frequencies, which are excited near resonance.

The force signals Ft(t) and Fl(t) in Fig. 6.1 coming from the transverse and longitudinal
polarizations are sent to the soundboard model, which computes the sound pressure P (t).
The soundboard is modeled by a multi-rate filtering algorithm approximating the measured
impulse response of a transversely excited piano soundboard (see Sec. 4.3). The soundboard
responds slightly differently to a longitudinal force than to a transverse one. This difference
can be modeled by the filter Hl(z) in the longitudinal force path. However, it was found
that a constant coefficient Hl(z) = Cl in the range of 0.2–0.5 produces adequate sound.

The sound pressure spectrum of the first second of a synthesized G1 note is displayed
in Fig. 6.3 (a). The phantom partials are clearly visible between the transverse modes,
which are emphasized around the longitudinal free mode at 1450 Hz. The circle indicates
the component coming from the longitudinal free response, while the crosses show the
transverse modal frequencies. It can be seen that the spectrum is similar to that of a real
piano tone displayed in Fig. 5.4. The composite string model produces the same sound
quality as the methods of Secs. 6.3.2 and 6.3.3, while its computational requirements are
reduced significantly.

6.3.5 The Resonator-based String Model

In the resonator-based string model the string displacement is represented by its modal
form (see Eqs. (5.33) and (5.29)) for both the transverse and longitudinal polarizations and
the instantaneous amplitudes yn(t) and ξk(t) are computed by second-order resonators.
Therefore, it can be considered as a variation of the composite model of Sec. 6.3.4, where
the finite-difference transverse string model is replaced by a modal model.

The string is excited by a hammer in the transverse polarization. The hammer is
modeled in the same way as in the case of finite-difference string (see Secs. 2.4.1 and 4.1).
The string response to the hammer force is calculated by a set of second-order resonators,
which have input and output coefficients depending on the hammer position, as discussed
in Sec. 2.3.3. The outputs of these resonators correspond to the instantaneous amplitudes
yn(t) of the transverse vibration, which can be directly used to compute the excitation
force Fξ,k(t) = Fξ,k(t)

+ + Fξ,k(t)
− of the longitudinal modes by using Eq. (5.36). From

this point, the approach is the same as taken in Sec. 6.3.4: the excitation force of one even
and one odd longitudinal mode is calculated and summed (e.g., Fres(t) = Fξ,5(t)+Fξ,6(t)).
This signal is then fed to the resonators calculating the instantaneous amplitudes ξk(t)

of the longitudinal modes. The efficiency can be further increased if those components of
the excitation signal Fres(t) are not computed where the gain of the longitudinal resonator
bank is small.

This model is capable of producing the same sound quality as the composite string
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Figure 6.3: The sound pressure spectrum of the first second of a synthesized G1 piano tone
computed by the composite string model of Sec. 6.3.4 (a) and by the resonator-based string
model of Sec. 6.3.5 (b). Crosses indicate transverse partials and the second longitudinal
mode is marked by a circle in both figures. All the other peaks correspond to phantom
partials. To be compared with Fig. 5.4 (a).

model of Sec. 6.3.4 when the number of resonators implementing the transverse modes
equals the number of string elements in the finite-difference model. Figure 6.3 (b) displays
the sound pressure spectrum of the first second of a G1 piano tone synthesized by the
resonator-based string model. It can be seen in Fig. 6.3 that the resonator-based model
produces a similar output compared to the composite model of Sec. 6.3.4 when the string
and hammer parameters are set to be the same. The only difference is that the composite
string model generates noise-like peaks between the dominant partials due to computa-
tional inaccuracies. However, this is not considered as an advantage because the difference
between the output of the two models is almost inaudible [Sound examples n.d.].

An advantage of the resonator-based approach is that the computational complexity is
reduced by a factor of two. Moreover, this method is particularly advantageous when the
goal is to reproduce a tone which is similar to that of a particular instrument since the
measured partial frequencies fn and decay times τn can be directly implemented in the
model. On the other hand, the resonator-based model is less physical in the sense that
the physical parameters of the string (such as string mass and tension) have only indirect
connection to the model.
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6.3.6 Digital Waveguide and Longitudinal Resonators

Based on the composite model of Sec. 6.3.4, it seems to be a straightforward simplification
to compute the transverse string shape by a digital waveguide model instead of finite-
difference modeling. This is advantageous because digital waveguide string models need
less than 10% computational power compared to the finite-difference approach.

However, while a finite-difference transverse string model is made up of 100 elements
(the transverse displacement is computed at 100 points along the string), the digital
waveguide model of a low piano string may consist of 1000 unit delays. This means that
the spatially discretized implementation of excitation-force calculation (Eqs. (5.28) and
(5.30b)) should be computed at 1000 points, instead of 100. This increase can be overcome
by spatially downsampling the string shape computed by the digital waveguide model,
similarly to what has been done in the case of tension modulation modeling [Tolonen et
al. 2000]. This leads to spatial aliasing, unless some spatial lowpass filtering is used. Un-
fortunately, the computational complexity of such a filtering is high. Therefore, the best
option seems to avoid lowpass filtering, and hoping that the difference cannot be heard, as
it was also done in [Tolonen et al. 2000].

A more intrinsic problem with the digital waveguide is that it is intended to compute
the string motion at specific points only. Actually, its efficiency comes from the fact that
the effects of dispersion and losses can be moved anywhere between the excitation and
observation point. In linear string models there is usually one observation point (the
bridge of the instrument), therefore all the losses and dispersion are realized as a single
filter in the delay loop. However, in our case the transverse string displacement should
be known at each point, or, if we spatially downsample as suggested above, at 50–100
different points. This means 50–100 observation points, requiring 100–200 small filters
between them. Unfortunately, this leads to a computational complexity comparable to the
finite-difference method or the modal-based approach.

It is interesting to see what happens if the losses and dispersion are still lumped into
one filter (although we know from the previous paragraph that this is not correct), and
calculate the excitation force of the longitudinal modes by Eqs. (5.28) and the scalar
product of (5.30b). In this case the spectrum of the excitation force Fξ,k(t) is not quasi-
harmonic as depicted in Fig. 5.2 but contains a lot of inharmonic and noise-like peaks. This
is shown in Fig. 6.4 (b), while the excitation force of a harmonic waveguide is displayed
in Fig. 6.4 (a) for comparison. Figure 6.5 (a) displays the 1.5–2 kHz region of Fig. 6.4,
giving a better insight to the erroneous peaks between the desired ones. Unfortunately
this leads to an unsatisfactory sound. When the dispersion filter is distributed between
the observation points, these peaks have much smaller amplitude, as shown in Fig. 6.5. In
this case 128 first order allpass filters were implemented. Note that not only the noise-
like peaks disappear, but so does every second partial, giving the spectrum an even-like
character, as in Fig. 5.2.

The reason for this difference is that the modal shapes of the string computed by the
lumped dispersion filter are not orthogonal to each other, since some parts of the modal
shapes are “within” the dispersion filter. As the dispersion filter has different delay at
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Figure 6.4: Spectrum of the longitudinal excitation force Fξ,6(t) of a C2 piano tone synthe-
sized by a harmonic (a) and an inharmonic (b) digital waveguide with lumped dispersion
filter.

different frequencies, the lengths of the modes will be different. In this case the L in the
modal form of Eq. (5.33) should be substituted by Ln, where Ln is different for all n. On
the other hand, if the inharmonicity is negligible, this approach works precisely as can be
seen in Fig. 6.4 (a). The lumped loss filter changes the modal shapes only slightly, which
is in the order of the effect that comes from the nonrigid termination of real instruments,
discussed in Sec. 5.3.6.

As a result, if the string dispersion is not implemented, it is beneficial to compute
the transverse string displacement by a digital waveguide model. Then the transverse
displacement should be spatially downsampled to 50–100 samples, followed by the steps
outlined in Sec. 6.3.4 for computing the longitudinal modal response. On the other hand,
for highly dispersive strings, there is no particular advantage in using digital waveguides.

6.3.7 Physically Informed Modeling Techniques

A very efficient way of modeling the longitudinal components is implementing them as a
signal-based model. This means that the longitudinal force at the bridge Fl(t) is synthe-
sized as a signal, without any concern about its origin. The approach is called physically
informed, as the parameters of the signal are calculated from the physical parameters of
the string off-line by the equations presented in Sec. 5.3, or by analyzing the longitudinal
component computed by a physics-based model.
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Figure 6.5: Spectrum of the longitudinal excitation force Fξ,6(t) of a C2 piano tone synthe-
sized by an inharmonic waveguide with lumped (a) and distributed (b) dispersion filters.
Note that (a) is the same example as in Fig. 6.4 (b), displayed at a higher resolution.

An example can be first computing the longitudinal component by the composite model
of Sec. 6.3.4. Then, this longitudinal component is analyzed and resynthesized by additive
synthesis. This means that the longitudinal signal is built up by exponentially decaying si-
nusoids, implemented by second-order resonators. Note that separate sinusoids are needed
for the forced and for the free response of the longitudinal modes, i.e., these resonators are
not the same as R1..RK in Fig. 6.1. Next time when the note is played, there is no need
to compute the longitudinal response by the physical model, as it can be synthesized more
efficiently by adding up the corresponding sinusoids. Naturally, one parameter set is valid
for one specific note at a specific dynamic level. Therefore, the parameters of the decaying
sinusoids for all the notes and playing levels should be stored or calculated before each
note is sounded. The gain is that computational complexity is decreased significantly, and
that digital waveguide models can be used to compute the transverse vibration even in the
case of dispersive strings as now the longitudinal modes are computed separately. On the
other hand, the flexibility of the physical modeling is lost and huge amount of parameters
has to be stored.
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The Square of the Excitation Force as an Input Signal

A simple but efficient way of avoiding the parameter dependence of the longitudinal model
on dynamic level is to implement the longitudinal component as second-order resonators
with a special input. The input of these resonators is the square of the excitation force
(hammer force for pianos) computed by the transverse string model. This way, the ampli-
tude of the longitudinal component will be proportional to the square of the amplitude of
the transverse component. As an effect, the longitudinal component will be relatively more
prominent at forte playing levels, which is also the case in reality. The model structure is
depicted in Fig. 6.6. The resonators of the longitudinal component are excited only during
the hammer-string contact. This may seem contradictory to the discussion in Sec. 6.3.1,
where it is stated that the longitudinal modes are excited during the entire string motion,
and not only during the hammer-string contact. However, now the resonators of the longi-
tudinal components are not only those corresponding to the free response, but the forced
components are also represented. The only role of exciting the resonators by the square of
the hammer force is to set the initial amplitudes of the resonators. With this simple trick
we have avoided the need of storing the resonator amplitudes at different dynamic levels.
As a result, only one parameter set is required for each note.
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Figure 6.6: An example for the physically informed synthesis of longitudinal motion.

With this model it is possible to reach the sound quality of the models presented in
Secs. 6.3.4 and 6.3.5 at 10% of their computational cost when the transverse vibration
is calculated by a digital waveguide, but some of the nice features of physical modeling
are lost. For example, when the string is struck again while it is still in vibration, the
longitudinal component coming from the model will be different from the one that would
arise from physics-based models, although this difference usually does not mean worse
sound quality.
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Other Alternatives

Along these lines, many different alternatives are possible. For example, one might compute
the input signal of the longitudinal modes Fres(t) of Fig. 6.1 by a signal model. This is
advantageous as Fres(t) is quasi harmonic, i.e., it can be computed by a dispersive digital
waveguide model with one forth of inharmonicity compared to the main one. Then, this
is lead to the resonators R1, ..., RK implementing the modal response of the longitudinal
modes, whose parameters now can be the same as in the case of Sec. 6.3.4. The only
problem with this approach is that the initial phases of the partials coming from the
digital waveguide are all the same, leading to a spiky excitation signal, which produces a
somewhat unnatural sound. This might be avoided by randomizing the phase with allpass
filters, or by simply fading in the excitation signal Fres(t) after the first spikes have been
filtered by the allpass filter in the waveguide loop.

Naturally, it is also possible to substitute the longitudinal resonators R1, ..., RK by a
digital waveguide. In this case, the system is made up of three digital waveguide mod-
els: The first digital waveguide computes the transverse vibration. The second digital
waveguide provides the excitation force for the longitudinal modes that are implemented
by the third digital waveguide.

For those instruments where the longitudinal component decays faster, it might also
be possible to store it in a wavetable. In that case the transverse vibration is synthesized
by a physics-based solution, while the longitudinal component is simply played back from
memory.

Commuted Synthesis

One important property of the physically informed approaches is that they can be easily
linearized. That is, instead of squaring the hammer force, it is lead to the model of the
longitudinal component through a constant coefficient, whose value is changed according
to dynamic level. As a result, the whole system becomes linear, thus, its elements can
be simply commuted, as discussed in Sec. 2.5.3. This is displayed in Fig. 6.7. The body
response is stored in a wavetable. This wavetable is read sample by sample and the
corresponding signal is sent to a filter implementing the effect of the hammer. The filtered
signal is lead to the transverse string model. The same signal is also lead to the model of
the longitudinal component, but through a constant gain, which varies with dynamic level.
The outputs of the transverse and longitudinal models are simply added and produce
the system output. This way, a nonlinear system with constant parameters has been
transformed into a linear one having a parameter that depends on dynamic level.

For those instruments, where the longitudinal components decay fast (e.g., in the case
of the guitar), this might not even be needed, if the body response is computed by inverse
filtering, as for example in [Tolonen 1998; Erkut et al. 2000]. This is because the inverse-
filtered version of the longitudinal component of the tone is already contained in the body
response, and when filtered by the transverse string model it is perfectly reproduced.
Actually, this form of commuted synthesis reproduces the tone perfectly up to the length
of the wavetable. All what is needed is setting the length of the wavetable longer than the
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Figure 6.7: Commuted synthesis of longitudinal vibration.

significant portion of the longitudinal component. In the case of the guitar half a second
might be appropriate (for the piano, 2–5 seconds would be required). Unfortunately, in
this case the ratio of the transverse and longitudinal components is fixed, which varies
by dynamic level in real instruments. This can be avoided by either storing different
body response tables for the different playing levels, or by factoring out the longitudinal
contribution from the inverse filtered signal and storing it in a separate wavetable. This
way the amount of longitudinal components can be varied by scaling the output of this
second wavetable.

Applications to Sampling

The same ideas can be used to improve the quality of sampling synthesizers. The most
common way of implementing the change of the timbre due to the variation of hammer
impact speed is to filter the prerecorded sounds by a low-order filter whose parameters
depend on the playing level. However, this filter cannot implement the timbre variation
due to the appearance of the longitudinal component at higher levels. (Or, if the forte notes
are stored, it cannot filter out all the longitudinal components.) The common solution is to
store the piano sound at various (3–5) different dynamic levels, and interpolating between
these. However, interpolation often causes strange artifacts in the sound. Because of this,
some samplers store the sound of the same note at even more different dynamic levels
and switch between these without interpolation. Unfortunately, this requires gigabytes of
sample memory.

The solution proposed here is to store two wavetables for each note, one containing the
transverse component, and the other one containing the longitudinal component. Then,
these are filtered through simple lowpass filters implementing the effect of the hammer-
string interaction, while the appearance of the longitudinal modes is controlled by the
ratio with which the transverse and longitudinal signals are added. This solution leads
to a continuous variation of the tone when the dynamic level changes, while requires less
memory than the multiple wavetable approaches. The difficulty of the approach is that
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the recorded tones have to be decomposed into transverse and longitudinal components.

6.3.8 Comparison

In Section 6.3 many novel techniques have been proposed for the synthesis of the longi-
tudinal component of string vibration. These are summarized in Table 6.1. The column
“Physics-based” indicates whether the computation of longitudinal motion is physically
meaningful. In practice, this means that the model behaves properly when the string is
restruck, damped, or coupled to other strings. The column “Accurate” signs whether the
longitudinal bridge force is calculated accurately. If this is not the case, that means that
some perception-based simplifications were made, providing different output but similar
sound quality. The column “Computational load” shows the approximate computational
complexity compared to the full finite-difference model. As noted earlier in Chap. 4, the
computational load is approximated by the number of additions and multiplications.

The choice between the different models depends on many factors, for example, whether
the task is sound synthesis or scientific investigation (in the latter case “Accurate” models
are needed). Moreover, it is influenced by which type of transverse string model should be
used because of other reasons. Naturally, it also depends on the available computational
power.

Physics-based Accurate Computational load

Finite-difference modeling × × 100%

Tension decomposition × × 20%

Composite model × 10%

Resonator-based model × 5%

Waveguide and resonators × 2%∗, (5%)

Physically informed 1%

Table 6.1: Main features of the different techniques for modeling the longitudinal compo-
nent of piano tones presented in Sec. 6.3. The computational load is the complete load for
computing both the transverse and longitudinal polarizations. The ∗ sign means that the
2% is valid for harmonic string models. In the case of dispersive strings it is about 5 %,
as the distributed allpass filters increase the complexity.

6.4 Modeling of Bidirectional Coupling for Sound Synthesis

In this section some of the recent results of bidirectional modeling is presented for com-
pleteness. The earlier techniques for modeling the bidirectional coupling are based on
finite-difference modeling [Bank and Sujbert 2003; Stopper 2003], leading to large compu-
tational complexity. Here a new approach based on tension decomposition is proposed,
which produces the same sound quality at lower computational cost.
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6.4.1 Finite-difference Modeling

As we have already noted in Sec. 6.3.2, a finite-difference bidirectional string model has
been presented in [Bank and Sujbert 2003], which is based on the spatial and temporal
discretization of the transverse wave equation Eq. (5.62) and the longitudinal wave equation
Eq. (5.27). However, the high sampling frequency (ca. 500 kHz) required because of the
higher longitudinal propagation speed leads to large computational complexity. This is a
waste of resources as these high frequency components are not present in the vibration
of musical instrument strings, and we cannot hear them anyway. On the other hand,
computing the longitudinal displacement at each point along the string is not a wastage
as it was for the case of unidirectional modeling of Sec. 6.3.2, as now the tension variation
has to be known at each point, since it acts back on the transverse vibration of the string.
Accordingly, a new method had to be found which still computes the string state at each
point along the string but eliminates the need for high sampling rates.

6.4.2 Tension Decomposition

The method is based on the tension decomposition presented in Sec. 5.3.4, but it can also
be seen as the extension of the unidirectional tension-decomposition model of Sec. 6.3.3.
For computing the transverse displacement, we may use:

µ
∂2y

∂t2
=

∂
{

T (x, t)∂y
∂x

}

∂x
− ESκ2 ∂4y

∂x4
− 2R(ω)µ

∂y

∂t
+ dy,ext(x, t), (6.2)

which can be obtained from Eqs. (5.62) and (5.63). For modeling losses, the substitution
of Eq. (2.48) can be used instead of the term R(ω). The external excitation force density
(such as the effect of the hammer, plucking, or bowing) is taken into account by the term
dy,ext(x, t).

For the first time step, the transverse string motion is computed by T (x, t) = T0. Then,
the dynamic responses ξ̃k(t) of the first few (5–20) longitudinal modes are calculated as
described in Sec. 6.3.3. The first step is the calculation of the excitation-force density
dξ(x, t) by Eq. (5.28) and the determination of the longitudinal excitation forces Fξ,k(t) by
the scalar product of Eq. (5.30b). The instantaneous amplitudes ξ̃k(t) are computed by
second-order resonators, implementing Eq. (5.48). The string tension is computed as
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, (6.3)

which is made up the initial tension T0, the spatially uniform tension variation computed
from the elongation of the string, and the tension coming from the dynamics of longitudinal
modes. Then, this tension is used for the finite-difference string model implementing
Eq. (6.2), which computes y(x, t) for the next t value, from which the tension T (x, t) can
be computed, and so on.

Note that Eq. (6.3) differs from Eq. (6.1) in the last term because the tension T (x, t)

has to be computed all along the string 0 ≤ x ≤ L and not only for x = L. This means
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that now the contributions of ξ̃k(t) has to be projected back to the string by the functions
cos(kπx/L), leading to higher computational complexity compared to Eq. (6.1). Accord-
ingly, the computational requirement mostly depends on how many longitudinal modes
are implemented. This is because for each new longitudinal mode a scalar product and a
“back projection” has to be computed, both requiring N additions and N multiplications,
where N is the number of string elements. The accuracy/complexity of the synthesis may
be varied by changing the number of longitudinal modes.

As an example, the transverse and longitudinal bridge force computed by the bidirec-
tional tension decomposition model is presented in Fig. 6.8 by a solid line, with N = 100

elements in the finite-difference string model and K = 10 longitudinal modes. The dotted
line shows the output of a full finite-difference model of Sec. 6.4.1 (with N = 100) running
at ten times higher sampling rate (441 kHz) as a reference. The difference of the outputs
is displayed by a dashed line. Note that this difference is mainly because the numerical
dispersion of the transverse string model is different at various sampling rates, which also
influences the longitudinal vibration due to the coupling of the two polarizations. When
also the tension decomposition model is running at 441 kHz, this difference vanishes, as
can be seen in Fig. 6.9. The small error signal present in Fig. 6.9 (b) is most probably due
to the fact that the longitudinal modes of the full finite-difference model are affected by
numerical dispersion, while they are not in the tension decomposition model, since they are
computed by a modal-based approach. Naturally, computing the tension decomposition
model at a high sampling rate makes no sense in practice, as in that case it would have the
same computational complexity as for the finite-difference model of Sec. 6.4.1. Luckily, it
is not required, as the difference between the models of Fig. 6.8 (where the tension decom-
position model is running at 44.1 kHz) is inaudible. This is because the slight frequency
shift of the higher modes due to the different numerical dispersion does not affect sound
quality. The perceptual effect is similar to having a less precise inharmonicity modeling,
which have been investigated in [Rocchesso and Scalcon 1999].

To sum up, the tension decomposition model is capable of the same sound quality
as the full finite-difference model of Sec. 6.4.1 at about 20% of its computational cost.
Moreover, it has the advantage that the computational complexity/quality can be varied
by changing the number of realized longitudinal modes. Although the model was found
to be numerically stable in practice, the stability analysis of the method would be an
interesting field of future research. (Note that this can be very difficult, as traditional
stability analysis techniques developed for linear models cannot be applied.) Naturally, the
idea of tension decomposition could be used for modal-based approaches and for digital
waveguide models, too. Modeling the longitudinal modes and its effect on tension variation
can also be applied as an add-on to tension modulation string models of Sec. 6.2, where
the spatially uniform part of the tension modulation is already modeled.
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Figure 6.8: The transverse (a) and longitudinal (b) bridge forces of a simulated G1 piano
tone. The solid line displays the output of the model based on tension decomposition
running at 44.1 kHz sample rate, while the dotted line presents the output of a finite-
difference model running at 441 kHz. The difference of the outputs is displayed by a
dashed line.

6.5 Conclusion

In this chapter sound synthesis methods have been presented based on the theory of
Chap. 5. Sections 6.1 and 6.2 have overviewed the models that apply the uniform ten-
sion approximation.

Section 6.3 proposed many new techniques for modeling the vibration of longitudinal
modes. This corresponds to the situation where the tension is spatially nonuniform, but the
longitudinal to transverse coupling is negligible. The general idea of the methods is that
the motion of longitudinal modes is computed by a nonlinearly excited modal model. This
is advantageous because generally a low number of longitudinal modes has to be simulated,
and in this case the modal-based approach is the most efficient one. The various models
mainly differ in what kind of transverse string model they apply and which simplifications
are made in computing the longitudinal response. First, a physically accurate model have
been proposed in Sec. 6.3.3 that is based on the decomposition of the tension into a
spatially uniform and a space-dependent part, decreasing the computational complexity
by an order of magnitude compared to a full finite-difference model. The efficiency have
been further increased by the “composite” and “modal” models of Secs. 6.3.4 and 6.3.5 by
computing a common excitation signal for the longitudinal modes. These models have been
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Figure 6.9: The transverse (a) and longitudinal (b) bridge forces of a simulated G1 piano
tone. The line convention and the parameters are the same as for Fig. 6.8. The only
difference is that now both models run at the same sample rate (441 kHz).

published in [Bank and Sujbert 2004, 2005b]. Section 6.3.6 investigated the complications
with inharmonic digital waveguides in the context of longitudinal vibration modeling and
proposed the solution of distributing the dispersion filter. Physically informed models
have been proposed in Sec. 6.3.7, where the connection to physical reality is less tight
resulting in two orders of magnitude lower computational cost when compared to the full
finite-difference method. A linearized and commuted version of the model has also been
proposed. All the methods of Sec. 6.3 increase the sound quality of synthesized piano tones
significantly compared to earlier models neglecting the longitudinal vibrations. The choice
between them mainly depends on whether the physically meaningful behavior or the low
complexity is of highest importance. Although the longitudinal components are the most
significant in the case of the piano, the models could be also used for increasing the reality
of other synthesis models (guitar, harpsichord, etc.)

A synthesis model implementing the bidirectional coupling of transverse and longitu-
dinal polarizations has been presented in Sec. 6.4 [published in Bank and Sujbert 2005a].
The model is capable of producing a sound indistinguishable from a full finite-difference
model at around 20% of its computational cost. The good agreement of the new model
with the full finite-difference model confirms the theoretical results of Sec. 5.3, which form
the basis of the model. This model can be used for such instruments, where both the
effects of tension modulation and longitudinal modes are audible (they are not too many).
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It can also be used for producing musically interesting effects, such as exciting a piano
string with a much higher amplitude, leading to a pitch glide. Examples of synthesized
sounds can be found at [Sound examples n.d.].

As a straightforward extension to the models proposed in Secs. 6.3 and 6.4, two trans-
verse polarizations could be implemented along the lines of the equations presented in
Sec. 5.3.6. This requires the addition of a second transverse string model. Moreover,
the excitation force density has to be computed as the last term of Eq. (5.57) instead of
Eq. (5.28). From that on, the approach is exactly the same as presented in these sections.
Another possible development is the implementation of frequency dependent termination
impedance. This would be most advantageous for models including two transverse po-
larizations, as this would reproduce the coupling of the y and z polarizations leading to
beating and two-stage decay. We have not dealt with these issues here, as they are orthog-
onal to the proposed ideas. That is, the longitudinal modeling part does not have to be
altered when these extensions are implemented.



Chapter 7

Summary

In this thesis new methods have been presented for the physics-based synthesis of string
instruments. Chapter 3 proposed new algorithms for the loss filter design of digital
waveguides. Accordingly, the results can be used to improve the parameter estimation
of such instrument models, that employ the digital waveguide approach. In Chap. 4 the
multi-rate approach have been utilized for increasing the efficiency of the different parts
of the instrument model. The multi-rate excitation model of Sec. 4.1 provides a simple
method to overcome the numerical stability problems arising from noncomputable loops,
which can be used for struck or plucked strings. The parallel resonator bank of Sec. 4.2
decreases the computational complexity of modeling beating and two-stage decay signif-
icantly and allows simpler parameter estimation compared to earlier methods. As this
phenomenon is prominent in impulsively excited strings, the method is advantageous for
plucked and struck instruments. The multi-rate body model presented in Sec. 4.3 provides
significant savings in terms of computational complexity and can be used for all instru-
ments, where the sound is generated by the radiation of the body (i.e., all acoustic string
instruments including bowed strings).

As we have seen, Chap. 3 and 4 provided either new parameter estimation techniques
for existing structures or efficient implementation of well known physical phenomena. On
the other hand, for modeling the geometric nonlinearities of strings, no such precise physi-
cal models existed that could be used for developing sound synthesis algorithms. Therefore,
Chap. 5 provided a new theoretical framework that besides forming the basis of the sound
synthesis algorithms of Chap. 6, gives an insight to the phenomenon and explains the mea-
surement results of other authors. Thus, these results are not only useful for the sound
synthesis community but for the acousticians and instrument makers, too. Chapter 6 pre-
sented the sound synthesis applications of the theoretical model of Chap. 5. For increasing
efficiency, simplifications were carried out in a way that the effects of smaller perceptual
significance were neglected. The proposed methods can be used to extend various types
of existing linear string models making them capable of modeling the effects of geometric
nonlinearities. Naturally, modeling the longitudinal vibrations is advantageous for those in-
struments, where the effect is perceptually significant. Including them in the model greatly
improves the quality of synthesized piano sounds, and it is very probable that models of
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other string instruments would also benefit from refined modeling.

7.1 Further Research

Measurement methods that could provide more reliable estimates of the instrument body
transfer functions could help the accuracy of body modeling. Alternatively, the body
impulse response could be computed by a precise physical model. This would mean the
combination of the physics-based and post-processing approaches, where the physically
computed body impulse response is implemented by an efficient post-processing approach.
That would provide the opportunity to the user to modify the geometric and material
properties of the instrument body and then play with the new instrument in real-time.

Listening tests should be conducted to asses the importance of the effects of geometric
nonlinearities for those instruments where the phenomenon is less prominent than for the
piano (guitar, clavichord, harpsichord). For bowed strings, the longitudinal polarization is
excited by the bow, too, and not only by the transverse vibration. This should be included
in the model, together with the torsional polarization, which has even stronger effect in
the case of bowed strings than that of the longitudinal vibration.

It would be beneficial for all the modeling methods described in the thesis to find which
are those parameters that give an agreeable sound quality for a given instrument. This
problem can be addressed by analyzing the sound of various instruments and trying to
find the difference between the ones with better or worse quality. Alternatively, physical
models could be used to generate the input for listening tests, where the different features
could be varied independently. This set of rules could not only help in parameterizing
sound synthesis algorithms but could also be beneficial for instrument makers.

7.2 New Scientific Results

This section summarizes the main results of the thesis in the form of scientific statements.

Statement 1: I have developed new methods for decay time-based design of

loss-filters for digital waveguides.

1.1: I have proposed a polynomial regression-based method for designing one-pole loss
filters, which is the most common type of loss filters. I have derived a formula for the
decay time of a digital waveguide using a one-pole loss filter, and I have established a
relationship between the parameters for the one-pole filter and the differential equation of
the lossy string.

1.2: I have developed a robust and simple method for designing higher-order loss filters,
which minimizes the decay time error through a magnitude-dependent weighting function.
The weighting function is derived from the first-order Taylor series approximation for the
decay time as a function of filter magnitude.
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Statement 2: I have suggested the application of multi-rate techniques for in-

creasing the efficiency of string instrument models.

2.1: I have proposed a new method for maintaining numerical stability within the exci-
tation model. According to the method, the excitation model should operate at a higher
(e.g., double) sampling rate than the rest of the instrument model.

2.2: I have shown that the beating and two-stage decay effects can be efficiently modeled by
running a few resonators in parallel with the basic string model (e.g., a digital waveguide).
The method models the phenomenon only for those partials that are dominated by the
effect. The resonators run at a sampling rate lower than that of the string model, which
results in considerably lower computational complexity than methods developed earlier.

2.3: I have proposed the multi-rate approach for modeling the force-pressure transfer func-
tion of the instrument body. In the lower part of the audible frequency range the body
is modeled by a high-order filter running at one fourth or one eighth of the sampling fre-
quency, while for high frequencies a low-order filter approximates the body response. The
method requires significantly lower computing power compared to traditional filters, while
the degradation in sound quality is marginal.

Statement 3: I have developed a comprehensive model for the nonlinear vi-

bration of metal strings that can be efficiently used for sound synthesis. The

model takes into consideration the coupling of transverse and longitudinal po-

larizations.

3.1: I have introduced a classification for the nonlinear behavior of strings, which estimates
from the physical parameters of the string and from the amplitude and frequency content
of the transverse vibration which phenomena dominate the vibration. This “nonlinearity
map” clearly shows the similarities and differences between the various cases.

3.2: I have determined the closed solution for the nonlinear differential equation of the
string for the case where the tension on the string is spatially nonuniform, but the variation
of tension has a negligible effect on the transverse vibration. This approximation is valid
for highly stretched metal strings used in most string instruments. The proposed modal
model describes the free vibration of longitudinal modes and the generation of phantom
partials jointly.

3.3: I have derived a relationship between the modal model and the uniform tension ap-
proximation by decomposing the tension into a spatially uniform and a space-dependent
part. I have shown that the spatially uniform tension approximation, which is the most
widely used approach, is a special case of the proposed modal model.

Statement 4: I have extended the most common types of physical string models

by making them capable of modeling the longitudinal vibrations, too.
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4.1: I have proposed various composite string models where the response for longitudi-
nal modes is calculated by nonlinearly excited second-order resonators. For computing
the transverse vibration, both the finite-difference and modal-based approaches are ap-
propriate. The method is capable of modeling the bidirectional coupling of transverse
and longitudinal polarizations. The proposed models require significantly lower computa-
tional cost than the techniques that compute both polarizations through a finite-difference
scheme.

4.2: I have shown that dispersive digital waveguides cannot be used for computing the
excitation force of the longitudinal polarization in their original form. The problem can be
avoided through distributing the dispersion filter, at the expense of increased computational
complexity.

4.3: I have proposed "physically informed" techniques for modeling the longitudinal vibra-
tion, which are even more efficient than the above proposed ones. These use a physics-based
transverse string model extended by a signal model whose parameters are computed from
the physical parameters of the string.
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Appendix

A.1 Parameter Dependence of Nonlinear Components in String

Motion

Here we outline the derivations of Eqs. (5.6)–(5.8) included in Sec. 5.1. We assume that
only the transverse polarization is excited by the excitation, while the longitudinal polar-
ization gains energy from nonlinear coupling. Therefore, the amplitude dependence of the
nonlinear components is written as a function of transverse slope ∂y/∂x.

From Eq. (5.5) it follows that the linear transverse component (the component which
would arise if the string was ideal) of the bridge force Ft,lin has the magnitude

||Ft,lin|| = T0
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where the Euclidean norm (root mean square value) of the transverse slope at the termi-
nation (x = L) is referred as ||∂y/∂x||.

Equation (5.2) shows that the magnitude of longitudinal vibration depends on the
transverse slope according to a square law. The force at the bridge (see Eq. 5.4) has
the same behavior, as it is the sum of a term linearly depending on ∂ξ/∂x (which is a
second order function of ∂y/∂x) and a term having square law dependence on ∂y/∂x.
The magnitude of longitudinal vibration does not depend on ES, as both the nonlinear
excitation force and the restoring force are proportional to ES in Eq. (5.2). However, the
appearance of the longitudinal string motion in the bridge spectra has a linear dependence
on ES, as can be seen in Eq. (5.4). Thus, the magnitude of longitudinal force at the bridge
||Fl|| is approximately described by

||Fl|| ≈ ClES

∣

∣

∣

∣

∣

∣

∣

∣

∂y

∂x

∣

∣

∣

∣

∣

∣

∣

∣

2

, (A.2)

where Cl is a constant in the order of unity, which depends on the type of string excitation.
Note that we have assumed that the longitudinal motion is so small that it has no influence
on the transverse vibration.

In Eq. (5.3) the first term on the right-hand side is the dominant restoring force, leading
to the well known string motion. The next term is a nonlinear forcing term, which adds
some new components to the transverse vibration. The magnitude of this force is a third
order function of the transverse slope, as the longitudinal slope ∂ξ/∂x is the second-order
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function of ∂y/∂x. As for the force on the bridge, these excited nonlinear components ap-
pear through the first term −T0∂y/∂x (already filtered by the string dynamics) in Eq. (5.5)
and directly through the next term, which is again a third order function of ∂y/∂x. The
significance of the nonlinear forcing term increases as a linear function of ES in Eq. (5.3).
This nonlinear component appears as a linear function of ES in the transverse bridge force,
too. As a result, the magnitude of the nonlinear transverse component can be approxi-
mated as a third order function of transverse slope:

||Ft,nonlin|| ≈ CtES
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where Ct is a constant in the order of unity. Again, we have assumed that the nonlinear
transverse component is so small that it can be neglected in comparison with the standard
linear transverse component.

Figure A.1 shows the Euclidean norm of bridge forces for the first 100 ms of simulated
struck piano strings, computed by the nonlinear string model of Sec. 6.4. Figure A.1 (a)
displays a string with the physical parameters µ, T0, E, S, and L corresponding to a
G1 piano string. Losses and dispersion are also included in the simulation. The dotted
lines show the approximate curves computed by Eqs. (A.2) and (A.3) with Cl = 0.25 and
Ct = 10. These Cl and Ct values have been found to be also acceptable approximations for
other kind of excitations, such as plucking. The thick solid line shows the Euclidean norm of
the linear transverse bridge force. The magnitude of nonlinear transverse component (thin
solid line) is computed by subtracting the output of a linear string model from the output
of the nonlinear model. This component does not necessarily mean “new” components in
the spectrum, as it might correspond to the amplitude and frequency change of the already
present transverse modes. A good example for this is when the string tension is increased
due to the geometric nonlinearity, the transverse modal frequencies are also increased.
Finally, the dashed line displays the Euclidean norm of the longitudinal bridge force.

Figure A.1 (b) shows a simulation with the same parameters, except that the Young’s
modulus is increased by a factor of 100, corresponding to a loosely stretched string. It
can be seen that now the magnitude of the longitudinal component and that of the non-
linear transverse component reach the level of the transverse component at a much lower
transverse slope compared to Fig. A.1 (a).

Figure A.1 (a) and (b) demonstrate that the approximate curves follow the simulated
ones until the nonlinear transverse component reaches the level of the linear transverse
component. The reason for this is that the generation of the longitudinal motion draws
energy from the transverse vibration (which is not included in Eqs. (A.2) and (A.3)), and
this energy leakage from the transverse motion starts to be significant only above a certain
level.

In the next simulation, all the parameters of the modeled piano string where fixed, but
the Young’s modulus E was changed continuously. This corresponds to comparing strings
with the same fundamental frequency but being of different material. The value 100 of the
x axis corresponds to the E value of a G1 piano string with an (ES/T0) ratio of 400. The
hammer excitation was set in a way that it gave ||∂y/∂x|| = 10−3 in all the cases. The
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(b)

Figure A.1: Euclidean norm of simulated bridge forces as a function of the Euclidean norm
of the transverse slope ||∂y/∂x|| at the bridge: linear transverse force ||Ft,lin|| (thick solid
line), longitudinal force ||Fl|| (dashed line), and nonlinear transverse force ||Ft,nonlin|| (thin
solid line). The approximate values computed by Eqs. (A.2) and (A.3) are displayed by
dotted lines. Fig. 1 (a) has the parameters of a G1 piano string, while Fig. 1 (b) has a
100 times higher E value.

results are displayed in Fig. A.2, using the same line convention as in Fig. A.1. Figure A.2
shows that the nonlinear components are larger where E is larger at a fixed T0, i.e., the
nonlinearity is more prominent at higher ES/T0 values. The qualitative explanation for
this is when the initial stretching of the string is small (T0 is negligible in comparison with
ES), the change of the string length during vibration is no more negligible in comparison
with this initial stretching, leading to a significant variation in tension. On the other hand,
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Figure A.2: Euclidean norm of simulated bridge forces as a function of the Young’s mod-
ulus E: linear transverse force ||Ft,lin|| (thick solid line), longitudinal force ||Fl|| (dashed
line), and nonlinear transverse force ||Ft,nonlin|| (thin solid line). The approximate values
computed by Eqs. (A.2) and (A.3) are displayed by dotted lines. The value 100 of the x

axis corresponds to the E value of a G1 piano string. The Euclidean norm of the string
slope at the bridge is fixed at ||∂y/∂x|| = 10−3.

if the string is stretched significantly when it is mounted on the instrument (which is typical
for nylon strings), the length change during vibration will be much smaller in comparison
to the initial stretch.

It can be seen that the approximations of Eqs. (A.2) and (A.3) are quite accurate, but
for lower E values the amplitude of the longitudinal component (dashed line) departs from
the theoretically predicted one significantly. This is because here the longitudinal modes
are excited at their resonance resulting in a larger longitudinal motion (see Sec. 5.3), which
is not covered in Eqs. (A.2) and (A.3).

A.2 The Effect of Nonrigid String Terminations

Here we estimate whether the equations of Sec. 5.3 developed for rigid string terminations
are applicable for real musical instruments with finite bridge impedance (this Appendix
belongs to Sec. 5.3.6). Let us take a look at a special case when all the transverse modes
have the same length L + δL, and the longitudinal modes have the length L. This cor-
responds to a bridge whose admittance does not depend on frequency and can only move
in the transverse direction. In this case L has to be substituted by L + δL in Eq. (5.35).
The “sum terms” (m + n) in Eq. (5.35) will be of the form Cp sin[pπx/(L + δL)], where
p = m + n. Note that these terms excite only longitudinal modes k = p = m + n in the
case of perfectly rigid termination (δL = 0). For δL 6= 0, the excitation force originating
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from the term p is calculated as

Fξ,k,p(t)
+ =

∫ L

x=0
Cp sin

(

pπx
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)

sin

(

kπx

L

)

dx =

= Cp
1

2

[

L

(p + pd + k)π
sin[(p + pd + k)π] − L

(p + pd − k)π
sin[(p + pd − k)π]

]L

0

, (A.4)

where the notation d = L/(L + δL) − 1 has been choosen to simplify the derivations. For
d ≈ 0, the sinusoidal functions can be approximated by their first order Taylor series (i.e.,
sin x ≈ x):

Fξ,k,p(t)
+ ≈ ±Cp

L

2

[

pd

p + pd + k
− pd

p + pd − k

]

, (A.5)

where the ± sign is positive if p+k is even, and negative if p+k is odd. Note that the sign
has no real importance, as we are interested in the amplitude of the nonlinear components.
For d = 0 (which holds for a perfectly rigid termination δL = 0), this expression is zero
for p 6= k and equals to ±CpL/2 for k = p.

For d 6= 0 and p = k, we obtain

Fξ,k,p=k(t)
+ ≈ ±Cp

L

2

[

d

2
− 1

]

, (A.6)

which, for realistic d ≈ δL/L values (d = 0.01..0.001), almost equals with the one computed
by assuming rigid terminations. This means that the amplitude of the dominant phantom
partial (which would be present for rigid terminations) is not changed significantly if the
termination is nonrigid.

For d 6= 0 and p 6= k, i.e., for the secondary phantom partials, which would not be
present for rigid terminations, we get

Fξ,k,p 6=k(t)
+ ≈ ±Cp

L

2

2d
p
k − k

p

, (A.7)

which is maximal for neighboring k and p values. For p = k + 1,

Fξ,k,p=k+1(t)
+ ≈ ±Cp

L

2
dk ≈ Cp ±

L

2

δL

L
k. (A.8)

This means that those terms which would excite mode k only for rigid terminations, excite
the neighboring modes k+1 and k−1 at a relative level kδL/L compared to exciting mode
k. More distant longitudinal modes k + 2, k − 2, etc., are excited even less.

In practice, δL/L = 0.01..0.001 for musical instruments. For the first longitudinal
mode, this means that the terms which are not included in Eq. (5.36a) are 40..60 dB lower
compared to the ones present in Eq. (5.36a). For k = 10, this difference reduces to 20..40

dB, but we can still state that the dominant terms are those included in Eq. (5.36a), which
was computed by assuming infinitely rigid terminations. For longitudinal modes with mode
numbers k ≈ 100, these nonstandard components would have the same magnitude as the
theoretical ones in Eq. (5.36a), meaning that Eq. (5.36) is not valid anymore. However,
these very high longitudinal modes (around 100 kHz) are not excited effectively due to
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the band-limited excitation from the transverse vibration. Note that even if they were
effectively excited, they would be well above the audible frequency range. The same
derivations can be performed for the “difference terms” of Eq. (5.35), having the form
Cp sin[pπx/(L + δL)], where p = |m − n|, which give exactly the same results.


