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1 Introduction and Research Goals

The basic idea of physics-based sound synthesis is that it models the sound

generation mechanism of the instrument rather than the generated sound itself,

which is more common in sound synthesis. Despite that research on physics-

based sound synthesis is going on for three decades, its commercial application

is still quite rare, mostly because of its higher computational complexity com-

pared to signal modeling. However, by the increase of computational power and

the appearance of better models it is quite probable that physics-based sound

synthesis will be able to compete with the most common signal modeling tech-

nique, namely, sampling synthesis. Sampling synthesis is based on playing back

the recorded samples of instrument sounds. A serious shortcoming of sampling

synthesis is that it cannot model the interaction of the different parts of the

instrument (e.g., the coupling of different strings). Moreover, all the variations

of a single note has to be stored that can be generated by the musician (differ-

ent bow velocity, bow force, etc.). These problems are automatically avoided in

physics-based sound synthesis, where the model blocks correspond to the main

parts of the instrument (in the case of string instruments: excitation, string,

instrument body). The parameters of the model are physically meaningful (e.g.,

string length, bow velocity), therefore the control of the virtual instrument is

straightforward. A further advantage of physics-based sound synthesis is that

it can provide useful information for the acousticians about which are the most

important phenomena during sound production and how would the sound of the

instrument change by varying its physical properties.

The first step of physics-based sound synthesis is to understand how the in-

strument works, that is, the equations describing the main parts of the instrument

and the interactions of the different parts have to be revealed. Naturally, most of

this knowledge is obtainable from the literature, as musical acoustics has a long

tradition. However, for some specific parts of the instrument model further inves-

tigations are necessary. The resulting precise instrument model can be directly

used for sound synthesis after spatial and temporal discretization. However, the

required computational complexity of such a model is usually too high for real-

time implementation. Therefore, efficient sound synthesis algorithms have to be

developed by neglecting the less important features of the precise model. For

that, one has to estimate which are those phenomena that are less relevant in

producing the characteristic sound of the instrument.

The topic of this thesis is the modeling of stringed instruments. The most

important part of these instruments is the string, as the string generates the

periodic vibration in the sound. The equation describing the ideal, infinite string
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is the wave equation

µ
∂2y

∂t2
= T0

∂2y

∂x2
, (1)

where y is the transverse displacement, x is the position along the string, t is the

time, T is the tension, and µ is the mass per unit length [Morse and Ingard, 1968].

In real strings losses and dispersion also occur, which can be modeled by adding

further terms. The solution of the wave equation can be calculated by spatial

and temporal discretization, i.e., by substituting the derivatives with differences.

This is the finite difference method [Hiller and Ruiz, 1971].

A much more efficient approach to string modeling is the digital waveguide

[Smith, 1992]. The time-domain solution of the wave equation is the superposi-

tion of two functions

y(x, t) = y+(t − x/c) + y−(t + x/c), (2)

where y+ and y− can be considered as two traveling waves, which retain their

shape during their movement. The function y+ is the wave going to the right and

the function y− is the wave going to the left direction, and c is the propagation

speed. If the spatially sampled values of the two components (y+ and y−) are

stored in two vectors, then the next state can be computed by shifting the two

vectors to the right and to the left. This corresponds to two delay lines, which

can be efficiently implemented by circular buffers. The losses and dispersion of

the string are modeled by a digital filter inserted between the delay lines.

The third most common string modeling technique is modal synthesis, where

the motion of the string modes are computed and the shape of the string is

calculated by the summation of these modes as

y(x, t) =

∞
∑

k=1

yk(t) sin

(

kπx

L

)

(3)

where sin(kπx/L) is the modal shape of mode k and L is the length of the

string. The instantaneous amplitudes of the modes are given by, which are

typically exponentially decaying sinusoidal functions implemented by second-

order resonators in discrete-time.

The string gains energy from the excitation, which can be impulse like (pluck-

ing, striking) or continuous (bowing). It is common for all the cases that the

interaction of the string and the exciter is bidirectional, i.e., the excitation force

is a function of string shape [Fletcher and Rossing, 1998]. Modeling of the ex-

citation is carried out by the discretization of the (generally zero dimensional)

differential equation of the excitation. As the excitation is nonlinear in most of
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the cases, the discretization is nontrivial and often leads to numerical instabili-

ties.

The string cannot efficiently radiate, because its radiation impedance is not

in the same order as the impedance of the air. The role of the instrument

body is providing an impedance match, thus, increasing the efficiency of sound

radiation. The most time-consuming operation in physics-based sound synthesis

is body modeling, because here the calculation of a two- or three-dimensional

vibration is necessary, contrary to the string (one dimension) and the excitation

(zero dimension). Therefore, it is common to model the effect of the body as a

force-pressure transfer function instead of a precise physical model.

One part of the research goals belongs to existing modeling structures. The

most common type of string modeling techniques is the digital waveguide model-

ing, where the decay times of the partials generated by the model are determined

by the loss filter [Smith, 1992]. My goal was to develop robust and simple filter

design algorithms that minimize the deviation of the resulting and prescribed de-

cay times of the partials. Other such field is increasing the efficiency of physics-

based models, as their heavy computational load is their major shortcoming.

Here I have concentrated on efficient modeling of beating and two-stage decay

(an amplitude modulation of the partials), which is coming from the coupling

of strings, and on efficient instrument body modeling. In the case of nonlinear

excitation, my goal was to develop a method for avoiding numerical instability

that is simpler than existing techniques.

The second part of the thesis is about the nonlinear vibration of strings. The

work concentrates on the geometric nonlinearities of strings, while the nonlin-

earity of string material is not investigated. Geometric nonlinearity appears on

the string because the string length cannot be assumed constant above a certain

amplitude of vibration. Therefore, the tension also varies leading to the excita-

tion of longitudinal motion and to the appearance of new transverse components.

The investigation of the phenomenon is necessary because the phantom partials

[Conklin, 1999] and longitudinal modes present in real instruments cannot be

modeled by existing string models. As the generation mechanism of phantom

partials has not been explained, I have aimed at developing a general theory

that can both help in the understanding of the phenomenon and can found the

base of efficient sound synthesis algorithms. After the development of the precise

model, my goal was to investigate how the existing string modeling techniques

can be made capable of modeling the phenomenon and which simplifications can

be applied for efficient implementation.
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2 Research Methods

The main goal of my research is realistic sound synthesis. Therefore, I have aimed

at developing such models that include only those parts which are absolutely

necessary for a given sound quality. As an example, it is not investigated how

the different parts of the instrument body vibrate if it is sufficient to know

the transfer function of the body for sound synthesis. In musical acoustics we

are mostly interested in the frequencies, amplitudes, and decay times of the

components that build up the tone. Consequently, parameter estimation of the

models is carried out in a way that these parameters of the synthesized tone

should be near to the corresponding parameters of real tones. Generally, I have

aimed at the simplification of both modeling and parameter estimation methods.

For example, I have rejected those ideas where the efficiency of a method could

be slightly increased at the expense of significantly more complex parameter

estimation. It is a general feature of these models that they are adaptable to the

fields of linear system theory and digital signal processing, which are well known

for electrical engineers.

In digital filter design it is usual to minimize the deviation of the transfer

function of the filter from a target specification. This cannot be done in the case

of digital waveguide modeling, as the errors in decay times are of a nonlinear

function of magnitude error. Therefore I have applied a special weighting in

filter design. The weighting is a function of the magnitude specification and not

of the frequency, which is more common in filter design. For designing the most

widely used low order (one-pole) loss filter, I have used the weighted polynomial

regression, which is one of the basic methods in the field of parameter estimation.

Multi-rate techniques are used for increasing the efficiency of signal processing

algorithms. In methods applying the multi-rate technique the various parts of

the system run at different sampling rates, depending on the requirements. I

have applied the multi-rate approach for excitation modeling, as in this case

the numerical stability can be maintained by increasing the sampling frequency

of the excitation model, while for the rest of the model an increased sampling

frequency is not necessary. For modeling beating and two-stage decay, only a

small number of low frequency components should be modeled besides the basic

string model. This allows that these low frequency components are generated

by second order resonators running at a lower sampling rate. In the impulse

response of instrument bodies the low modes are decaying slower than the high

ones. Moreover, the ear is more sensitive to the parameters of the individual

modes at low frequencies. Therefore, it is reasonable to model the low frequency

part of the body response by a long filter running at lower sampling rate, while

the high frequency part by a low order filter running at the sampling rate of the
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system.

For modeling the geometric nonlinearities of real instrument strings, the ex-

isting models that calculate the string response for the first (or first few) partials

cannot be applied. Therefore, I have started from the general nonlinear wave

equation of strings [Morse and Ingard, 1968] and proposed such simplifications

that allow the use of methods known in linear system theory (transfer function,

convolution). Namely, only the transverse to longitudinal coupling is considered,

while the effect of the longitudinal polarization on the transverse one is neglected.

This leads to two linear partial differential equations, where the input of the lon-

gitudinal equation is a nonlinear function of the output of the transverse one. It

has been found that the model applying these simplifications describes the phe-

nomenon correctly for most of the string instruments. I have applied the modal

decomposition for both the transverse and longitudinal motion (as in Eq. (3)).

This way, the partial differential equation (the wave equation) is decomposed

into a set of second-order ordinary differential equations that describe the evo-

lution of the different modes. Once the impulse responses of these modes are

known, their response can be computed for arbitrary input by time-domain con-

volution. Accordingly, the motion of the transverse modes can be computed for a

given external force (striking, plucking, etc.) by linear system theory. Then, the

transverse modes determine the input of the longitudinal ones through a simple

nonlinear function. When the inputs of the longitudinal modes are known, their

response is again computed by convolution. I have decomposed the string ten-

sion into a spatially constant (but temporally varying) part and into a space- and

time dependent part. This is beneficial because the effects of spatially constant

tension variation are well known, and these results can be directly applied. More-

over, the decomposition of tension results in the simplification of the equations

describing the string motion.

For sound synthesis of geometric nonlinearities, I have chosen the combina-

tion and extension of already existing, well-known string modeling techniques.

This has the advantage that an already existing modeling architecture can be

simply extended by the components required for nonlinear modeling. As the

propagation speed of longitudinal waves is significantly higher compared to that

of the transverse ones, only a few (ca. ten) longitudinal partials are in the audible

frequency range. I have used the modal synthesis for modeling the longitudinal

components because in those cases, where only a few modes have to be modeled,

the modal synthesis is the most efficient approach. This is in a good accordance

with the theoretical model developed for geometric nonlinearities, which is based

on the modal decomposition, too. I have investigated the applicability of the

three main approaches (finite difference, digital waveguide, modal approach) for
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modeling the transverse vibration, with respect to how the excitation force of

the longitudinal modes can be computed. Different modeling alternatives are

given by the successive simplification of the model, which differ in the accuracy

of modeling and in the required computational complexity.

3 Original Contributions

This section summarizes the main results of the thesis in the form of scientific

statements.

Statement 1: I have developed new methods for decay time-based de-

sign of loss-filters for digital waveguides.

1.1: I have proposed a polynomial regression-based method for designing one-

pole loss filters, which is the most common type of loss filters. I have derived a

formula for the decay time of a digital waveguide using a one-pole loss filter, and

I have established a relationship between the parameters for the one-pole filter

and the differential equation of the lossy string.

1.2: I have developed a robust and simple method for designing higher-order loss

filters, which minimizes the decay time error through a magnitude-dependent

weighting function. The weighting function is derived from the first-order Taylor

series approximation for the decay time as a function of filter magnitude.

Statement 2: I have suggested the application of multi-rate techniques

for increasing the efficiency of string instrument models.

2.1: I have proposed a new method for maintaining numerical stability within

the excitation model. According to the method, the excitation model should

operate at a higher (e.g., double) sampling rate than the rest of the instrument

model.

2.2: I have shown that the beating and two-stage decay effects can be efficiently

modeled by running a few resonators in parallel with the basic string model (e.g.,

a digital waveguide). The method models the phenomenon only for those partials

that are dominated by the effect. The resonators run at a sampling rate lower

than that of the string model, which results in considerably lower computational

complexity than methods developed earlier.
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2.3: I have proposed the multi-rate approach for modeling the force-pressure

transfer function of the instrument body. In the lower part of the audible fre-

quency range the body is modeled by a high-order filter running at one fourth

or one eighth of the sampling frequency, while for high frequencies a low-order

filter approximates the body response. The method requires significantly lower

computing power compared to traditional filters, while the degradation in sound

quality is marginal.

Statement 3: I have developed a comprehensive model for the nonlin-

ear vibration of metal strings that can be efficiently used for sound

synthesis. The model takes into consideration the coupling of trans-

verse and longitudinal polarizations.

3.1: I have introduced a classification for the nonlinear behavior of strings, which

estimates from the physical parameters of the string and from the amplitude and

frequency content of the transverse vibration which phenomena dominate the

vibration. This “nonlinearity map” clearly shows the similarities and differences

between the various cases.

3.2: I have determined the closed solution for the nonlinear differential equation

of the string for the case where the tension on the string is spatially nonuniform,

but the variation of tension has a negligible effect on the transverse vibration.

This approximation is valid for highly stretched metal strings used in most string

instruments. The proposed modal model describes the free vibration of longitu-

dinal modes and the generation of phantom partials jointly.

3.3: I have derived a relationship between the modal model and the uniform

tension approximation by decomposing the tension into a spatially uniform and

a space-dependent part. I have shown that the spatially uniform tension ap-

proximation, which is the most widely used approach, is a special case of the

proposed modal model.

Statement 4: I have extended the most common types of physical

string models by making them capable of modeling the longitudinal

vibrations, too.

4.1: I have proposed various composite string models where the response for lon-

gitudinal modes is calculated by nonlinearly excited second-order resonators. For

computing the transverse vibration, both the finite-difference and modal-based

approaches are appropriate. The method is capable of modeling the bidirectional

coupling of transverse and longitudinal polarizations. The proposed models re-

quire significantly lower computational cost than the techniques that compute

both polarizations through a finite-difference scheme.
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4.2: I have shown that dispersive digital waveguides cannot be used for com-

puting the excitation force of the longitudinal polarization in their original form.

The problem can be avoided through distributing the dispersion filter, at the

expense of increased computational complexity.

4.3: I have proposed ”physically informed” techniques for modeling the longi-

tudinal vibration, which are even more efficient than the above proposed ones.

These use a physics-based transverse string model extended by a signal model

whose parameters are computed from the physical parameters of the string.

4 Applications of the Results

The results of this work can be grouped into two categories. The first group cor-

respond to sound synthesis applications. The results corresponding to Statement

1 and 2 can be directly used for enhancing the quality of physics-based synthe-

sizers and reducing their computational complexity. The methods provided in

Statement 4 are applicable for extending existing string models for making them

capable of modeling the nonlinearly generated longitudinal vibrations.

The second group of the results is connected to Statement 3. As this state-

ment is about the theory of geometric nonlinearities, it can be considered as a

fundamental research. Therefore, it can be applied by acusticians and instru-

ment makers to gain a better understanding about string vibration. Moreover,

the provided methodology (the modal approach and the decomposition of ten-

sion) can be used as a starting point for further investigations about the effect of

string terminations and the nonlinear coupling of two transverse polarizations.

5 Publications Related to the Ph.D. Thesis

5.1 Journal Papers

[1] B. Bank and L. Sujbert, “Generation of longitudinal vibrations in piano

strings: From physics to sound synthesis,” J. Acoust. Soc. Am., vol. 117,

pp. 2268–2278, April 2005.

[2] B. Bank, F. Avanzini, G. Borin, G. De Poli, F. Fontana, and D. Rocchesso,

“Physically informed signal-processing methods for piano sound synthesis:

a research overview,” EURASIP J. on Appl. Sign. Proc., vol. 2003, pp. 941–

952, September 2003.

10
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