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ABSTRACT

Many audio systems show some form of nonlinear behavior that has to be taken into account in modeling.
For this, often a black-box model is identified, coming from the generality and simplicity of the approach.
One such model is the polynomial Hammerstein model, which uses parallel branches that have a polynomial-
type nonlinearity and a linear filter in series. For example, Chebyshev models use Chebyshev polynomials as
nonlinear functions, making model identification a very straightforward procedure by logarithmic swept-sine
measurements. This paper proposes a highly efficient implementation of Chebyshev models by using fixed-
pole parallel filters for the linear filtering part. The efficiency comes both from using common-pole modeling
and from applying a warped filter design that takes into account the frequency resolution of hearing. Due
to its efficiency, the proposed model is particularly well suited for the real-time digital simulation of weakly
nonlinear devices, such as amplifiers, nonlinear effects, or tube guitar amplifiers.

1. INTRODUCTION

Many audio systems (loudspeakers, tube amplifiers, au-
dio effects) exhibit some form of nonlinear behavior,
which has to be taken into account in modeling. One
standard approach is to use the a priori knowledge avail-
able about the physical system, and construct a model

whose building blocks correspond to the various parts
of the system. This usually results in precise nonlinear
models, like the loudspeaker models of [1, 2] or mod-
els of tube amplifiers [3]. The drawback of the physics-
based approach is the loss of generality. The other ap-
proach, taken also in this paper, is black-box modeling,
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where no a priori knowledge is needed. The advantage of
this methodology is its generality and simpler parameter
estimation.

The classical approach to nonlinear black-box modeling
is the use of Volterra series. However, the estimation
and implementation of the multidimensional kernels for
higher-order models is usually too complicated for prac-
tical implementations. Therefore, often some simplifi-
cations are made. For example, the generalized polyno-
mial Hammerstein model (sometimes also termed MISO
model) uses only the diagonal elements of the Volterra
model, resulting in a simpler model structure with one-
dimensional convolutions. The model parameters are
conveniently estimated using a specially synchronized
logarithmic sweep signal [4, 5, 6]. (A review of related
literature in nonlinear modeling is also given in [6]). Ac-
cordingly, these models simulate the harmonic distortion
behavior of the system perfectly at the input level where
the measurement was made, while other types of distor-
tions (e.g., intermodulation) are also generated, but not
directly under control. So far, the method has been ap-
plied to modeling loudspeakers [4, 5] and audio effects,
such as a limiter [6] or an overdrive pedal [7]. A vari-
ant of the technique has been presented in [7], where the
power-law nonlinearities are interchanged with Cheby-
shev polynomials. As a result, the parameter estima-
tion is simplified, because now the impulse responses of
the linear filters are obtained directly from the nonlinear
impulse responses measured by the synchronized swept-
sine technique. This paper proposes an efficient imple-
mentation by using common-pole parallel filters for the
linear filtering part.

2. CHEBYSHEV MODELS

The Chebyshev model [7] consists of a set of parallel
branches, where each branch has a Chebyshev polyno-
mial Tr(x) and a linear filterHr(ϑ) in series, as dis-
played in Fig. 1. A low-pass filter is also added to the
input to eliminate aliasing (not displayed in Fig. 1).

The Chebyshev polynomials are defined as

Tr(cos(θ)) = cos(nθ), (1)

meaning that if a sinusoidal function with unitary ampli-
tude and angular frequencyϑ is lead to ther-th order
Chebyshev polynomial, its output will be a sinusoidal
function with the frequencyrϑ. The Chebyshev poly-
nomials can be computed by the recursive formulas

Tr(x) = 2xTr−1(x) − Tr−2(x) (2)
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Fig. 1: The Chebyshev nonlinear model.

with T1(x) = 1 andT2(x) = x.

As for parameter estimation, the system is excited by a
synchronized logarithmic sweep signal, and the “nonlin-
ear impulse responses” are computed by deconvolving
the system output with the synchronized sweep [6]. In
the deconvolved signal the linear impulse responseh1(t)
and impulse responses corresponding to the harmonic
distortion productsh2(t) . . . hR(t) appear at distinct time
instants, thus, they can be easily separated. In Chebyshev
models the filtersH1(ϑ) . . . HR(ϑ) directly implement
these measured impulse responsesh1(t) . . . hR(t). The
filtersHr(ϑ) are most straightforwardly implemented as
FIR filters. However, in Sec. 4 we will see that a much
more efficient implementation is also possible.

3. FIXED-POLE PARALLEL FILTERS

For audio, specialized filter design methods have been
developed that take into account the frequency resolution
of hearing, including warped [8], Kautz- [9] and parallel
filters [10]. In parallel filters, the poles of the second-
order sections are fixed prior to filter design, and only
the numerators are free parameters for optimization. As
a result, the frequency resolution is controlled by the pole
frequencies. For example, logarithmic frequency resolu-
tion can be achieved by placing the poles on a logarith-
mic frequency scale [11]. Thus, parallel filters are partic-
ularly well suited for audio applications because the al-
location of frequency resolution can fit the resolution of
human hearing. Comparison to IIR, warped FIR, warped
IIR designs have shown that the parallel results in better
accuracy at the same filter order [10, 11, 12]. Compared
to Kautz filters, the same transfer function is obtained for
the same filter order, but the parallel filter requires 33%
fewer arithmetic operations [11].

The parallel filter consists in a parallel set of second-
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order sections and an optional FIR filter path:

H(z−1) =

K
∑

k=1

bk,0 + bk,1z
−1

1 + ak,1z−1 + ak,2z−2
+

M
∑

m=0

cmz−m

(3)
whereK is the number of second-order sections andM
is the order of the FIR filter. Note that in this study the
FIR part is not utilized.

The first step of parallel filter design is the choice of pole
frequencies. The simplest option is to set them according
to a logarithmic frequency scale, resulting in a logarith-
mic frequency resolution [11]. Another options include
pole positioning based on warped IIR filters [13], the re-
cently developed smoothed multi-band pole positioning
method [14] and pole positioning based on custom warp-
ing [15].

Once the denominator parametersak,1, ak,2 are deter-
mined by the poles, the transfer functionH(z−1) be-
comes linear in its free parametersbk,0, bk,1, andcm.
These parametersbk,0, bk,1, and cm can be estimated
both in the time-domain [10] or in the frequency-domain
[12] by the least-squares (LS) normal equations in a
closed form.

4. EFFICIENT CHEBYSHEV MODELS USING
COMMON-POLE PARALLEL FILTERS

4.1. Model structure

Already using separate parallel filters instead of tradi-
tional FIR or IIR filters results in a lower computational
complexity for the same sound quality, because parallel
filters can take into account the frequency resolution of
hearing. The performance benefit is further increased by
the proposed common-pole model structure. It can be
seen in Fig. 1 that the linear filtering part is basically a
multi-input single-output (MISO) system. By choosing
the same frequency resolution for the different branches,
the pole positions will be the same for all the parallel
filters. As a result, the branches can share the same de-
nominators, resulting in a structure where the outputs of
the Chebyshev functions are filtered by the first-order
FIR filters (numerators)Bk,r(ϑ), summed, and led to
the common second-order allpole filters (the common
denominators)Ak(ϑ). Finally, the contributions of the
various second-order sections are summed. This is dis-
played in Fig. 2. In a straightforward (not common-pole)
implementation, for anRth order model withN th order
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Fig. 2: Structure of the Chebyshev model with common-
pole parallel second-order filters.

parallel filters, the total required filter order isNR. In
the proposed common-pole implementation the compu-
tational complexity is decreased toN(R/2+0.5), which
is around the half of the complexity of the straightfor-
ward approach.

4.2. Parameter estimation

Once thehr(t) signals (or their sampled versionshr[n])
have been obtained by the synchronized swept sine tech-
nique, the task is to estimate the parameters ofBk,r(ϑ)
andAk(ϑ) so that the filter impulse responses best match
the measured responses. The first step of filter design
is the determination of the poles, which should be the
same for all the filtersHr(ϑ). The simplest option is
to set the poles to a logarithmic frequency scale, result-
ing in a strictly logarithmic frequency resolution. How-
ever, when modeling relatively low order systems (like
the loudspeaker example in Sec. 5), better results are
achieved if the pole frequencies are computed based on
the measured responses. Since we should still take into
account the resolution of the human auditory system, this
is done in the warped domain.

The first step of the procedure is warping the measured
impulse responseshr[n] by an allpass chain [8], giving
the warped signals̃hr[n]. Then, similarly to MIMO ad-
mittance modeling [16], a common-pole autoregressive
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filter is identified to these responses. The regression er-
ror for therth warped impulse response is given as

Er =

N
∑

n=L

(

h̃r[n] +

L
∑

l=1

amh̃r[n − l]

)2

, (4)

whereL is the order of the denominator, andN is the
length of the warped impulse responseh̃r[n]. Note that
the denominator coefficientsam are the same for allr
in Eq. (4) and the task is to find this common set ofam

coefficients such that the total error

e =

R
∑

r=1

WrEr (5)

is minimal, whereWr is the weight given to the separate
impulse responses. This is a linear least-squares prob-
lem that is solved by the normal equations in a closed
form. Then, the roots̃pk of the denominator are found
and “dewarped” by the expression

pk =
p̃k + λ

1 + λp̃k

, (6)

giving the common set of poles. (Note that instead of
“traditional” warping, the custom warping method of
[15] – published elsewhere in these proceedings – could
also be used. Here traditional warping and time-domain
design was used for the sake of simplicity.)

Once the common poles are obtained, the weights of the
parallel filter (i.e., the numerators) are obtained by the LS
equations for each filterHr(ϑ) exactly in the same way
as for normal (not common-pole) parallel filters [10].

5. LOUDSPEAKER MODELING EXAMPLE

The method is demonstrated by a loudspeaker model-
ing example. A three-inch loudspeaker (Hivi B3N) en-
closed in a a box with 0.7 liter net volume was mea-
sured by the synchronized swept-sine technique with an
input level of 10Vpp and a sampling rate of 48 kHz .
Its linear impulse responseh1[n] and the nonlinear im-
pulse responsesh2[n] . . . h5[n] were computed by de-
convolution. The impulse responses were windowed to
1000 tap by a half hanning window. The Fourier trans-
formsHt,r(ϑ) of the measured impulse responseshr[n]
are displayed in Fig. 3 thin line for the linear part (a)
and for the nonlinear responses of order 2 to 5 in (b)–(e).
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Fig. 3: The measured transfer functions (thin line) and
modeled responses using common-pole 50th-order par-
allel filters (thick line) for the linear part (a) and for the
nonlinear transfer functions of order 2 to 5 (b)–(e).

TheseHt,r(ϑ) form the target specification for parallel
filter design.

Next, the common pole-set is obtained by the warped
common-pole autoregressive method outlined in Sec. 4.2
with λ = 0.85 and filter order 50, and the common poles
are used as the denominators of the parallel filters. The
numerator coefficients (weights) are obtained by mini-
mizing the mean-squared error between the impulse re-
sponses of the parallel filters and the measured responses
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Fig. 4: Measured (thin line) and modeled (thick line)
output spectrum of a small loudspeaker to a two-tone in-
put withf1 =150 Hz andf2 =1 kHz. The amplitudes of
the sinusoids are 5Vpp. The modeled output spectrum is
shifted by 20 Hz for clarity.

hr[n]. The frequency responses of the parallel filters
Hr(ϑ) are displayed by thick lines in Fig. 3 (a)–(e).
It can be seen that the 50th-order common-pole filters
model the measured responses quite precisely. Note that
the computational complexity of the filtering is equiva-
lent to an IIR filter of order 150 due to the benefits of
common-pole implementation (a straightforward imple-
mentation would result in an order of 250).

The model is evaluated by a two-tone input signal with
f1 =150 Hz andf2 =1 kHz and sinusoidal amplitudes
of 5 Vpp, displayed in Fig. 4. From theory we expect
that the harmonic distortion of the loudspeaker is pre-
cisely modeled by the Chebyshev model at the input am-
plitude with which the sweep measurement was made.
Here the input amplitude is half compared to the mea-
surement, but the harmonic distortion products (peaks
at 300, 450 and 750 Hz) are still reasonably well repre-
sented. On the other hand, the intermodulation products
are not correctly modeled. This is inevitable for all the
models that use a swept-sine for parameter estimation,
since the swept-sine measurement conveys information
only about the linear transfer function and harmonic dis-
tortion. In other words, this is the price to pay for the
simplicity and generality of the model. Whether model-
ing the linear part and the harmonic distortion products

is sufficient for a perceptually plausible model of a non-
linear audio device, can only be determined by listening
tests, which is out of the scope of this paper. The mes-
sage of the paper is that if such a model is sufficient, then
it can be very efficiently implemented by common-pole
parallel filters. Nevertheless, a listening test in [4] shows
that a simplified Volterra model (which is equivalent to
the Chebyshev model used here) can simulate the non-
linear behavior of small loudspeakers reasonably well.

6. CONCLUSION AND FUTURE RESEARCH

Polynomial Hammerstein models are simplified Volterra
models using only the diagonal part of the Volterra ker-
nels. They consist of several parallel branches where
each branch has a static nonlinearity implemented by a
polynomial and a linear filtering part in series. The fa-
vorable property of these models is that their parame-
ters can be conveniently estimated by logarithmic sweep
measurements. In addition to the linear transfer func-
tion, these models simulate the harmonic distortion be-
havior of nonlinear systems, thus, they can be used for
modeling weakly nonlinear audio devices, such as loud-
speakers, tube amplifiers or guitar effects. A special vari-
ant of polynomial Hammerstein models is the Cheby-
shev model, where the nonlinearities are implemented
by Chebyshev polynomials. This paper has proposed
an efficient implementation for the Chebyshev nonlin-
ear model by using a common-pole parallel filter for the
linear part. The efficiency comes both from the fact
of common-pole modeling and by using a frequency-
warped filter design that takes into account the frequency
resolution of hearing. The same approach can also be
used for other nonlinear models with similar model struc-
ture, such as those using power-law functions [4, 5, 6].
Due to its high computational efficiency, the model is
well suited for the real-time digital simulation of nonlin-
ear audio devices.

Future research may include the efficient implementa-
tion of polynomial Wiener models where the signal flow
of Fig. 2 is reversed. An efficient polynomial Wiener-
Hammerstein model could be obtained by nesting non-
linear functions (e.g., Chebyshev polynomials) between
a single-input multiple-output and a multiple-input sin-
gle output parallel filter. While parameter estimation
would be much more complicated, such a model would
go one step beyond the “harmonic distortion model-
ing” paradigm of polynomial Hammerstein models, thus,
would allow the more realistic black-box modeling of au-
dio devices.
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