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ABSTRACT

In traditional warped FIR and IIR filters, the frequency-warping profile is adjusted by a single free parameter,
leading to a less flexible allocation of frequency resolution. As an example, it is not possible to achieve a
truly logarithmic frequency resolution, which would be often desired in audio applications. In this paper a
new approach is presented for warped IIR filter design where the filter specification is transformed by any
desired (e.g., logarithmic) frequency transformation, and a standard IIR filter is designed to this transformed
specification. Then, the poles and zeros of this transformed filter are found and mapped back to the original
frequency scale. Due to the approximations in mapping back the poles and zeros, the resulting transfer
function shows some discrepancies from its optimal version. This is resolved by an additional optimization
of the zeros of the final filter. Examples of loudspeaker–room response modeling and equalization are
presented.

1. INTRODUCTION

In audio, filter and equalizer design should take into ac-
count the frequency resolution of hearing for achieving
the best possible sound quality at a given computational
cost. Since traditional FIR and IIR filter design meth-
ods result in a linear frequency resolution, specialized
filter design methodologies have been developed. One of
the most often used methodology is warped filter design

[1, 2], where the unit delay of traditional FIR or IIR fil-
ters is replaced by a first-order allpass filter, resulting in
the transformation of the frequency axis. The allocation
of the frequency resolution is controlled by the poleλ of
the allpass filter. A drawback of warped filter design is
that the frequency resolution is determined by a single
parameterλ, resulting in a limited range of warping pro-
files. For example, there is no suchλ value that would
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result in a truly logarithmic frequency resolution. This
can be partly resolved by designing multi-band warped
filters, where the warping parameter is different in the
various subbands [3, 4], at the expense of design com-
plexity.

To overcome the limitation of a single parameter control-
ling the frequency resolution, various other design ap-
proaches have been developed. For example, in [5] log-
arithmic frequency-scale warping is realized by using a
parallel set of all-pass filters of increasing order. How-
ever, a disadvantage of the method is its heavy compu-
tational load making it impractical for real-time applica-
tions. Kautz filters [6, 7] can be seen as the generaliza-
tions of warped FIR filters, where the allpass poles can
be different for all the sections. The frequency resolu-
tion of Kautz filters is controlled by the pole positions.
For example, setting the pole frequencies to a logarith-
mic scale results in a logarithmic frequency resolution
[7]. Recently, the fixed-pole design of second-order par-
allel filters [8, 9] have been proposed, resulting in the
same transfer function as that of Kautz filters [10], while
requiring 33% less arithmetic operations for the same fil-
ter order.

This paper presents a new method for warped IIR fil-
ter design that can use arbitrary warping profiles. The
method starts with defining a custom frequency mapping
function that will determine the allocation of frequency
resolution. Then, the filter specification is transformed
by this mapping function, and an IIR filter is designed
to the transformed specification by standard IIR filter de-
sign tools, e.g., by theinvfreqz command in Matlab.
Next, the poles and zeros of this transformed filter are
found and mapped back to the original frequency scale.
Finally, the filter is implemented as a series or parallel
set of second-order filters.

The organization of the paper is as follows: Sec. 2
overviews traditional warped filter design, Sec. 3
presents the custom warping method, and Sec. 4 provides
loudspeaker–room modeling and equalization examples,
and comparison to other filter design techniques. Finally,
Sec. 5 concludes the paper and gives directions for future
research.

2. WARPED FILTER DESIGN

The most commonly used perceptually motivated design
technique is based on frequency warping [1, 2]. The ba-
sic idea of warped filters is that the unit delayz−1 of

traditional FIR or IIR filters is replaced by an allpass fil-
ter

z−1 ← D(z) =
z−1 − λ

1− λz−1
. (1)

Such a substitution results in a transformation of the fre-
quency axis

ϑ̃ = ν(ϑ) = arctan
(1− λ2) sin(ϑ)

(1 + λ2) cos(ϑ)− 2λ
, (2)

whereϑ is the original and̃ϑ is the warped angular fre-
quency in radians [2]. Accordingly, a filter originally
having the transfer function ofH(ϑ) will have the trans-
fer function ofH(ν(ϑ)) after substituting its delay ele-
ments by the first order allpass of Eq. (1).

In the time domain, the design of warped filters starts
with warping the target impulse responseht(n) by the
use of an allpass chain, which can be considered as the
frequency-dependent resampling of the impulse response
[2]. Then, warped FIR (WFIR) filters can be obtained
by truncating or windowing the warped target response
h̃t(n). Warped IIR filters are designed by traditional fil-
ter design algorithms (e.g., Prony, Steiglitz-McBride) us-
ing this warped̃ht(n). In the frequency-domain, the tar-
get specificationH(ϑ) is first transformed by inverse of
Eq. (2), then an FIR or IIR filter is designed based on this
mapped specification.

The WFIR filters have a similar structure as FIR filters,
but the unit delays are replaced by the allpass filterD(z).
That is, the WFIR filter is an allpass chain, where the sig-
nals between the first-order allpass blocks are tapped and
weighted bybk. Because of the allpass elements, WFIR
filters are actually IIR filters, and only their structure and
design resemble to that of FIR filters. For WIIR filters
the replacement of unit delays byD(z) leads to delay-
free loops, and the filter structure has to be modified for
practical implementation [2].

Because of the specialized filter structures, WFIR and
WIIR filters require 2–4 times higher computational
complexity compared to normal FIR and IIR filters of
the same order [2]. For WIIR filters, this additional com-
plexity can be avoided if the filters are “dewarped” to a
direct form IIR filter, but this can be done only up to fil-
ter orders of 20 due to numerical problems coming from
pole clustering at low frequencies [2]. Another option is
to find the poles̃pk and zeros̃mk of the warped IIR filter,
dewarp and them by the expression

pk =
p̃k + λ

1 + λp̃k

, mk =
m̃k + λ

1 + λm̃k

. (3)
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Finally, the filter is implemented as a series of second-
order sections, computed from the dewarped (linear
frequency-scale) polespk and zerosmk [11].

3. CUSTOM WARPING

This paper presents a new method for warped IIR filter
design that can use arbitrary warping profiles. The filter
design steps are explained by using a loudspeaker–room
response modeling example.

3.1. Frequency mapping

The method starts with defining a custom frequency
mapping function that will determine the allocation of
frequency resolution. In the examples of the paper, a
logarithmic frequency transformation is used, leading to
logarithmic frequency resolution, but it is emphasized
that any other profiles can be used. We should map the
original angular frequenciesϑ ∈ [0, π] to the warped fre-
quencies̃ϑ = ν(ϑ) ∈ [0, π] by a smooth function. That
is, ν(ϑ) and its first derivativeν′(ϑ) = dν(ϑ)/dϑ should
be continuous, because we will use these functions for
pole dewarping. Here we use the warping function pro-
posed in [5] which is linear below a frequency limitϑc

and logarithmic above. The linear function is chosen so
that the derivative does not jump atϑc:

ϑ̃ = ν(ϑ) =

{

aϑ if 0 ≤ ϑ < ϑc

π ln(bϑ)
ln(bπ) if ϑc ≤ ϑ < π

, (4a)

a =
π

ϑc(1 + ln(π/ϑc))
, (4b)

b =
e

ϑc
, (4c)

wheree = e1 = exp(1). Let us also define the inverse
mappingν−1(ϑ̃) so thatϑ = ν−1(ν(ϑ)). The mapping
function ν(ϑ) is depicted in Fig. 1 forϑc = 0.0071,
which corresponds to 50 Hz withfs = 44.1 kHz.

Then, the filter specification is transformed by this map-
ping function so that the original specification points
Ht(ϑn) are moved to the frequencies̃ϑk = ν(ϑn).
Mathematically, this mapping is described byH̃t(ϑ̃n) =

Ht(ν
−1( ˜ϑn)).

It may also be interesting to compute the equivalentλ(ϑ)
values that would correspond to the mapping of Fig. 1.
This can be done by solving Eq. (2) forλ for each angu-
lar frequency pairϑ, ϑ̃ given by the logarithmic mapping
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Fig. 1: The frequency mapping functionν(ϑ) of Eq. (4).

of Eq. (4) and Fig. 1. This is displayed in Fig. 2, which
also explains why straightforward warped designs with
a singleλ cannot provide a truly logarithmic resolution.
Note that in multi-band warped methods the “varying”λ
is approximated by using differentλ parameters in dif-
ferent frequency bands [3, 4, 12].

The target specification used for illustrating the de-
sign steps is a loudspeaker–room response, which is
smoothed to a 12th octave resolution by the complex
smoothing method of [13]. The logarithmically warped
filter specification is displayed in Fig. 3 thin line. Note
that the warped angular frequency is plotted in a linear
scale.

3.2. Filter design and pole dewarping

At this step an IIR filter is designed to the warped specifi-
cationH̃t(ϑ̃) by any of the traditional filter design meth-
ods. Here theinvfreqz command of MATLAB is
used to design a 32th order IIR filter. The resulting re-
sponse is shown in Fig. 3 thick line. To avoid unstable
filters, the warped specification is made minimum-phase
prior to filter design.

Then, the poles and zeros of this warped filterH̃(ϑ̃) are
found and mapped back to the original frequency scale.
For complex poles, we first compute the pole frequencies
ϑ̃p,k = ϕ{p̃k} and radiir̃p,k = |p̃k|. Then, the dewarped
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Fig. 2: Equivalent frequency warping parameter values
λ(ϑ) values as a function of frequency that would give
the logarithmic mapping of Fig. 1. Note that thex axis
is in Hz (f = fsϑ/(2π) with fs = 44.1 kHz), and in a
logarithmic scale.

polespk arise as

ϑp,k = ν−1(ϑ̃p,k), (5a)

rp,k = r̃
ν−1

′

(ϑ̃p,k)
p,k , (5b)

pk = rp,kejϑp,k , (5c)

that is, the pole frequencies are mapped according to
the inverse mapping functionν−1(ϑ̃) and the radii are
raised to the power according to the derivative of the in-
verse mapping functionν−1′

(ϑ̃). The complex zeros are
mapped in exactly the same way. For real poles and ze-
ros we compute their frequencies (the -3dB point of their
transfer functions) and remap them byν−1(ϑ̃).

Then, the poles and zeros are paired to form a filter with
a series of second-order sections. The resulting response
is displayed in Fig. 4 thick dashed line, together with the
specification (thin solid line) in the original frequency
scale. (Note the logarithmic frequency axis in Fig. 4 as
opposed to the linear one in Fig. 3.)

It can be seen that the resulting filter response (thick
dashed line) is tilted compared to the specification (thin
line). This comes from the inaccuracies of pole-zero
remapping. More specifically, when a pole is dewarped
in normal warped filters, a zero arises atλ, while when a

0 0.2 0.4 0.6 0.8 1
−40

−35

−30

−25

−20

−15

−10

−5

0

Warped angular frequency / π

M
ag

ni
tu

de
 [d

B
]

Fig. 3: Logarithmically warped target specification (12th
octave smoothed minimum-phase loudspeaker–room re-
sponse, displayed by thin line) and a 50th order IIR filter
designed byinvfreqz in MATLAB (thick line). Note
that the warped angular frequency is displayed in a linear
scale.

zero is dewarped, a pole arises atλ. Sinceλ is constant
in traditional warped filters, these additional poles and
zeros cancel out. However, in our case every dewarp-
ing corresponds to a different equivalentλ value, and the
effects of these not-implemented poles and zeros accu-
mulate.

3.3. Response correction

In principle, the frequency response could be corrected
by running a post-optimization in pole-zero form, where
the dewarped poles and zeros are used as starting values.
A simpler solution is to design a low-order correcting fil-
ter and put this in series with the original filter. In prac-
tice, filter orders of 4–8 are needed to correct the filter
behavior. A trivial drawback of using a correction filter
is the increase of computational complexity.

Here a different solution is proposed that is both com-
putationally simple and does not require the increase of
filter order. The idea is to keep the poles as they are,
and optimize only the zeros instead. This is most easily
done when the filter is converted to a parallel form, since
in that case the problem becomes linear in its free para-
meters, so they can be computed by the well-known LS
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Fig. 4: Minimum-phase loudspeaker–room response
modeling: original specification (thin line), 32nd or-
der series second-order filter after pole-zero dewarping
(thick dashed line), and a 32nd order parallel second-
order filter after the optimization of the zeros (thick solid
line).

solution in a closed form. This variant can also be con-
sidered as a new pole positioning strategy for the fixed-
pole design of parallel second-order filters [8, 9], since
now only the poles are used from the custom warped fil-
ter design, and the zeros are estimated by the linear least
squares equations.

The filter consists in a parallel set of second-order sec-
tions:

H(z−1) =

K
∑

k=1

dk,0 + dk,1z
−1

1 + ak,1z−1 + ak,2z−2
(6)

whereK is the number of sections. Once the denomi-
nator coefficients are determined by the dewarped poles
(ak,1 = pk +pk andak,2 = |pk|

2), the problem becomes
linear in its free parametersdk,0, dk,1.

Writing (6) in matrix form for a finite set ofϑn angular
frequencies yields

h = Mp (7)

wherep = [d1,0, d1,1, . . . dK,0, dK,1, b0 . . . bM ]T is a
column vector composed of the free parameters. The
rows of the modeling matrixM contain the transfer func-
tions of the second-order sections1/(1 + ak,1e

−jϑn +

ak,2e
−j2ϑn) and their delayed versionse−jϑn/(1 +

ak,1e
−jϑn +ak,2e

−j2ϑn) for theϑn angular frequencies.
Finally, h = [H(ϑ1) . . . H(ϑN )]T is a column vector
composed of the resulting frequency response.

Now the task is to find the optimal parameterspopt such
that h = Mpopt is closest to the target frequency re-
sponseht = [H(ϑ1)t . . . H(ϑN )t]

T . If the error is eval-
uated in the mean squares sense

eLS =

N
∑

n=1

|H(ϑn)−H(ϑn)t|
2 = (h− ht)

H(h− ht),

(8)
the minimum of (8) is found by the well-known least-
squares (LS) solution

popt = (MHM)−1MHht (9)

whereMH is the conjugate transpose ofM.

Note that (9) assumes a filter specificationHt(ϑn) given
for the full frequency rangeϑn ∈ [−π, π]. Thus,
for obtaining filters with a real impulse response, we
have to ensure that the frequency domain specification
is conjugate-symmetric, that is,Ht(−ϑn) = Ht(ϑn),
whereHt is the complex conjugate ofHt.

Finally, the parallel filter might be converted to a series
of second-order sections, or, implemented directly in the
parallel form. An advantage of the parallel form is that it
possesses favorable numerical properties [14] and it has
the potential for full code parallelization. Also, this way
we avoid the numerical problems that may arise during
conversion.

The frequency response of a 32th order parallel second-
order filter designed using the dewarped polespk is dis-
played in Fig. 4. It can be seen that now the filter re-
sponse matches the target specification quite precisely.

4. DESIGN EXAMPLES AND COMPARISON

4.1. Loudspeaker–room response modeling

Figure 5 provides the comparison of the new method
to previous filter design techniques for a 12th-octave
smoothed minimum-phase loudspeaker–room response
modeling example (the specification is the same as in
the example of Sec. 3). Figure 5 (a) shows a 32nd-order
warped IIR design (λ = 0.9) estimated by the Steiglitz-
McBride method [15]. It can be seen that the frequency
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resolution of the filter is concentrated to a limited region
of the full frequency scale. The objective measure used
here is the mean absolute dB error [4] computed between
the target and filter response, and evaluated on a loga-
rithmic frequency scale between 20 Hz and 20 kHz. The
error values are displayed in Fig. 5 above the correspond-
ing responses.

Figure 5 (b) shows a parallel filter design with a prede-
termined pole set [9], where 16 pole pairs are placed be-
tween 30 Hz and 20 kHz on a logarithmic scale. Now the
frequency resolution is spread evenly on a logarithmic
scale, but modeling at low frequencies is still not very
accurate. Figure 5 (c) shows a 32nd-order parallel filter
design using the multi-band pole positioning method of
[12], where the poles of the parallel filter are obtained
by designing separate warped filters for the low- and
high-frequency range with different warping parameters
(λLF = 0.986 andλHF = 0.65). It can be seen that a
very good fit is achieved.

Finally, Figure 5 (d) shows the response of the 32nd-
order filter designed by the custom warping method of
Sec. 3, which slightly outperforms the already excellent
fit of the multi-band parallel filter method (c). Besides
the small increase in accuracy, the benefit of the new
method compared to the multi-band parallel filter method
[12] is its simplicity. Moreover, it can be used with ar-
bitrary warping profiles, while adapting the multi-band
method for non-logarithmic profiles would be quite com-
plicated.

To show the robustness of the design, a 1000th order fil-
ter is designed to the original (unsmoothed) loudspeaker–
room response. The filter specification is displayed in
Fig. 6 (a), while the modeled response is shown in in
Fig. 6 (b). Since the filter is directly designed in a par-
allel second-order form, it can be implemented without
numerical problems, despite its high order.

4.2. Loudspeaker–room response equalization

Next, the custom warping method is applied to
loudspeaker–room response equalization. The equalizer
is designed using a 12th octave complex-smoothed ver-
sion of the measured loudspeaker–room response. The
desired response is a second-order highpass filter with
a cutoff frequency of 50 Hz. The equalizer is designed
so that both the loudspeaker–room responseHr(ϑ) and
the desired responseHd(ϑ) are mapped by the frequency
mapping functionν(ϑ). Next, an IIR filterH̃(ϑ̃) is iden-
tified between the warped responsesH̃r(ϑ̃) andH̃d(ϑ̃)
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Fig. 5: Minimum-phase loudspeaker–room response
modeling with various techniques. The thin lines show
the minimum-phase target, and the filter order is 32 in all
cases. The thick lines show the filter responses for (a) the
warped IIR filter designed withλ = 0.9, (b) the parallel
filter with logarithmic pole positioning, (c) the parallel
filter with multi-band pole positioning, and (d) the filter
designed by the proposed custom warping method. The
dB values indicate the mean absolute errors [4].

by the frequency-domain Steiglitz-McBride method [16]
so that the equalized responseH̃(ϑ̃)H̃r(ϑ̃) best matches
the desired responsẽHd(ϑ̃). Then the poles and zeros
are dewarped, and the zeros are corrected, as described
in Sec. 3.

Figure 7 shows the smoothed loudspeaker–room re-
sponse (a), and its equalized versions (b)–(e) using filters
of increasing order (32, 64, 96 and 128, respectively).
Note that for practical room equalization applications,
the lower-order responses (b) and (c) would be sufficient,
and (e) and (f) are displayed only to show the capabilities
of the method.

5. CONCLUSION AND FUTURE RESEARCH

This paper has presented a new warped IIR filter design
method where the warping profile can be arbitrary, as
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Fig. 6: High-order loudspeaker–room response model-
ing example: (a) the measured frequency response and
(b) the frequency response of the 1000th order IIR filter
designed by the proposed custom warping method.

opposed to traditional warped filters. The method starts
with mapping the frequency specification by the custom
warping profile and designing an IIR filter based on this
warped specification by any of the traditional IIR filter
design techniques. Then, the poles and zeros of the filter
are found and dewarped to the original frequency scale.
Due to approximations during conversion, the resulting
filter shows a spectral tilt, which is overcome by the opti-
mization of the zeros. The filter is implemented as a par-
allel set of second-order filters, thus, the design method
can also be considered as a new pole-positioning strategy
for fixed-pole parallel filters [8]. The new method has
been compared to various earlier filter design techniques.
Compared to traditional warped IIR filters [2] and paral-
lel filters with a logarithmic pole set [8], a significantly
better fit is achieved. The new method provides a similar
(actually, slightly better) performance compared to the
recent multi-band method developed for parallel filters
[12], while it can be easily adapted for any desired (e.g.
non-logarithmic) warping profiles, resulting in a com-
pletely flexible allocation of frequency resolution. The
method has been demonstrated by loudspeaker–room re-
sponse modeling and equalization examples.

Future research may include the implementation of the
post-optimization of the poles and zeros mentioned in
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Fig. 7: Minimum-phase loudspeaker–room response
equalization by the custom warping method with in-
creasing filter order: (a) non-equalized transfer function,
equalized by (b) a 32nd order filter, (c) a 64th order fil-
ter, (d) a 96th order filter, and (e) a 128th order filter. The
thin lines display the desired response.

Sec. 3.3 and comparison to the simpler solution used in
this paper, which optimizes only the zeros instead. For
pole-zero dewarping another possible method is to find
the frequencies and zeros, compute the equivallentλ val-
ues as in Fig. 2 and use theseλ values in Eq. (3) so that
every pole and zero is dewarped by a differentλ value.
This variant should be compared to the method proposed
in Sec. 3.2. Finally, the technique could be applied to
other fields where the flexible allocation of frequency
resolution is desirable.
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