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ABSTRACT

In real-world applications high-order IIR filters are often converted to series or parallel second-order sections
to decrease the negative effects of coefficient truncation and roundoff noise. While series biquads are more
common, the parallel structure is gaining more interest due to the possibility of full code parallelization.
In addition, it is relatively simple to design a filter directly in a parallel form, which can be efficiently
utilized for logarithmic frequency resolution filtering often required in audio. If the numerator order of the
original transfer function is higher than that of the denominator, a parallel FIR part arises in addition to the
second-order IIR sections. Unfortunately, in this case the gain of the sections and that of the FIR filter can
be significantly higher than that of the final transfer function, which requires the downscaling of the filter
coefficients to avoid overload. This leads to a significant loss of useful bitdeph. This paper analyzes problem
and suggests delaying the IIR part so that there is no overlap between the responses of the FIR part and
the second-order sections.

1. INTRODUCTION

High-order IIR filters are used in many fields of audio,

including the modeling and equalization of loudspeaker

and room responses, HRTF modeling, sound synthesis,

etc. However, in real-world applications where double-

precision floating point arithmetic is usually not avail-

able, direct form high-order IIR filters lead to a poor nu-

merical performance and often become unstable due to

coefficient rounding effects. Therefore, they are usually

converted to series or parallel second-order sections to

decrease the negative effects of coefficient rounding and

roundoff noise [1, 2, 3, 4]. While series biquads are more

common, the parallel structure is gaining more and more
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interest due to the possibility of full code parallelization.

The parallel form is usually computed by the help of par-

tial fraction expansion [1, 2], but it is also possible to use

an iterative procedure for conversion [5]. In either case,

if the numerator order of the original transfer function is

higher than that of the denominator, a parallel FIR part

arises besides the second-order IIR sections.

In addition, parallel second-order filters can be designed

directly in a closed form if the pole positions are prede-

termined [6]. This kind of design methodology is con-

nected to warped [7] and Kautz [8] filters where the goal

is to obtain a filter with a logarithmic frequency res-

olution, better suited to the properties of hearing than

traditional, linear frequency resolution filters. It was

shown in [9] that the frequency resolution of the fixed-

pole parallel filter is directly controlled by the pole po-

sitions. For example, fixing the poles according to a

logarithmic frequency scale results in a logarithmic fre-

quency resolution. In the context of fixed-pole paral-

lel filters, a parallel FIR part is used when the target is

largely non-minimumphase, such as modeling the radi-

ation transfer function of musical instruments [6], or in

non-minimumphase loudspeaker equalization.

However, either converted from a high-order direct-form

IIR filter or designed by the fixed-pole method, a dy-

namic range problem can arise with parallel filters if

there is an FIR part present. In this case the gain of the

second-order sections and that of the FIR filter can be

significantly higher than that of the final transfer func-

tion, which requires the downscaling of the filter coeffi-

cients to avoid overload. This leads to a significant loss

of useful bitdeph.

The rest of the paper is organized as follows: Sec. 2 de-

scribes the usual procedure for obtaining second-order

parallel filters from high-order direct-form filters, Sec. 3

summarizes the fixed-pole design of parallel filters, and

Sec. 4 analyzes the dynamic range problem when there is

an FIR part. Section 5 proposes using a delayed parallel

form and discusses parameter estimation for that struc-

ture, and finally Sec. 6 compares the performance of the

straightforward and the proposed delayed parallel filters.

2. PARALLEL FILTERS BY PARTIAL FRAC-

TION EXPANSION

The usual way of converting direct form IIR filters to par-

allel sections is by the use of partial fraction expansion

[1, 2, 4].

Suppose we start with the direct-form transfer function

H(z)
∆
=

B(z)

A(z)
=

N
∑

i=1

ri
1− piz−1

(1)

where

B(z) = b0 + b1z
−1 + b2z

−2 + · · ·+ bMz−M

A(z) = 1 + a1z
−1 + a2z

−2 + · · ·+ aNz−N ,

and suppose initially that M < N . The denominator

coefficients pi are the poles of the transfer function, and

each numerator ri is called the residue of pole pi. Equa-

tion (1) is general only if the poles pi are distinct. (Re-

peated poles are addressed in [4].) The poles and their

residues may be complex. The poles pi may be found by

factoring the polynomialA(z) into first-order terms. The

residue ri corresponding to pole pi is given by

ri = (1− piz
−1)H(z)

∣

∣

z=pi

(2)

when the poles pi are distinct. The function residuez

in Octave or the Matlab Signal Processing Toolbox will

find poles and residues computationally, given the direct-

form coefficients {bi, ai}.

2.1. FIR Part

When M ≥ N in Eq. (1), we may perform a step of long

division of B(z)/A(z) to produce an FIR part in parallel

with a strictly proper IIR part:

H(z)
∆
=

B(z)

A(z)
= F (z) +

N
∑

i=1

ri
1− piz−1

(3)

where

B(z) = b0 + b1z
−1 + b2z

−2 + · · ·+ bMz−M

A(z) = 1 + a1z
−1 + a2z

−2 + · · ·+ aNz−N

F (z) = f0 + f1z
−1 + f2z

−2 + · · ·+ fKz−K ,

where K = M − N . When M < N , we define

F (z) = 0. This type of decomposition is computed by

the residuez function.

In summary, an arbitrary digital filter transfer function

H(z) with N distinct poles can always be expressed as

a parallel combination of complex one-pole filters, to-

gether with a parallel FIR part when M ≥ N .
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2.2. Second-order sections with real coeffi-

cients

Instead of implementing complex first-order sections it

is more practical to combine the complex-conjugate pole

pairs to second-order sections, so the transfer function

becomes

H(z) =

L
∑

l=1

b0,l + b1,lz
−1

1 + a1,lz−1 + a2,lz−2
+

K
∑

k=0

fkz
−k, (4)

where L is the number of sections. For complex pole

pairs pi = pl and pi+1 = pl the second-order coefficients

are obtained as follows:

b0,l = 2Re{rl} (5)

b1,l = −2Re{rlpl} (6)

a1,l = −2Re{pl} (7)

a2,l = |pl|
2 (8)

Sections having real poles in Eq. (1) can be directly im-

plemented as first-order IIR filters, but it is customary

to combine them in pairs for a coherent filter structure

containing only second-order sections plus at most one

first-order section.

3. PARALLEL FILTERS BY FIXED-POLE DE-
SIGN

In fixed-pole design of parallel filters, the filter coeffi-

cients are estimated directly in the parallel form as in

Eq. (4) for a predefined set of poles. The advantage of

fixed-pole design is that by the choice of pole frequencies

we gain complete control over the frequency resolution

of the filter. For example, placing the poles according to

a logarithmic frequency grid results in a filter with a loga-

rithmic frequency resolution, similar to fractional octave

smoothing, a procedure often used in audio for display-

ing, modeling, and equalizing acoustic transfer functions

[10, 9]. The discussion of various pole positioning meth-

ods for the parallel filter is out of scope of this paper, and

a thorough comparison can be found in [11].

Once the denominator coefficients are determined by the

poles (al,1 = −2Re{pl} and al,2 = |pl|
2), the problem

becomes linear in its free parameters bl,0, bl,1 and fk in

Eq. (4). The filter can be designed either based on a tar-

get impulse response [12] or a target frequency response

[13]. Here the former will be outlined.

The impulse response of the parallel filter is given by

h(n) =

L
∑

l=1

bl,0ul(n) + bl,1ul(n− 1) +

K
∑

k=0

fkδ(n− k)

(9)

where ul(n) is the impulse response of the transfer func-

tion 1/(1 + al,1z
−1 + al,2z

−2), which is an exponen-

tially decaying sinusoidal function or pair of exponential

decays, and δ(n) is the discrete-time unit impulse.

Naturally, Eq. (9) is linear in the parameters, similar to

its z-transform counterpart Eq. (4). Writing Eq. (9) in

matrix form yields

h = Mp (10)

where p = [b1,0, b1,1, . . . bL,0, bL,1, f0 . . . fK ]T is a

column vector composed of the free parameters. The

columns of the modeling signal matrix M contain the

modeling signals, which are ul(n) and their delayed

counterparts ul(n − 1), and for the FIR part, the unit

impulse δ(n) and its delayed versions up to δ(n − K).
Finally, h = [h(0) . . . h(N)]T is a column vector com-

posed of the resulting impulse response.

The problem reduces to finding the optimal parameters

popt such that h = Mpopt is closest to the target re-

sponse ht. If the mean squared error is minimized, the

optimum is found by the well known LS solution

popt = (MHM)−1MHht (11)

where MH is the conjugate transpose of M.

4. THE HIGH GAIN PROBLEM

Either converted from a high-order direct-form IIR filter

or designed by the fixed-pole method, a dynamic range

problem can arise with parallel filters if there is an FIR

part present. This is illustrated in Fig. 1, showing a loud-

speaker response modeling example. First, an IIR filter

is designed with M = 50 and N = 20 by the Steiglitz-

McBride method [14] (stmcb function in the Matlab

Signal Processing Toolbox), then the filter is converted

to parallel form Eq. (4) by partial fraction expansion as

described in Sec. 2. The specification (thin solid line)

is followed by the filter response (thick line) quite ac-

curately. However, when plotting the responses of the

individual second-order IIR sections (dotted lines) and

the 30th order FIR filter (dashed line) separately, it can
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Fig. 1: Parallel filter obtained by partial fraction expan-

sion for modeling a loudspeaker response. Thin line:

target frequency response, thick line: filter response,

dashed line: frequency response of the FIR part, dotted

lines: the individual responses of the second-order sec-

tions.

be seen that the gain of the sections can easily exceed the

gain of the total transfer function by 60 dB, and thus the

total transfer function is formed by cancellations of the

different parts. Intuitively, the cancellation can be un-

derstood by considering that the FIR part will match the

early impulse-response (IR) exactly, while the IIR part is

only needed to approximate the later IR, beyond the FIR

duration. Therefore, any decay of the IIR part during the

FIR part must be canceled by the FIR part. This is illus-

trated in the time-domain by Fig. 2 for the same filter as

in Fig. 1. It can be seen in Fig. 2 (a) that the IIR part

(dashed line) is much larger than the final impulse re-

sponse (solid line), and that the FIR part (c) is basically

the inverse of the IIR part (b).

The worst combination is a long FIR part followed by

a highly damped IIR “tail”; in such a case, a very large

initial IIR part must be canceled by the FIR part. This

will be the case for the piano soundboard modeling ex-

ample in Sec. 6. In the opposite direction, as the poles

of IIR part approach magnitude 1, or as the FIR part is

made shorter, there is less decay across the FIR duration,

alleviating the dynamic range problem.

This FIR-IIR cancellation leads to two distinct problems
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Fig. 2: Time-domain responses of the parallel filter used

in Fig. 1: (a) filter impulse response (solid line) and the

summed impulse response of the second-order sections

(dashed line, clipping), (b) the response of the second-

order sections in a different scale, and (c) the response of

the 30th order FIR part.

in practical applications: first, the filter coefficients (or

the input signal, or both) need to be downscaled so that

no overload occurs in the separate transfer functions, and

second, the total transfer function will be more sensitive

to the coefficient quantization errors since it arises as the

difference of large, close-to-each-other values. Note that

while the downscaling is not necessary in floating point

arithmetic, the loss of useful bitdepth still occurs. In this

particular case, the 60 dB difference leads to losing as

many as 10 bits.

The reason for this behavior is more easily understood

when examined from the fixed-pole design point of view.

In the fixed-pole design of parallel filters a linear least

squares (LS) fit is performed where the basis functions

are delayed impulses for the FIR part and exponentially

decaying sinusoids (and their one-sample delayed ver-

sions) for the second-order IIR sections (see Sec. 3). The

weights are set so that the filter impulse response best ap-

proximates the target impulse response. Since a Kth or-

der FIR part gives complete freedom for setting the first

K + 1 samples of the filter response, the LS design will

set the FIR coefficients in such a way that the first K +1
samples (n = [0..K]) are matched perfectly. This means

that the numerators of the second-order sections will de-
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pend only on the samples after the FIR part (n > K+1).

However, if the FIR part is sufficiently long, the decaying

sinusoids have already a low level at this sample point,

which can be counteracted by the LS design only by in-

creasing the initial amplitudes of the sinusoids, and thus

the numerator coefficients of the second-order filters. In

return, this will mean a large signal at the beginning of

the response, overlapping the FIR part. Indeed, besides

setting the initial sample values, the main role of the FIR

coefficients is to cancel the response of the IIR part in the

first K + 1 samples, which will mean that the FIR coef-

ficients will also be much larger than the target impulse

response.

This least squares procedure can also be used for con-

verting a high-order direct-form IIR filter to a parallel

second-order form once the poles of the direct-form IIR

filter are computed, and since the solution is unique and

has no approximation error, it will be the same as ob-

tained by partial fraction expansion (if we neglect nu-

merical errors). Therefore, the above reasoning is also

valid when the parallel filter is obtained by partial frac-

tion expansion.

5. THE DELAYED PARALLEL FILTER

Once understood, this problem can be solved in a simple

way: the parallel IIR part must be delayed so that there

is no overlap between the FIR and IIR parts:

H(z) = z−(K+1)
L
∑

l=1

b̃l,0 + b̃l,1z
−1

1 + al,1z−1 + al,2z−2
+

+

K
∑

k=0

f̃kz
−k, (12)

The first K +1 samples of the impulse response are now

determined solely by the the Kth order FIR part, and the

rest of the impulse response by the IIR part.

Note that this delayed form does not require additional

memory since the last element of the delay line used

for the FIR part can be used as an input for the parallel

second-order IIR part. More precisely, one extra delay

element is needed, since the largest term in the FIR part

is z−K and we need z−(K+1).

In the following we discuss how the parameters of the

delayed parallel filter can be obtained.

5.1. Obtaining filter coefficients from the non-

delayed parallel filter

The parameters of the delayed filter structure can be ob-

tained from the original parallel structure of Eq. (4) with

a Kth order FIR part as follows: the first K + 1 sam-

ples of the filter impulse response h(k) are computed,

and these samples are directly used as the new FIR coef-

ficients:

f̃k = h(k) for k = [0, 1, . . .K + 1] (13)

For the parallel IIR sections, the denominators remain

the same and the numerators are set in such a way that

the decaying exponentials have the same amplitude and

phase at sample n = 0 as at sample n = K + 1 with

the original sections. First the second-order sections are

converted to a pair of complex first-order IIR filters as in

Eq. (1). Then the modified residues are obtained as

r̃i = rip
K+1, (14)

and finally the first-order filters are again combined to

form second-order sections having real coefficients.

5.2. Alternative way to convert from direct-
form IIR filters

The delayed parallel filter can also be computed directly

by modified partial fraction expansion. The alternate FIR

part is obtained by performing long division on the re-

versed polynomial coefficients to get

H(z) = F (z) + z−(K+1)
N
∑

i=1

ri
1− piz−1

,

where K = M − N ≥ 0 is again the order of the FIR

part [4].

We may compare these two PFE alternatives as follows:

Let AN denote A(z), FK
∆

= F (z), and BM
∆

= B(z).
(I.e., we use a subscript to indicate polynomial order, and

‘(z)’ is omitted for notational simplicity.) Then for K =
M −N ≥ 0 we have two cases:

(1) H(z) = FK +
B′

N−1

AN

=
FKAN + B′

N−1

AN

(2) H(z) = FK + z−(K+1)B
′′

N−1

AN

=
FKAN + z−(K+1)B′′

N−1

AN
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In the first form, the B′

N−1 coefficients are “left justi-

fied” in the reconstructed numerator, while in the second

form they are “right justified”. In addition to avoiding

the high-gain problem of the first form, the second form

is generally more efficient for modeling purposes, since

the numerator of the IIR part (B′′

N−1(z)) can be used to

match additional terms in the impulse response after the

FIR part FK(z) has “died out”.

Method

Figure 3 gives a listing of the matlab function

residued (distributed with Octave) for computing a

“right justified” partial fraction expansion (PFE) of an

IIR digital filter H(z) = B(z)/A(z) as described in

Sec. 2.

function

[r, p, f, e] = residued(b, a, toler)

if nargin<3, toler=0.001; end

NUM = b(:)’;

DEN = a(:)’;

nb = length(NUM);

na = length(DEN);

f = [];

if na<=nb

f = filter(NUM,DEN,[1,zeros(nb-na)]);

NUM = NUM - conv(DEN,f);

NUM = NUM(nb-na+2:end);

end

[r,p,f2,e] = residuez(NUM,DEN,toler);

Fig. 3: Matlab/Octave function for computing a par-

tial fraction expansion in which the parallel sections

follow the FIR part.

As can be seen in Figure 3, the FIR part is first ex-

tracted, and the (strictly proper) remainder is passed to

residuez for expansion of the IIR part (into a sum of

complex resonators).

Alternatively, a delayed partial fraction form can also

be obtained by computing the partial fraction expansion

with residue in Matlab/Octave, which is intended for

analog (s domain) transfer functions. We note however

that when there is no FIR part (M < N ) this produces

wrong ri residues and for that residuez has to be

used. An advantage of residued in Figure 3 is that for

M ≥ N it gives the parameters for the delayed parallel

filter, but it is also correct for the strictly proper (FIR-

less) case (M < N ).

5.3. Modified fixed-pole design of parallel fil-

ters

When using fixed-pole parallel filters it is also possible to

design the filter in the delayed form of Eq. (12) directly.

In this case, we choose the FIR coefficients f̃k as the first

K + 1 samples of the target impulse response ht(k):

f̃k = ht(k) for k = [0, 1, . . .K + 1], (15)

where K is the order of the FIR part.

Then, the remaining part of the target will be used as a

specification

h̃t(n) = ht(n+K + 1) (16)

for designing a strictly proper (M < N ) parallel fil-

ter. Thus, the modeling matrix M̃ contains only the re-

sponses corresponding to the second-order sections, but

no unit pulses.

Besides avoiding the conversion, this has an added bene-

fit of decreasing the computational complexity of the de-

sign, since now that the normal equations estimate K+1
fewer parameters. In addition, the design problem be-

comes numerically better conditioned, since in the orig-

inal design of Sec. 3 the same samples were determined

by the FIR and the IIR parts, which is now avoided.

Note that when the delayed parallel filter is designed

based on a frequency response specification, we cannot

take advantage of the fact that the FIR coefficients are

the same as the early part of the impulse response. In

this case all free parameters (FIR and numerator coeffi-

cients) have to be computed by the LS solution, similarly

as done in [13]. The only difference is that the frequency

responses of the second-order sections in the frequency-

domain modeling matrix M used in [13] are multiplied

by z−(K+1) = e−jϑ(K+1) in accordance with Eq. (12).

6. COMPARISON

6.1. Partial fraction example

When the same filter as in Fig. 1 is converted to a parallel

filter with a delayed IIR part by the alternative form of

partial fraction expansion as in Sec. 5.2, the high gain

problem is avoided. This is displayed in Fig. 4. It can be

seen that none of the individual transfer functions exceed

the total filter response.
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Fig. 4: Delayed parallel filter obtained by the alterna-

tive partial fraction expansion of Sec. 5.2 from the same

direct-form filter as in Fig. 1. Thin line: target frequency

response, thick line: filter response, dashed line: fre-

quency response of the FIR part, dotted lines: the re-

sponses of the second-order sections.
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Fig. 5: Time-domain responses of the parallel filter used

in Fig. 4: (a) filter impulse response (solid line), (b) the

response of the second-order sections, and (c) the re-

sponse of the 30th order FIR part.

The same responses are displayed in the time-domain in

Fig. 5, showing how the delayed IIR (b) and FIR (c) parts
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Fig. 6: Fixed-pole parallel filter design based on a pi-

ano soundboard response. Thin line: target frequency re-

sponse, thick line: filter response, dashed line: frequency

response of the FIR part, dotted lines: the individual re-

sponses of the second-order sections.

are combined to form the total impulse response (a).

6.2. Fixed-pole design example

Here a fixed-pole parallel filter is designed to model a pi-

ano soundboard response with 50 second-order sections.

The target impulse response is highly nonminimum-

phase, as can be seen in Fig. 7 (a), thin line (notice that

the peak of the response is at around n = 200 and not

at n = 0 as for minimum-phase systems). Since the

second-order sections cannot efficiently model the rising

part of the response, a 200th order FIR parallel part is

added, as suggested in [6]. As can be seen in the Fig. 6

thick line and Fig. 7 (a) thick line, the filter follows the

specification quite well. However, due to the overlap of

the FIR and IIR parts, now 120 dB difference arises be-

tween the responses of some second-order sections and

the final transfer function. This leads to losing 20 bits

precision, which makes the implementation of this filter

in single precision floating point arithmetic problematic.1

The dynamic range problem can be avoided if a parallel

filter with a delayed IIR part is used. In the next example,

1Note that if instead of the fixed-pole design we estimated a high-

order IIR filter to the same piano soundboard response and computed

the parallel form via partial fraction expansion, a similarly severe dy-

namic range problem would arise.
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Fig. 7: Time-domain responses of the parallel filter used

in Fig. 6: (a) target impulse response (thin line) and fil-

ter impulse response (thick line), (b) the response of the

second-order sections in a different scale, and (c) the re-

sponse of the 200th order FIR part.

the filter is designed by the modified method of Sec. 5.3.

It can be seen in Fig. 8 that now the gains of the individ-

ual sections (dotted lines) and the FIR part (dashed line)

are in the same range as that of the total transfer function.

The same responses are displayed in the time-domain in

Fig. 9, showing how the delayed IIR (b) and FIR (c) parts

are combined to form the total impulse response (a).

7. CONCLUSION

Parallel second-order filters are often used instead of

high-order direct form IIR filters because of their im-

proved numerical properties. When the numerator of

the original transfer function has equal or higher order

than that of the denominator, an FIR part arises in par-

allel with the IIR sections. Unfortunately, if the parallel

form is obtained via the usual partial fraction expansion,

the gains of the individual sections can significantly ex-

ceed the gain of the total transfer function, leading to

the reduction of useful dynamic range. This paper has

proposed the use of a modified parallel filter structure

in which the IIR sections are delayed so that there is no

overlap with the FIR part. The parameters of the delayed

parallel filter are either obtained by a simple conversion

from the original parallel filter, or from the direct-form

IIR filter by an alternate partial fraction expansion, which

applies long division on the reversed polynomial when
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Fig. 8: Fixed-pole parallel filter with a delayed IIR part

obtained by the modified design of Sec. 5.3 from the

same target as in Fig. 6. Thin line: target frequency re-

sponse, thick line: filter response, dashed line: frequency

response of the FIR part, dotted lines: the responses of

the second-order sections.
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Fig. 9: Time-domain responses of the parallel filter used

in Fig. 8: (a) target impulse response (thin line) and fil-

ter response (thick line), (b) the response of the second-

order sections, and (c) the response of the 200th order

FIR part.

extracting the FIR part. In addition, a modified fixed-
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pole design procedure has been presented that results in

a delayed parallel filter. Besides the numerical benefits,

this modified design algorithm also reduces design com-

plexity.

Matlab code for computing a delayed paral-

lel filter from direct-form IIR filters and for

the modified fixed-pole design can be found at

http://www.mit.bme.hu/∼bank/delparf
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U. K. Laine, and J. Huopaniemi, “Frequency-

warped signal processing for audio applications,”

J. Audio Eng. Soc., vol. 48, no. 11, pp. 1011–1031,

Nov. 2000.

[8] M. Karjalainen and T. Paatero, “Equalization of

loudspeaker and room responses using Kautz fil-

ters: Direct least squares design,” EURASIP J. on

Advances in Sign. Proc., Spec. Iss. on Spatial Sound

and Virtual Acoustics, vol. 2007, p. 13, 2007, arti-

cle ID 60949, doi:10.1155/2007/60949.

[9] B. Bank, “Audio equalization with fixed-pole par-

allel filters: An efficient alternative to complex

smoothing,” J. Audio Eng. Soc., vol. 61, no. 1/2,

pp. 39–49, Jan. 2013.

[10] P. D. Hatziantoniou and J. N. Mourjopoulos, “Gen-

eralized fractional-octave smoothing for audio and

acoustic responses,” J. Audio Eng. Soc., vol. 48,

no. 4, pp. 259–280, Apr. 2000.

[11] B. Bank, “Loudspeaker and room equalization us-

ing parallel filters: Comparison of pole positioning

strategies,” in Proc. 51st AES Conf. on Loudspeak-

ers and Headphones, Helsinki, Finland, Aug. 2013.

[12] ——, “Perceptually motivated audio equal-

ization using fixed-pole parallel second-

order filters,” IEEE Signal Process.

Lett., vol. 15, pp. 477–480, 2008, URL:

http://www.acoustics.hut.fi/go/

spl08-parfilt.

[13] ——, “Logarithmic frequency scale parallel filter

design with complex and magnitude-only specifi-

cations,” IEEE Signal Process. Lett., vol. 18, no. 2,

pp. 138–141, Feb. 2011.

[14] K. Steiglitz and L. E. McBride, “A technique for the

indentification of linear systems,” IEEE Trans. Au-

tom. Control, vol. AC-10, pp. 461–464, Oct. 1965.

AES 136th Convention, Berlin, Germany, 2014 April 26–29

Page 9 of 9


