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ABSTRACT

In the field of audio signal processing, logarithmic frequency resolution IIR filters, such as fixed-pole parallel filters
and Kautz filters, are often used. These proven structures can efficiently approximate the frequency resolution
of hearing, which is a highly desired property in audio applications. In recursive adaptive filtering however, the
FIR structure with LMS algorithm is the most common. Since the linear frequency resolution of FIR filters is not
well-suited for audio applications, in this paper we explore the possibility of combining the logarithmic frequency
resolution IIR filters with the LMS algorithm. To this end the LMS algorithm is applied to fixed-pole parallel and

Kautz filters, and the resulting structures are compared in terms of convergence properties.

1 Introduction

In adaptive filtering, the least mean squares (LMS) al-
gorithm is a popular choice because of its simplicity
and global convergence. It is most commonly used with
finite impulse response (FIR) filters because of their
ease of implementation. However, it is possible to use
the LMS algorithm with infinite impulse response (IIR)
filters too, if the poles of the filter are fixed at prede-
termined values [1]. Additionally, IIR filters typically
require fewer parameters to model a given response, as
opposed to FIR filters.

In audio filtering, logarithmic frequency resolution
is highly desired when modeling a transfer function.
To achieve this, specialized filter design methodolo-
gies have been developed, including warped filters [2],
second-order fixed-pole parallel filters [3], and Kautz
filters [4]. The fixed-pole parallel and Kautz filters

can also have a FIR section, which makes them well-
suited for modeling non-minimumphase impulse re-
sponses [5].

The usual application for adaptive audio filters is to
compensate a given response (equalization) or to re-
duce the additive noise present (noise canceling) [6-8].
These applications all contain an adaptive filter that
identifies a given signal path. Thus, as a first step in
comparing logarithmic frequency resolution IIR filters
in adaptive context this paper explores the identifica-
tion properties of different IIR filter structures using the
LMS algorithm. For simplicity, we assume single-input
and single-output (SISO) systems in our investigations.

Accordingly, the LMS algorithm is applied to fixed-
pole parallel and Kautz filters including their delayed
variants, and the resulting adaptive IIR filters are com-
pared to each other and to the common FIR-LMS fil-
ters. In the examples both minimumphase and non-
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minimumphase systems are identified, to show the dif-
ference between the IIR filters with and without addi-
tional FIR sections.

2 The LMS Algorithm

The LMS algorithm is a well-known adaptive filter
design method, that has made its way into several text-
books [6,9,10]. In this section we give a short summary
both about its basic and normalized variant.

The block scheme of the LMS filter can be found in
Fig. 1. The system to be identified is marked by H(z),
the common input is denoted by u(k). The outputs of
the modeled system and the adaptive filter are marked
by y(k) and $(k) respectively. For FIR filters, the block
denoted by V is a delay line, and for IIR filters, it im-
plements the poles of the filter. Its tap outputs, denoted
by x(k), are used as the base functions in the resulting
adaptive linear combiner structure.

The LMS algorithm is a stochastic grade descent
method where the coefficients are adapted based on
the current error in time [9]. It uses the estimate of
the mean square error (MSE) gradient vector from the
available data, to make successive corrections to the fil-
ter coefficients in the direction opposite to the gradient
vector. This iterative procedure eventually converges
to minimum mean square error.

To understand the LMS algorithm, the Wiener filter
needs to be addressed first. The output of the Wiener
filter is a linear combination of the base functions in
the following form:

P-1
§(k) =Y wa-xa(k) =w" -x(k), (1
n=0
u(k) H(Z) y()
xi(k) Wi
x2(K) w2
. ” 9(6) 5
M 0) wy

e(k)

Fig. 1: LMS-based adaptive filter used for identifica-
tion.

where w denotes the filter coefficients (weights) in vec-
tor form, and x(k) consists of the base functions at
sample k.

The objective function is chosen as the expected value
of the squared error:

E{e*(k)} = E{(y(k) —w" -x(k))*}
E{y? ()} —2w E{y(k)x(k)}
+ w E{x(k)x (k)}w. (2)

V =

The minimum of the objective function can be found
where the derivative, which equals to the gradient vec-
tor (g), becomes zero:

WV g = 2ELRx) + 2E (0 ()
= 2p+2Rw=0. (3)

After rearranging, the optimal coefficients of the
Wiener filter can be calculated as:

wo=R""-p, @)
where R = E{x(k) -x" (k)}, and p = E{y(k) - x(k)}.

The optimum can also be calculated recursively, which
leads to the steepest-descent method. This is especially
useful when H(z) is time-varying. The gradient vector
always points to the opposite direction of the minimum,
therefore by making successive corrections to the coef-
ficient vector, the optimal weights can be found:

wk+1) = w(k)—pugw(k)
= w(k)+2u(p—Rw(k)), ()

where gy (k) denotes the gradient vector at w(k), and
U is the step size parameter.

Note that in Eq. (5), R and p are expected values of a
matrix and a vector, therefore their computation is not
possible without knowing the stochastic properties of
the input. However, they can be estimated using the
following unbiased estimators at sample k:

L—1

R(k) = %Zx(k—n)~x—r(k—n), (6)
n=0
1L—1

ingoy(kfn%x(kfn), )

=

~~
>

=
I

where L denotes the number of samples used for cal-
culating the estimator. By choosing L = 1, the LMS
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algorithm uses instantaneous unbiased estimates for R
and p:

R(k) = x(k)-x"(k), (8)
pk) = y(k)-x(k). )

By substituting these estimates to Eq. (5), the coeffi-
cient adaptation formula becomes

w(k+1) =w(k)+2ue(k)x(k). (10)

It is important to note that the initial value of filter
coefficients (w(0)) is arbitrary.

The tap output vector x(k) is unique for every filter
structure. For FIR filters, it consists of the elements of
a delay line; for other structures it can be deduced from
the fact that the filter output is formulated as a linear
combination of the tap outputs: $(k) =w' -x(k).

It was proven that the eigenvalues of matrix R have an
impact on the stability and convergence of the LMS
algorithm [10]. To ensure stability, bounds can be
prescribed for the step-size parameter:

o<u<

11
lmax b) ( )
where A4 denotes the largest eigenvalue of R. By
satisfying the above condition, the adaptive filter be-
comes stable regardless of how the base functions are
generated.

The convergence properties (e.g. convergence time,
residual error) are also connected with the eigenvalues
of R. Maximum convergence speed can be achieved by
choosing the step size as:

1

H lma)c + lmin ’ (12)
where A,,,qx and A,,,;;, are the largest and the smallest ei-
genvalues of R, respectively. Generally, larger step size
leads to faster convergence to optimal filter weights.
Therefore if A,y is close to A,i,, the maximum con-
vergence speed can be achieved. In filters where the
tap outputs are independent and have the same out-
put power, R is a diagonal matrix having the lowest
possible eigenvalue-spread, for a given input.

The main drawback of the plain LMS algorithm is
that the effective parameter step size scales with the
input, which can cause instability in the adaption. As a
remedy, the Normalized-LMS (NLMS) method is used,

Table 1: Number of arithmetic operations (multiplic-
ations, additions and divisions) required for
the LMS algorithm when the number of tap
outputs of the filter is P.

Multiplication ~ Addition  Divisions
LMS P+1 P 0
Normalized-LMS 2P+1 2P+1 1

which normalizes the step size using the power of the
input [9]:

e(k)x(k)

aix oxm) Y

wk+1)=w(k)+pu

where « is a small positive number used to avoid the
denominator to become zero. By normalizing the step
size, the stability condition for NLMS becomes

Oo<u<?2. (14)

The choice of the adaptive algorithm has an effect on
the computational demand. Tab. 1 contains the num-
ber of arithmetic operations required for implementing
the two variants of the LMS algorithm. Note that the
normalized variant require more than two times the
computational demand compared to the plain LMS al-
gorithm. However, the stability criterion is simpler for
the former, therefore in this paper we use the NLMS
algorithm for implementing adaptive filters.

3 Adaptive IIR Filters

Adaptive IIR filters typically require fewer paramet-
ers compared to adaptive FIR filters, however, early
research showed that adaptively varying both the poles
and zeros can lead to suboptimal performance caused
by multimodal error surfaces [11] or because they need
to satisfy a strict positive real condition to ensure sta-
bility [12].

Alternatively, the poles of the IIR filter can be fixed
at predetermined values, which preserves the linearity
in parameters and leads to well-behaved adaptation
properties [1].

AES 148th Convention, , 2020 June 2 -5
Page 3 of 9



Horvath, Bank

LMS-based adaptive audio filters

4 Fixed-pole parallel and Kautz filters

In audio signal processing, fixed-pole filters are com-
monly used. The Kautz and the fixed-pole parallel
filters are proven to have equivalent transfer functions
when designed off-line [3], as their tap outputs span
the same space. Additionally, the base functions of the
Kautz filter are orthonormal, which results in conver-
gence properties similar to that of FIR filters [1].

The general structure of the parallel second-order filter
can be found in Fig. 2. The second-order sections can
be implemented as either direct-form, or other struc-
tures [13]. Note that the structure of the second-order
sections have direct impact on the parameters, for ex-
ample, implementing a given pole-zero set using Cham-
berlin structure [13] will lead to different coefficients
compared to a direct-form structure. This difference
in coefficients affects the convergence properties if the
second-order section is used in an adaptive filter realiz-
ation.

For testing the parallel filter we first apply a direct-form
structure, depicted in Fig. 3. Because the sections in
parallel filters have real zeros, the term b; is always 0.
In order to normalize the output power of the tap out-
puts, we use the structure in Fig. 4. In this case the
two base functions of the second-order sections are
highly correlated (delayed version of a bandpass filter
output), therefore we expect poor convergence in the
LMS algorithm. As an improvement, we suggest the
use of an orthogonal second-order structure (Fig. 5), as
it is equivalent to a second-order Kautz filter, thus, its
two tap outputs are orthogonal. The parameters a; and
ay are the same as in the direct form. The p and ¢ nor-
malizing terms were chosen so that the tap outputs will

u(k) y(k)
Gi(z)

Ga(2)

G\(2)

FIR(z)

Fig. 2: Fixed-pole parallel filter having N conjugate
complex pole pairs with optional FIR section.

Fig. 3: Direct-form 2 second-order structure.

u(k) So bo y(k)

Fig. 4: Direct-form 2 second-order structure used for
implementing adaptive fixed-pole parallel fil-
ters. The terms s and s; are chosen so that the
tap outputs will have the same output power
when the input is white noise.

have the same output power when the input is white
noise. The fixed-pole parallel filter that uses this new
structure is termed "orthogonal parallel filter".

There are two variants of Kautz filters: the first uses
complex arithmetic, while the second uses real val-
ues [4]. Later in the comparisons we assume that the
real Kautz filter is implemented, and its second-order
sections are realized using the usual direct-form 2 struc-
ture (Fig. 3), as it has the lowest computational de-
mand [13].

Note that the choice of second-order structure, as well
as the choice of the filter has an impact on computa-
tional demand too. According to Table 2, at high filter
orders when implemented using direct-form second-
order sections the fixed-pole parallel filter needs ap-
proximately 47% fewer operations when implemented
using direct-form sections and 35% fewer operations
when realized using orthogonal second-order sections,
compared to the Kautz filter. This may be taken into
consideration when implementing in embedded sys-
tems.
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Fig. 5: Orthogonal second-order structure, with nor-
malizing terms p and q.

Table 2: Number of arithmetic operations (multiplic-
ations and additions) required for the tested
adaptive IIR filters having M-tap FIR sections
and N conjugate-complex pole pairs imple-
mented using direct-form 2 (DF2) or ortho-
gonal second-order sections.

Mult. Add.
Fixed-pole parallel (DF2) 6N +M AN+M—1
Fixed-pole parallel (orth.) 6N +M SN+M—-1
Kautz filter (DF2) 9N+M+2 8N+M+1
Delayed fixed-pole par. (DF2) 6N +M AN+M—1
Delayed fixed-pole par. (orth.) 6N +M SN+M—1
Delayed Kautz (DF2)  9N+M+2 8N+M+1

5 The delayed parallel and Kautz filters

The fixed-pole parallel filter has an optional paral-
lel FIR path that is beneficial for modeling non-
minimumphase systems since it allows efficiently mod-
eling the rising part of impulse responses [14]. How-
ever, it has been shown in [5, 15] that this parallel FIR
part can lead to numerical problems in real world ap-
plications (e.g., lower resolution fixed-point arithmetic),
and a delayed variant has been proposed where the IIR
sections are delayed to avoid overlap with the FIR part,
as shown in Fig. 6.

Since in adaptive filtering we aim to have the base func-
tions as independent as possible, we use this delayed
variant in our investigations. This assures that the cross
correlations between the FIR taps and the IIR parts are
ZEero.

Similarly to the fixed-pole parallel filter, the Kautz filter
can also have a FIR part by forcing some of the poles

v

u(k)

=
=
<

" GN(Z) [

Fig. 6: Delayed parallel second-order filter having N
conjugate complex pole pairs and M FIR taps.

to zero. This idea has been proposed earlier in literat-
ure, as it can help the modeling of non-minimumphase
transfer functions [4, 16].

Analogous to the delayed fixed-pole parallel filter, we
suggest to call the structure in Fig. 7 as "delayed Kautz
filter". The structure can be deduced by placing the
part of the Kautz backbone containing the sections with
poles at the origin to the input of the filter. This way,
the first sections of the Kautz filter are reduced to a FIR
filter, while the other sections can be implemented as
the real Kautz filter. Note that this topology does not
require more operations than an independent FIR and a
Kautz filter implementation.

The most important feature of the delayed Kautz filter
is the orthogonality and unity power of the tap outputs.
This means that when used with the LMS algoritm, the
R matrix of the adaptive filter is a unity matrix, when
the input is white noise.

6 Comparisons

For comparing the different filter structures, we used
the NLMS algorithm as the method for system identi-
fication (Fig. 1). The input was white noise uniformly
distributed in range [—1;+1]. The system to be iden-
tified was implemented using a 10000-tap long FIR
filter, whose coefficients were based on actual impulse
response measurements.

Seven filters were compared: two fixed-pole second-
order parallel filters without FIR section (implemented
using direct-form or orthogonal second-order sections),
a Kautz filter, a delayed second-order parallel filter
(implemented using both second-order structures), a
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Fig. 7: Structure of the delayed Kautz filter. The FIR
part has M taps, followed by the (real) Kautz
implementation, which has N conjugate com-
plex pole pairs.

delayed Kautz filter and as a reference, a FIR filter. All
of the filters had 100 free parameters for adaptation: the
non-delayed IIR filters had 50 fixed conjugate complex
pole pairs, and the delayed filters had 40 fixed con-
jugate complex pole pairs and 20 FIR taps. The pole
frequencies were chosen according to a logarithmic
scale between 20 Hz and 20 kHz, assuming 44.1 kHz
sampling frequency. The quality factors of the poles
were set so that the neighboring sections had their mag-
nitude responses cross at their -3 dB point [17]. Before
the adaptation, all filters were initialized to approxim-
ate a unity gain frequency response via an off-line least
squares design.

Note that for fixed-pole parallel filters, the higher the
number of poles, the sharper the peaks of the second-
order sections, which leads to lower cross-correlation
between the outputs of the individual sections. This
means that the convergence properties of the Kautz
and fixed-pole parallel filters become closer and closer
when the filter order is increased.

-60 } Loudspeaker

LS approximation
---------- LMS parallel orthogonal

-70

10 10° 10*

3! Loudspeaker
_40 . LS approximation
e LMS parallel orthogonal

45
10*

Fig. 8: Magnitude plots of the example transfer func-
tions (grey lines). Top: minimumphase one-
way loudspeaker; bottom: non-minimumphase
two-way loudspeaker. The LS approximations
of the non-delayed filters are plotted using
thin black lines. The magnitude responses of
the fixed-pole parallel filters using orthogonal
second-order sections, after 65536 samples, are
also plotted (dotted lines).

To evaluate the differences in convergence, we calcu-
lated a mean transfer function error (MTFE) on a logar-
ithmic frequency scale. First, we evaluated the transfer
functions of both the system to be identified and the
adaptive filter at a given time point during the adaption
process. Then, the transfer functions were smoothed
and sampled at 100 points per octave between 20 Hz
and 20 kHz, assuming f; = 44.1 kHz sampling rate.
The resulting sampled transfer functions were conver-
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Table 3: Number of arithmetic operations required for
implementing LMS-based filters for the ex-
amples. The total number of adaptive coef-
ficients is 100. The results contain the com-
putational demand of the Normalized-LMS
algorithm too.

Arithmetic operations

LMS FIR 604

LMS Fixed-pole parallel (DF2) 852
LMS Fixed-pole parallel (orth.) 952
LMS Kautz filter (DF2) 1256

LMS Delayed fixed-pole par. (DF2) 802
LMS Delayed fixed-pole par. (orth.) 882
LMS Delayed Kautz (DF2) 1126

ted to magnitude responses and subtracted from each
other, and then the absolute differences were summed.
This metric was calculated at every 256 samples for
all structures. For each of the filters, the u step-size
parameter is tuned in a way that the curves would be
parallel with each other on the first 12800 samples, if
possible. For reference, the MTFE plots also contain
the mean transfer function error of the offline designed
filters, based on the LS method.

In our investigation, we used two example transfer
functions for testing the algorithms: a minimumphase
one-way loudspeaker (Fig. 8 top), and a larger, two-way
loudspeaker with non-minimumphase response (Fig. 8
bottom). In the figures, we marked the results of the
off-line LS designs as well as the magnitude responses
of the adaptive (non-delayed) fixed-pole parallel filters
that are implemented using orthogonal second-order
sections, as examples.

As a first comparison, we used the response of the min-
imumphase one-way loudspeaker (Fig. 8 top) as the
modeled system. The loudspeaker impulse response
was processed using the rceps function in MATLAB,
to get a truly minimumphase impulse response. The
MTEFE plots of the filters identifying this transfer func-
tion can be found in Fig. 9 and 10. It can be seen that
amongst the non-delayed filters the Kautz filter has the
fastest convergence and lowest mean magnitude error,
but the delayed filters perform even better. Their off-
line least-squares approximation also has lower MTFE
compared to the non-delayed IIR filters.

10°4

— — —LSFIR
- LS parallel IIR
LMS FIR
LMS Kautz
LMS parallel direct-form
LMS parallel orthogonal

O+ %0

Mean Transfer Function Error

0 05 | 15 > 25 3 35
Seconds

Fig. 9: Mean transfer function error by time, for a

minimumphase one-way loudspeaker response.

Only the non-delayed filter versions are dis-

played here.

-------- LS parallel IIR
————— LS delayed parallel IIR
% LMS Kautz
V  LMS delayed parallel
O LMS delayed parallel orthogonal
X LMS delayed Kautz

107" %

S
i

Mean Transfer Function Error

0 ()15 i 115 é 2:5 é 315
Seconds

Fig. 10: Mean transfer function error by time, for

a minimumphase one-way loudspeaker re-

sponse. For comparison, the adaption curve of

the Kautz filter is displayed among the delayed

filters.

Next, the response of the non-minimumphase two-way
loudspeaker (Fig. 8 bottom) was identified. As can be
seen in Fig. 11, the FIR filter has the highest remaining
error. This is caused by the longer impulse response
of this loudspeaker compared to that of Fig. 9, which
does not fit in the same FIR filter length. According
to Fig. 12, the delayed filters with FIR sections have
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— — —LSFIR

- -+ LS parallel IIR

LMS FIR

LMS Kautz

LMS parallel direct-form
LMS parallel orthogonal

o+ %0 !

Mean Transfer Function Error
=)

0 05 ! s > 25 3 35
Seconds

Fig. 11: Mean transfer function error by time, for a

non-minimumphase two-way loudspeaker re-

sponse. Only the non-delayed filter versions

are displayed here.

lower MTFE compared to the non-delayed IIR filters.
Amongst them, the delayed Kautz filter has the low-
est remaining MTFE, closely followed by the delayed
fixed-pole parallel filter with orthogonal sections.

Based on the MTFE plots in Figures 9-12, we recom-
mend to use the delayed Kautz filter structure in LMS-
based adaptive systems: it has the lowest remaining
mean transfer function error and the fastest conver-
gence among the examined structures. The computa-
tional demand of the compared structures were calcu-
lated according to Tab. 1 and 2, and displayed in Tab. 3.
It can be seen in Tab. 3 that the delayed filters have
lower computational demand compared to their non-
delayed counterparts, given the filters have the same
amount of free parameters.

7 Conclusion

This paper compared LMS-based adaptive implement-
ations of the most common fixed-pole IIR filters used
in audio, including their delayed versions, and also
presented a new parallel filter structure with orthogonal
second-order sections. Based on the comparison, we
suggest to use the delayed Kautz structure in LMS-
based adaptive audio filters, if its computational de-
mand can be satisfied. As an alternative with lower
number of arithmetic operations we recommend the
delayed fixed-pole parallel filter, with its second-order
sections implemented using the orthogonal structure.

10°

. LS parallel IIR
————— LS delayed parallel IIR
% LMS Kautz
V  LMS delayed parallel
O LMS delayed parallel orthogonal
X LMS delayed Kautz

Mean Transfer Function Error

0 05 | 15 > 25 3 35
Seconds

Fig. 12: Mean transfer function error by time, for a

non-minimumphase two-way loudspeaker re-

sponse. For comparison, the adaption curve of

the Kautz filter is displayed among the delayed

filters.

Future research includes testing of the same filters
in equalization applications and topologies, such as
the Filtered-x LMS algorithm, with extension to linear
time-variant systems. Other structures are possible too,
including the resonator-based filter [18]. Further com-
parisons should include the Recursive Least Squares
(RLS) algorithm [10] and frequency-domain adaptive
algorithms [19] too.
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