
TAMÁS B. BAKÓ, BALÁZS BANK, TAMÁS DABÓCZI RESTORATION OF NONLINEARLY DISTORTED AUDIO

AES 20TH INTERNATIONAL CONFERENCE 1

RESTORATION OF NONLINEARLY DISTORTED AUDIO WITH THE
APPLICATION TO OLD MOTION-PICTURES

TAMÁS B. BAKÓ, BALÁZS BANK AND TAMÁS DABÓCZI

Budapest University of Technology and Economics (BUTE),
Department of Measurement and Information Technology,

Budapest, Hungary
{bako,bank,daboczi}@mit.bme.hu

In this paper a robust and efficient method is presented for restoration of nonlinearly distorted movie soundtracks. The
method is based on the a priori knowledge of the shape of the nonlinear function, which is assumed to be a static
nonlinearity. The original undistorted signal is modeled by a set of harmonically related sinusoids. This signal is led
through the model of the nonlinear function. The parameters of the model are determined by minimizing the difference
of the modeled distorted signal and the signal of the movie soundtrack. Tikhonov regularization is applied to avoid noise
intensification during the restoration process. The proposed method has been successfully applied to old motion-picture
audio tracks.

INTRODUCTION

Old movies often suffer from poor sound quality, mostly
due to nonlinear distortion of the audio signal. In the
professional (35 mm) films, the sound is optically
recorded. Nowadays the transversal recording technique
is used, where the sound information is carried by the
width of the sound-stripe (left of Fig. 1). This is
advantageous, because the development conditions and
the strength of the recording light have little influence
on the recorded sound. However, until the 1950’s, the
intensity recording was used (right of Fig. 1). Here, the
sound-information is carried by the darkness (density) of
the sound stripe. The density-characteristics of the film
is a static nonlinear function of the intensity (Fig. 2). At
high signal level of sound, or at wrong working point of
the density curve, the recorded sound can be strongly
distorted. This distortion sometimes even makes the
sound recording incomprehensible. If the distortion is
unacceptable, the distorted signal should be post
processed to reconstruct the original sound. The signal
reconstruction is a difficult task, since the exact
nonlinear characteristics is not known and the distorted
signal is superimposed by wide-band noise.
Most of prior works dealing with compensation of
nonlinear systems use Volterra-kernels to describe the
nonlinearity. These methods can handle a wide range of
nonlinearities ([1], [2], [3] and [4]).
Somewhat different method is used for nonlinear
compensation in [5]. There, a static nonlinear system (a
cathode ray tube) is described. The static nonlinearity is
approximated by a polynomial.

In [6], [7] and [4] the proposed algorithms are made
specifically for sound-restoration. In [6], a histogram
equalization technique is used to estimate a static
nonlinear transfer function in the case of human speech.

Figure. 1: The shape of the sound band on movie-films
created with transversal (left) and variable density

(right) method.
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Figure 2: The density characteristics of the film.
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In [7], the nonlinear function is assumed to be given and
an iterative technique is used for restoration. In [4], a
statistic-model based reconstruction method is proposed.
As most of these previous works state, the effects of
noise in the proposed algorithms are not clearly
described. Further work is needed to establish the effects
of noise in [1] and [2]. In [6], the algorithm is not
applicable, when the histogram of the noise is markedly
different from that of speech. In [3] and in [5], a
prefiltering technique was used, where the effects of
noise are smaller, therefore the effects of noise were not
handled. However, in the case of movies only
postfiltering technique can be used to reconstruct the
observed, noisy and nonlinearly distorted signals,
because the signal is already recorded on the optical
track. The methods in [7] and [4] are able to handle the
effect of noise, but they are iterative algorithms and they
require intensive computational time. The optimal
number of iterations in these works is not given.
In our paper a new method is proposed, which is a
noniterative post-processing technique that works on
static nonlinearities and takes the effect of noise into
account. The method consists of two main steps. First is
the identification of the static nonlinearity. The shape of
the nonlinear function is given, since the density
function of the film is known. However, at a given film-
roll the working point and the amplification of the
devices after the nonlinearity are not known. These
parameters have to be identified from the recorded
signal. This problem will be discussed in Section I.
The second step of the post processing technique is the
restoration of the distorted signal. The nonlinearly
distorted signal is corrupted by noise. In this case the
exact inverse of the nonlinearity may not be optimal for
reconstruction, because the noise is amplified during the
reconstruction process and the noise level in the
reconstructed signal can exceed the original sound level.
An optimal characteristics is needed, which makes a
trade-off between the distorted, and the undistorted but
noisy signal. In Section II, these problems and the
computation of the optimal (regularized) characteristics
will be shown. Section III shows a simulation example.
Conclusions are given in Section IV.

1. IDENTIFICATION OF THE NONLINEARITY

At film-rolls, the sound can be distorted due to the static
nonlinear density-function of the film. We describe the
nonlinear function by the following equation:

1221 ))(()( OOtxGGty ++⋅Φ⋅= , (1)

where )(tx  is the original, undistorted signal, )(ty  is

the distorted signal, and ( )Φ  refers to the density

function that is assumed to be known. 2G  and 2O  are

the amplification and offset before, 1G  and 1O  are the

amplification and offset after the nonlinearity. These are
produced by the recording and playing amplifiers,
respectively. The amplification and the offset are
assumed to be constant in the case of a particular film-
roll. The observed signal is corrupted by noise:

)()()( tntyto += , (2)

where )(to is the observed signal and )(tn  is the noise,

which is assumed to be wide-band and zero mean.
For reconstructing )(tx , the values of 1G , 1O  and 2O

have to be determined. Note that 2G  is not important,

because this parameter only adjusts the volume of the
original sound. The reconstruction is difficult, since
only the observed signal, )(to , is known. However, the

recorded signal is mainly human voice and this can be
used as an a priori information.
If the recorded signal is periodic, it can be written as a
sum of harmonically related sinusoids:

∑ +⋅⋅⋅=
i

ii tfiats )2sin()( 0 φπ , (3)

where )(ts  stands for the periodic signal, 0f  for the

fundamental frequency of the periodical signal, and ia

and iφ  are the amplitude and phase of the i -th sinusoid.

In (3), we assume, that )(ts  has no DC component. If

the signal, )(ts , is led through a static nonlinear system,

a different periodic signal arises:
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Eq. (3) and (4) form a common transformation, which
assigns a )(tu  signal to every value of the unknown

parameters:

 ( )),()( 0 tfvTtu = , (5)

where ),( 0 tfv  is the set of the unknown variables:

{ }NNaaOOGtfv φφ ...,...,,,),( 112110 = . (6)

The unknown variables can be obtained, if the ( )T

transformation is invertible. A sufficient condition is,
when the number of a  and φ  parameters are limited,

)(ts  has no DC component, and ( )Φ  is a strictly

monotonic nonlinear function.
In the case of movie-soundtracks, these conditions are
usually fulfilled. The uttered vowels in the movie
contain periodic parts, which are ideal for the
identification. The sound has no DC component, or if it
is removed, it does not affect the sound-quality. The
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recording is bandlimited, and the density-function of the
film is a strictly monotonic function.
The signal of movie soundtracks is corrupted by wide-
band noise. In this case, the problem is ill-posed,
because the observed samples can exceed the limits of
the output domain of the nonlinear function. A solution
for ),( 0 tfv  can be found by minimizing the following

form:

( )( )∫ −=
2

1

2
0 ),(ˆ)(

t

t

dttfvTtuCost . (7)

Least mean squares minimization is optimal in the
presence of white Gaussian noise, but it was found to be
robust for the colored noise of film rolls, too.
The cost-function can be minimized by Monte-Carlo
method. It is still a question, how many sinusoids should
be used to describe the original signal )(ts . This can be

estimated from the graph of the optimal cost versus the
number of sinusoids. If the )(ts  signal is undermodeled,

the cost will be high and will quickly decrease for higher
number of sine signals. On the contrary, if the periodic
signal is overmodeled, the use of higher number of
sinusoidal signals will not change the optimal cost
drastically. Hence, by finding this turning point, the
number of sinusoids can be choosen. The use of eight
sinusoidal signals has been found appropriate to give
good results.

2. THE OPTIMAL INVERSE
CHARACTERISTICS

2.1. Model of the reconstruction process

The signal model of the reconstruction process can be
seen in Fig. 3, where )(xΦ  denotes the nonlinear

function of the measurement system, )(tx  denotes the

input and )(ty  refers to the distorted output of the

system where ))(()( txty Φ= . The observation, )(to , is

disturbed by additive measurement noise, )(tn . )(oΚ  is

the inverse nonlinear function and )(ˆ tx  is the estimate

of the input signal.

( )xΦ + ( )oΚ
)(tx )(to)(ty )(ˆ tx

)(tn

Figure 3: Signal model of the reconstruction process.

The mathematical analysis of such a model is difficult,
because the nonlinear equations cannot be analytically
solved. At a given working point, with small alterations
of )(tx , )(to  can be approximated by the first two

elements of the Taylor polynomial, which will be a
linear approximation:

x
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So the alteration of )(to  is:
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The reconstruction process for the alteration is shown in
Fig. 4:
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Figure 4: Signal model of the reconstruction process for
small signal changes.

This model is already linear and can be applied in each
point of the original characteristics. The noise in this
model is not additive, but affects the working point,
hence it changes the amplification of the second module.
If the amplification of the second module is not the
reciprocal of the first module, it causes differences
between x∆  and x̂∆ .
If the exact inverse of the original nonlinearity is used
for reconstruction, the noise may be highly amplified.
The noise amplification in case of small noise
amplitudes is revealed, when the nonlinearity is
described by Taylor polynomials:
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xx
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The noise will be amplified, if the derivative of the
nonlinear function )(xΦ  is smaller than unity.

2.2. Regularized compensation

To optimize the model, first a measure for the quality of
the estimate has to be defined. We define the best
solution as the minimum of the following equation:

( )xxCost ˆ∆−∆= , (11)

where a  is the norm of a .The solution of this error

criterion is not applicable directly, because it requires
the knowledge of x∆ . A solution to such an ill-posed
problem was originally proposed by Tikhonov [8], who
created a method to solve ill-posed integral equations
with regularization operators. The error criterion used in
Tikhonov’s method is an extension of the output error
criterion. One possible form is:
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( )xooCost ˆˆ ∆+∆−∆= λ , (12)

where ô  is the estimated output, computed from x̂∆ ,
which is led through the copy of the first module in Fig.
4. λ  is a regularization parameter that reduces the
errors caused by noise. λ  cannot be too high, because it
produces a distortion in the estimation. Its optimal value
has to be found. In practice the 2l  norm is used, which

minimizes the energy of the error. In the case of sampled
signals this takes the form:

( ) 
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The minimum of this equation is at the point where
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The regularized inverse characteristics, )(oΚ , can be

calculated by the integration of (14). The integration
constant in this case is not important, because the DC
component does not affect the sound quality. The
resulted characteristics can be used as )(oΚ , without

any further iteration. Thus, the reconstruction itself is a
one-step process.

2.3. Determining the optimal regularization
parameter

The optimal value of λ  has to be determined to design
the optimal shape of the regularized inverse
characteristics. The optimal value of λ  depends on the
input signal, on the noise and on the shape of the
original nonlinear function.
If the input signal, )(tx , is constant, and if the

probability density-function of the output noise, )(νnP ,

is known, the norm of the difference between the
original signal and the estimate can be written in the
following form:

{ } { }
{ }

∫
∞

∞−

−+ΦΚ⋅=

=−Κ=

=−=

νλνν

λ

λλ

dxxP
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xxExeE

n )),)((()(

),(

)(ˆ),(

, (15)

where { }E  denotes the expected value and ),( λxe

refers to the difference of the original and estimated

signal. Now, the expected error value can be computed
for all given )(tx  values. If the probability density

function, )(χxP , of )(tx  is known, the expected error

after restoration can be written as

{ } { }∫
∞

∞−

⋅= χλχλε dxeEPE x ),()()( . (16)

The optimal value of λ  can be found by minimizing
(16). In practice, )(νnP  is estimated from that signal

parts of the recording, where only noise is present.
)(χxP  can be estimated iteratively. As the first step,

)(χxP  is approximated by the probability density-

function, )(οoP , of the observed signal. Now, 1λ   and

1x̂  can be estimated. From 1x̂ , a more exact estimate

for )(χxP  can be obtained. In our experiments, 3

iterations were enough to estimate a proper λ  value.

3. SIMULATION EXAMPLE

To show the capabilities of the proposed algorithms, a
multisinusoidal input signal consisting of four sinusoids
was generated. This can be seen in Fig. 5a. This signal
was distorted by a Gaussian error-function, which is
similar to the density function of films:

( ) 5.05.0)(5.0)( −+⋅= txerfty . (17)

A Gaussian white noise was added to the signal to
achieve 35 dB signal-to-noise ratio. The distorted, noisy
signal can be seen in Fig. 5b.
The offset and amplification parameters of the distortion
function were estimated with the proposed method,
knowing that the shape of the nonlinear function is the
Gaussian error-function. The estimated parameters can
be seen in Table I:

Table I: Estimated parameters of the nonlinear function.
Number
of sines

Cost G1
(true=0.5)

O1
(true= - 0.5)

O2
(true=0.5)

1 20.15800 0.3175 -03913 1.6899
2 4.41796 0.4666 -0.5411 5.9754
3 0.49038 0.5012 -0.5220 0.7728
4 0.05798 0.4991 -0.4996 0.4985
5 0.05793 0.4990 -0.4993 0.4964
6 0.05795 0.4989 -0.4990 0.4929
7 0.05793 0.4990 -0.4994 0.4968
8 0.05786 0.4988 -0.4988 0.4921

As it can be seen, the estimates for more than three
sinusoid signals are acceptable and the overmodeling
did not affect the accuracy of the estimated parameters.
The probability density-characteristics of the original
signal is assumed to be not known, and the optimal
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inverse characteristics was calculated by the method
proposed in Section 2. Here, 5 iterations were made and
the resulted value was compared with the real optimal
value, computed from the density-characteristics of the
original signal. The resulted λ  values and the squared
sum of the difference of the original and the estimated
signal can be seen in Table II:

Table II: Regularization and error parameters of
different regularized characteristics.

Lambda Error
Underregularized 10101 −⋅ 206,087

Optimal 410036.3 −⋅ 6,388

Estimated 410272.1 −⋅ 7,499

Overregularized 1101 −⋅ 191,345

The difference between the optimal and estimated error
is relatively small.
The regularized inverses for the underregularized,
optimal, estimated and overregularized cases can be
seen in Fig. 6. Fig. 7 shows the signal estimates. The
underregularized inverse has large errors, due to the
noise amplification. The overregularized inverse has
strong distortion. In the case of the optimal and
estimated characteristics, both the effects of distortion
and noise are small. The errors of the noise can be
further reduced by additional noise filtering.

4. CONCLUSIONS

In this paper a novel method was proposed for the
restoration of nonlinearly distorted movie soundtracks.
The shape of the density curve is assumed to be known.
The parameters of the density function are estimated
from a periodic part of the distorted signal. The
distorted signal of the soundtrack is compared to a
multisinusoidal signal distorted by the model of the
nonlinear function. The parameters are set in order to
obtain the best match of these two signals in the least
squares sense. In order to avoid noise amplification
during restoration, a new method was proposed, which
is based on Tikhonov regularization. A novel technique
was presented for determining the optimal regularization
parameter. The efficiency of the described method was
shown on a simulation example.
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Figure 5: Input signal (a) and the nonlinearly distorted, noisy signal (b).
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Figure 6: Underregularized (a), optimal regularized (b), estimated regularized (c) and overregularized characteristics (d).
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Fig. 7 Reconstructed signals: with underregularized (a), with optimal regularized (b), estimated regularized (c) and overregularuzed
characteristcs (d).


