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Digital sound synthesis based on physical models is realized in real-time applications mostly with the well known digital
waveguide method (DWG). It approximates the underlying physical behavior of a vibrating structure in a computationally
efficient way. Due to these computational efficient approximations, the waveguide method looses the direct connection
to the parameters of the underlying physical model. The recently introduced functional transformation method (FTM) on
the other hand solves the underlying physical model analytically. Thus, the physical parameters are explicitly given in the
discrete realization of the FTM. But due to this ’physicality’ the computational cost of synthesis using FTM is larger than
using DWG. This paper compares the DWG with the FTM and shows that for linear vibrating strings it is always possible
to design an acoustically indistinguishable DWG approximation with the parameters obtained from the FTM. In that way,
a computationally efficient and physically meaningful synthesis method is obtained. Furthermore, this paper shows the
limits of this new synthesis method.

INTRODUCTION

Digital sound synthesis based on physical modelling has
gained significant interest in the last two decades [1, 2,
3, 4]. By modelling the sound production mechanisms,
traditional instruments can be understood and reproduced
more intuitively than with classical signal based methods.
With physical modelling methods the musician can, e.g.,
intuitively change the length of a string to obtain another
pitch value [1, 2] or vary the string’s tension for vibrato
[5]. Furthermore, it is possible to control parameters of
the physical model that cannot be changed intuitively in
the real-world instrument, for example the geometry or
the material of a string [6]. Thus, with physical mod-
elling it is not only possible to imitate traditional instru-
ments but also to generate new instruments with physi-
cally meaningful control parameters never used before.
For the construction of such a physical modelling algo-
rithm a two-step procedure is necessary [6, 7].

1. Find a mathematical description of a physical model
that incorporates the dominating effects of the real-
world instrument.

2. Derive a computational efficient algorithm that al-
lows real-time simulations of the mathematical de-
scription.

With regard to the second condition, only the dominating
effects of the main vibrating structure, like the audible
string vibration of a guitar, are considered for the math-
ematical description. All other insignificant physical be-
haviors are neglected and the surrounding structures like
the guitar body are treated by fixed filters [3]. The ana-
lysis of this main vibrating structure using basic physical
laws leads to multidimensional (MD) models in form of
partial differential equations (PDEs) [7]. These PDEs in-
clude temporal and spatial derivatives, initial and bound-
ary conditions as well as excitation functions. With the
derivation of initial-boundary value problems in form of
PDEs the first step for the design of a physical modelling
algorithm, the mathematical description, is done.
The second step is the efficient implementation of the
mathematical model. Since it contains temporal and spa-
tial derivatives, it cannot be implemented in the computer
directly. For discrete simulations, the initial-boundary
value problem must be discretized with respect to time
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and space. This can be easily done by finite difference
methods, where the temporal and spatial derivatives are
replaced by difference terms [7, 8]. This procedure re-
sults in a set of difference equations that can directly be
implemented in the computer. The drawback of this me-
thod is that for stable and accurate solutions the spatial
as well as the temporal step size are restricted to small
values [7]. Therefore, many points on the vibrating struc-
ture have to be computed at small time intervals, which is
computationally costly. Thus, the finite difference method
is not practical for real-time applications. For that pur-
pose different methods have been used. Two of them are
discussed in detail here: the digital waveguide method
(DWG) and the functional transformation method (FTM).

The DWG is the most popular physical modelling sound
synthesis method because of its simplicity and compu-
tational efficiency [2, 3, 9]. It analyzes the structure of
the PDE qualitatively and develops efficient algorithms
for the approximation of the audible results. The coef-
ficients needed for the simulation are extracted from the
measured sound of a musical instrument [3, 5]. Since
the coefficients are not calculated directly from the phys-
ical model parameters, they are not physically meaning-
ful. Thus, quantitative changes in the physical model pa-
rameters cannot be made intuitively with the DWG.

The FTM, on the other hand, calculates the analytical so-
lutions of the underlying physical models, given in form
of PDEs [6, 10, 11]. The FTM calculates the eigenmodes
and their weights, depending on the physical parameters
of the vibrating structure and the excitation signal. Since
an analytical solution is obtained, the filter coefficients
depend directly on the physical parameters of the vibrat-
ing structure. This allows intuitive sound variations just
by adjusting the physical parameters. Although the vi-
bration and parameter updates based on physical model
changes can be calculated in real time [6], the FTM re-
quires more computation power than the DWG.

To figure out the principal difference between the two
methods, the derivation of the coefficients for both syn-
thesis methods is shown on the example of a guitar string.
If we want to model a guitar with nylon strings, the DWG
must analyze its sound to extract its model parameters.
For a change from nylon to steel strings, the real-world
instrument must be changed, so that its sound can be an-
alyzed for the DWG. The FTM on the other hand gets its
model parameters from known physical string properties,
such as the string’s stiffness. Therefore, a more accurate
physical model is needed for the FTM in comparison to
the DWG. However, once this model is found, the change
from nylon to steel strings only needs an adjustment of
the physical parameters in the virtual model.

The natural way to combine these two methods for digi-
tal sound synthesis is to use the advantages of both meth-
ods while their disadvantages are omitted. We start with

the derivation of the analytical solution of the underly-
ing PDE by using the FTM. With that solution we de-
sign the different filters for the sound simulation with the
DWG. This procedure guarantees a physically meaning-
ful sound simulation with a computationally efficient re-
alization. This algorithm is presented here for the exam-
ple of a transversal vibrating string.
The paper is organized as follows: Section1 describes
the underlying physical model of a vibrating dispersive
and lossy string. In section2 both methods, the DWG
and the FTM, are reviewed briefly. Section3 combines
the DWG and the FTM to a physically meaningful and
computationally efficient method. Section4 shows the
limits of this new algorithm.

1. PHYSICAL MODEL OF STRINGS

In this section we present the physical model of a vibrat-
ing string in form of a PDE. For the solution of this PDE
we also need boundary and initial conditions. To keep
the example simple, we assume a linear behavior and a
homogeneous material [7].
The physical model can be derived from the basic laws
of elasticity. It is formulated as a PDE for the transversal
deflectiony(x; t) of the vibrating string. No derivations
are given for the following PDE, since it is well docu-
mented in the literature [7, 8]. We consider a string of
lengthl, cross section areaA and the moment of inertia
I . The string material is characterized by its density� and
its Young’s modulusE. The tensionTF is applied to the
string andd1 andd3 are the frequency independent and
frequency dependent decay variables, respectively. The
string can be deflected by the force densityf(x; t). With
space and time coordinatesx andt, we obtain

�A�y � TFy
00 +EIy0000 + d1 _y + d3 _y

00 = f ; (1)

where prime denotes spatial derivative and dot denotes
temporal derivative. Space and time dependencies are
omitted for concise notation. The first two terms in (1)
denote the one-dimensional wave equation. These are the
dominant terms of most strings in musical instruments.
The one-dimensional wave equation is well known for its
ideally harmonic spectrum. The third term denotes dis-
persion due to string stiffness, causing a stretched line
spectrum in comparison to the harmonic one [12]. The
last two terms characterize the damping as a result of lam-
inar air damping and the viscoelasticity of the string ma-
terial, respectively. They result in an exponential decay
of the single partials.
At the nut end (x = 0) the string is assumed to be fixed,
so that the deflection and the skewness at this point are
zero [7]. This leads to homogeneous boundary conditions
of first kind

y(0; t) = 0; y00(0; t) = 0 : (2)
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At the bridge side (x = l) energy is transferred to the
resonant body which amplifies and also colors the string
vibration for sound radiation. The energy transfer from
string vibrations to radiated sound results in a damping
of the string vibration at the bridge, whereas the filtering
function of the bridge and the resonant body changes the
modes of the string vibration smoothly [8, 12].
Neglecting the damping terms with coefficientsd1 andd3
in (1) at the bridge position, the boundary condition for
the string can be formulated with a temporal operatorD
containing a linear combination of temporal derivatives
by

f"(l; t)

v(l; t)
= D frl(t)g ; y00(l; t) = 0 : (3)

These are non-homogeneousboundary conditions of third
kind. f"(l; t) = TFy

0(l; t)�EIy000(l; t) is the vibrational
force of the string on the bridge andv(l; t) = _y(l; t) is the
transversal velocity of the string atx = l, respectively.
For a pure resistive fixing of the string at the bridge, the
right hand side of (3) results in a constantrl. For other
kinds of boundary functionsD frl(t)g it results in a fre-
quency dependent filter.
Since the excitation of the string shall be caused by the
force densityf(x; t) only, we consider homogeneous ini-
tial conditions for the deflectiony(x; 0) and the velocity
_y(x; 0) of the string.

y(x; 0) = 0; _y(x; 0) = 0; t = 0 : (4)

Equations (1-4) define the initial-boundary value problem
describing the vibrations of the dispersive, lossy string.
Due to the temporal and spatial derivatives, this prob-
lem cannot be solved directly in the computer. Instead,
discrete methods approximating the continuous solution
have to be found. Two of them are presented in the next
section.

2. OVERVIEW OF TWO PHYSICAL MODELLING
SYNTHESIS METHODS

In this section an overview of two physical modelling
methods, the DWG and the FTM, is given. First, both
methods are described separately, then connections and
differences between their realization structures are dis-
cussed.

2.1. Digital Waveguide Method

The basic DWG model of a stringed instrument consists
of three parts [13, 14]: 1) an excitation wavetable, mod-
elling the plucking or striking of the string, 2) the delay
line loop, modelling the string vibrations, and 3) a filter
for resonant body simulations. This is shown in figure1.
In linear models, the body filtering can also be incorpo-
rated into the excitation functions, well known as com-
muted waveguide synthesis [13, 15].

Excitation
wavetables

String model Body model

Figure 1: Basic DWG stringed instrument model consist-
ing of an excitation wavetable, the delay line loop and the
body filter.

The single components of the DWG are reviewed in de-
tail now. The most complicated part is the simulation of
the string vibrations, given in (1). To obtain an efficient
implementation, the DWG simplifies in a first step the
PDE to the one-dimensional wave equation. It has an an-
alytical solution with a forward and a backward travelling
wave, both with velocityc =

p
TF=(�A). This is called

the d’Alembert solution of the wave equation. After dis-
cretization with respect to time and space the d’Alembert
solution can be implemented efficiently by delay lines
[2]. The relation between spatial step sizeh and tempo-
ral step sizeT must be chosen to equal the wave velocity,
c = h=T . Since in most applications the sampling rate
fs = 1=T is given (e.g.44:1 kHz), the spatial step size
has to be adjusted. When rigidly terminating this string
at both ends, the delay line loop produces a harmonic,
non-decaying spectrum [12].
In the second step, the DWG qualitatively takes further
acoustical characteristics of the physical model into ac-
count. This is on the one hand the dispersion, leading
to a stretched line spectrum, resulting from string stiff-
ness and a spring-like termination at the bridge end [12].
On the other hand, the partials are exponentially decaying
due to air damping, viscoelasticity of the material and the
losses at the bridge [12]. Both effects are concentrated in
the delay line loop with low order filters, an allpass filter
for the dispersion and a loss filter for the losses [2, 13]. To
adjust the model to the right pitch, a fractional delay filter
has also to be included in the delay line [1, 3, 14]. This
basic DWG string model is shown in figure2a with all
filters combined inH(z). An efficient realization is the
single delay line loop, shown in figure2b. The integer
part of the phase delay�p;tot of the filterH(z) is taken
into account in the delay line length. In the DWG, all the
coefficients of the filters, as well as the delay line length
L are adapted from extracted sound parameters, like the
frequencies of the partials and the temporal evolution of
their amplitudes [3, 5]. With analyzed frequencies the
delay line length, the dispersion filter and the fractional
delay filter can be approximated in a least squares (LS)
sense [16, 17]. For simplicity, all filters are assumed to
have different effects on the sound signal, such that they
can be designed independently from each other.
From the mathematical point of view, the string model
derived above can only simulate the left hand side of (1)
since it contains no excitation functions. Therefore, in
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Figure 2: Basic DWG string model consisting of (a) two
delay lines of lengthM , simulating the left and the right
travelling wave, (b) the corresponding single delay line
loop of lengthL = 2M . Both incorporate a dispersion
filter Hdisp, a loss filterHloss and a fractional delay filter
Hfd. In (a) they are combined toH(z).

a third step, the excitation signalf(k) is taken into ac-
count. In commuted waveguide synthesis it is filtered
with the impulse response of the resonant body and stored
in a wavetable. To derive this body filtered excitation
wavetable, inverse filtering is applied to the recorded sound
[3].
The length of the wavetable can be further reduced by
serial filtering with a plucking point filter to derive~f(k)
[1, 3] or by parallel filtering with the lowest body reso-
nances [3, 14, 18]. Extensions to this fundamental DWG
are also made with respect to incorporated nonlineari-
ties [5], two polarizations in the string vibration and cou-
plings to other strings in the instrument [1, 9]. Since only
the basic models of DWG and FTM should be compared
and combined in this paper, these extensions are not de-
scribed here.
It has been shown that the DWG adjusts its filter coeffi-
cients as well as the excitation signal to recorded signals.
Furthermore, the simplification of (1) to the wave equa-
tion implicates that the filter coefficients are not directly
connected to the physical parameters of (1). Thus, the
DWG can be interpreted as a sound-based physical mod-
elling method.

2.2. Functional Transformation Method

The FTM is a direct physical modelling approach rather
than a sound-based one as the DWG. It solves the initial-
boundary value problem (1-4) analytically and simulates
this analytical solution [4, 6, 11]. For the derivation, func-
tional transformations with respect to time and space are
used.
This procedure is well known for one-dimensional sys-
tems given by ordinary differential equations (ODEs). For
applications such as systems theory, electrical network

theory or control theory the temporal transformation (e.g.,
Laplace transformation) leads to one-dimensional trans-
fer functions. For that kind of frequency domain descrip-
tion, discretization schemes are available to obtain dis-
crete models that can be implemented efficiently. The
FTM extends this approach to MD systems by also ap-
plying a functional transformation to the spatial variables.
This transformation is called Sturm-Liouville transfor-
mation [19]. Further properties of this transformation can
be found in [10].
The application of both transformations, the temporal La-
place transformation and the spatial Sturm-Liouville trans-
formation, on the initial-boundary value problem (1-4)
leads to the MD transfer function description

�Y (�; s) = �Gf (�; s) �F (�; s) : (5)

The functions�Y (�; s) and �F (�; s) are the deflection of
the string and the excitation force density in the tempo-
ral and spatial frequency domain, respectively;s is the
temporal frequency variable and� is an integer variable
of the spatial transformation [6]. With the simplification
that the string is also fixed at the bridge, the MD transfer
function can be written as [4]

�Gf (�; s) =
1

�A s2 + e1s+ e2
; (6)

e1 =
�
d1 � d3(��=l)

2
�
; (7)

e2 = EI(��=l)4 + T (��=l)2 : (8)

For boundary conditions of the third kind at the bridge
(4), the transfer function can also be calculated, but it is
more complicated than for the case of first-order bound-
ary conditions. Therefore it is not described here. Deriva-
tions for the pure resistive third-order boundary condition
can be found in [20]. It can be seen that the MD trans-
fer function (6) only depends on the temporal frequency
variables and the spatial integer variable� and on the
physical parameters of the string (E, I , �, A, l, TF, d1,
andd3). Inverse Laplace and Sturm-Liouville transfor-
mation lead to the continuous-time and -space solution

y(x; t) =
2

l

1X
�=�1

�y(�; t) sin
���

l
x
�
: (9)

With � denoting temporal convolution, the deflection in
the spatial frequency domain�y(�; t) is given by

�y(�; t) =
1

�A!�
e���t sin (!�t) � �f(�; t) : (10)

The important angular frequencies!� as well as the de-
cay rates�� are obtained analytically (� = 1 indicates
the fundamental frequency) with

!2� =

�
EI

�A
�

d3
(2�A)2

����
l

�4
+

AES 22nd International Conference on Virtual, Synthetic and Entertainment Audio 4



Trautmann et al. Combination of DWG and FTM

+

�
TF
�A

+
d1d3

2(�A)2

����
l

�2
�

d21
(2�A)2

;(11)

�� =
d1 � d3(��=l)

2

2�A
: (12)

The solution of the FTM (9,10) is an extension of the
Bernoulli solution, since it calculates the eigenfrequen-
cies of the string [12]. Discretization of this continuous-
time and -space system leads to an implementable sys-
tem. Samplingy(x; t) from (9) at t = kT with temporal
step sizeT and discrete time variablek and applying the
impulse invariant transform leads to a parallel arrange-
ment of second-order resonators, shown in figure3. Note

+

+

+

+

z�1 z�1

z�1 z�1

�e�2�1T

�e�2�NT

2e��1T cos(!1T )

2e��NT cos(!NT )

2

l
K(1; xa)

2

l
K(N; xa)

yd(xa; k)

�fd(1; k)e��1T sin(!1T )

�fd(N; k)e��NT sin(!NT )

Figure 3: Basic structure of the linear FTM withN
second-order resonators in parallel.

that the number of parallel recursive systems must be lim-
ited such that aliasing is negligible. Since all audible fre-
quencies are exactly reproduced with a sufficiently high
sampling rate (e.g.44:1 kHz), there is no audible differ-
ence to the continuous model (9).
The body resonances can be incorporated into this model
by additional weighting of the single resonator outputs
by the corresponding magnitude response of the body at
these frequencies. For the lowest body resonances, also
additional parallel recursive systems (with fixed coeffi-
cients) can be used. For this model-based approach of
the body simulation, it is necessary to measure the mag-
nitude response of the guitar body or to calculate it from
a body model with numerical methods. With this sim-
plification the transient response of the body cannot be
taken into account, which leads to audible differences in
the attack of the sound. Similarly to commuted waveg-
uide synthesis it is also possible in the FTM to commute
the output position weightingK(�; xa) as well as the
body resonance weighting into the input position weight-
ing e���T sin(!�T ) to make the simulation more effi-
cient.
It has been shown in this section that the FTM solves the
physical model in form of the PDE analytically. Thus,
parameter changes in the physical model have direct ef-
fect on the simulation results and the FTM can be called

a direct physical modelling approach. The relations be-
tween the sound-based physical modelling approach of
the DWG and the direct physical modelling approach of
the FTM are shown in the next section.

2.3. Comparison between DWG and FTM

Although the derivations of the DWG and the FTM are
quite different, several relations between the two realiza-
tion structures can be pointed out. For non-dispersive and
lossless strings, fixed ideally at the boundaries, the DWG
realization corresponds to the time-based d’Alembert so-
lution with a forward and backward travelling wave where-
as the FTM corresponds to the frequency-based Bernoulli
solution, denoting the modes of the vibration. It is well
known that the continuous Bernoulli solution can be con-
verted analytically to the continuous d’Alembert solution
since both are derived from the 1-D wave equation with
homogeneous first-order boundary conditions.
Discretization of the Bernoulli solution results in a par-
allel arrangement ofN = bL=2 � 1c second-order res-
onators. In contrast to this, the d’Alembert solution is in
discretized form oneL-th order recursive delay line. The
total filter order of the Bernoulli model is lower than the
DWG model by 2 because the FTM do not have poles at
DC and Nyquist frequencies. Due to these realizations,
the simulated frequencies for the Bernoulli solution de-
pend only on the accuracy of the coefficients (limited by
the word length of the memory), whereas the frequencies
derived with the d’Alembert solution depend on the to-
tal delay line lengthL. If the sampling frequencyfs is an
integer multiple of the desired simulated fundamental fre-
quency, also the discrete models of DWG and FTM can
be converted into each other by simple parallel-to-serial
or serial-to-parallel rearrangements. For all other funda-
mental frequencies, the discrete d’Alembert solution only
approximates the desired modes. The required fractional
part ofL must be implemeted with a fractional delay fil-
ter [1, 14, 17], adjusting at least the lowest harmonics to
the right pitch.
Furthermore, the spatial excitation and output positions
on the string can be adjusted in the discretized Bernoulli
solution continuously (discretized only with respect to
the memory’s word length), whereas onlyM = L=2
equally-spaced positions can be chosen for evenL in the
discrete d’Alembert realization without additional frac-
tional delay filters (see figure2a). For odd delay line
lengthsL, at least one fractional delay filter for each de-
sired position is mandatory [17].
Extending the physical model from the non-dispersive
and ideally fixed string to a real one with dispersion, losses
and a non-ideal termination, further differences between
the DWG and the FTM can be found. The DWG com-
bines all losses and dispersion at the bridge side, whereas
the basic FTM as described above, distributes all losses
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and dispersion effects continuously onto the string1. De-
pending on the losses and dispersion in the string of the
musical instrument and on the bridge impedance, either
the basic FTM or the DWG simulates the underlying mo-
del more accurate. On the other hand, the DWG can only
adjust the losses and the dispersion of the lowest harmon-
ics when low-order filters are used, whereas in case of
FTM modelling the accuracy of the losses and dispersion
of all partials depend only on the memory’s word length.
Another difference between DWG and FTM is the in-
crease in simulation accuracy. In the DWG the used filter
orders must be stepped up to adjust more partials to the
right pitch and the desired decay times. The total number
of simulated frequencies stays always the same. In the
FTM on the other hand, the simulated frequencies have
always the right pitch and decay rates. To increase the
simulation accuracy in the FTM, more partials have to be
simulated.
Besides all the disadvantages of the DWG discussed above,
one important advantage makes the DWG useful for real-
time applications: the computational cost. A compari-
son between the computational cost of DWG synthesis
and FTM synthesis for a nylon guitar string, further dis-
cussed in section3, is shown in table1. The first line of

DWG FTM
LQ HQ LQ HQ

no. of partials 76 76 30 59
DWG filter orders 1/4/1 5/10/3 - -
FLOPS/sample 16 40 90 177

Table 1: Computational cost of DWG and FTM simula-
tions for a nylon guitar string with fundamental frequency
f1 = 247Hz, simulated atfs = 44:1 kHz.

table1 shows the number of simulated partials. Since in
DWG all partials are simulated up to Nyquist frequency,
these are constantly76 partials in this example. In FTM
the number of simulated partials denotes the sound qual-
ity. It can vary between30 for low quality (LQ) and59
for high quality (HQ), such that all partials up to Nyquist
frequency are simulated. The higher number of partials
in DWG compared to FTM results from the fact that the
DWG only stretches the spectrum for the low partials, but
not for high frequencies. In DWG the filter orders of the
loss filter, the dispersion allpass and the fractional delay
allpass determine the quality of simulated sound. These
orders are given on the second row of table1. For low
quality, filters of first order are sufficient. For high quality
and dispersive, lossy sounds, higher-order filters must be
used. However, the human ear seems to be more sensitive

1As mentioned above, the FTM has also been extended to model
losses at the boundaries, but in this paper only the basic FTM is dis-
cussed.

Musical Instrument

Physics Sound

Direct parameter
calculation

Parameter estimation
(signal analysis
& filter design)

Filter design

FTM simulations DWG simulation

Sound Sound

Figure 4: Combination of FTM and DWG by calculating
the physics-based parameters with FTM and implement-
ing the sound simulation with DWG.

to the number of simulated partials than to inaccuracies
in the partial frequencies and decay times.
The last line in table1 denotes the floating point opera-
tions (FLOPS) per sample output. If we consider an IIR
loss filter of 5th order, a 10th order allpass dispersion fil-
ter and a fractional delay allpass of 3rd order, the total fil-
ter order in the feedback loop of the DWG is18. Thus,36
multiplications and36 additions have to be performed for
the filter realization. The delay line itself can be imple-
mented by pointer updates without mentionable computa-
tional cost [2, 15]. Adding the computational cost for the
excitation (plucking point filter and output point filter),
the computational amount is approximately40 FLOPS
per output sample. The FTM on the other hand needs at
least three multiplications and three additions per output
sample and recursive system. Thus, for the simulation of
59 partials the FTM needs177FLOPS per sample output,
about4:4 times more than the HQ DWG. For low quality
simulations this relation even becomes5:6.
This increase in computational efficiency lead us to the
attempt to combine the direct physical modelling approach,
the FTM, with the sound-based physical modelling DWG.
This is discussed in the next section.

3. COMBINATION OF FTM AND DWG

The combination of FTM and DWG is depicted in fig-
ure4. The left column shows the flow graph of the FTM,
starting at the physics of a musical instrument. The DWG
is depicted on the right column, starting at the sound of
the musical instrument. The dash-dotted path denotes the
combination of the FTM with the DWG. First, the fre-
quencies!� and the decay rates�� are derived analyti-
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cally from the physics of the musical instrument with the
FTM. From these parameters, the different DWG filters,
the loss filterHloss, the dispersion filterHdisp, and the
fractional delay filterHfd are designed.
A low-order loss filter having a nearly linear or zero phase
response can be designed independently from the disper-
sion and fractional delay filters, both affecting only the
phase delay. Since both the dispersion filter and the frac-
tional delay filter change the phase delay of the delay
line loop, they cannot be interpreted to be independent
from each other. However, since the dispersion filter min-
imizes the curve error of the delay and the fractional de-
lay filter adjusts the absolute delay, both filters can be
designed independently from each other.
The filter design methods are shown in the following sec-
tions on the example of a transversal vibrating nylon ’B’
guitar string (fundamental frequency is247Hz), mod-
elled with (1). The string is cylindrical with a cross sec-
tion areaA = 0:5188mm2 and of lengthl = 0:65m.
The moment of inertia is thenI = 0:171mm4. The
string is made of nylon with� = 1140 kg/m3 andE =
5:4GPa. It has a frequency independent loss term of
d1 = 8 � 10�6 kg/(ms) and a frequency dependent loss
term of d3 = �6:4 � 10�6 kg m/s. The tension of the
string isTF = 60:97N.

3.1. Designing the Loss Filter

The desired decay rates�� of the mode frequencies!�
(see (10)) of the string vibration are given in analytical
form by (12). It indicates that they consist of a frequency
independent partd1 and a frequency dependent partd3,
quadratically raising the decay rates of the higher fre-
quencies. Thus, the losses have a lowpass characteristic.
The DWG loss filter, combining the string damping to
one low-order lowpass filter, must approximate the mag-
nitude response

��Hloss

�
ej!�T

��� � e
�

2����

!� : (13)

Using a one-pole loss filter with transfer function

Hloss;1(z) = g
1 + a1

1 + a1z�1
(14)

whereg refers to the DC gain and�a1 is the pole of the
filter, an analytical approximation for these coefficients
can be found. This is done for a nearly harmonic line
spectrum in [18] by some low-order Taylor series approx-
imations. It results in filter coefficients given by

g = 1�
�d1
�A!1

; c0 =
�Al2!31T

2

4�3d3
; (15)

a1 = �1 + c0 �
q
c20 � 2c0 : (16)

This algorithm works quite well for decay rates of normal
strings. Since the Taylor series approximations are made

at zero frequency, the derived one-pole lowpass approxi-
mation is accurate at low frequencies whereas it fails for
high frequencies, as shown in figure5. Because of the
short desired decay times at high frequencies, the approx-
imation error changes the synthesized sound only negli-
gible. On the other hand this algorithm assumes a nearly
harmonic spectrum of the synthesized sound, so that it is
not applicable to very dispersive sounds, such as those of
vibrating bars.
For these cases, an LS algorithm can be used to design
higher-order IIR loss filters. We have chosen a modified
version of the LS loss filter design method proposed in
[18]. It minimizes the weighted sum of the squared dif-
ference between the filter decay times�̂� = 1=�̂� and the
desired decay times�� at frequencies!�

eloss =

NX
�=1

w�;loss (�̂� � ��)
2
: (17)

The weightsw�;loss are chosen to give emphasis to the
slow decaying partials, realized byw�;loss = �2�. This
procedure gives accurate results for a wide frequency range
at order five, shown in figure5.
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Figure 5: Magnitude response (MR) of the loss filter for
a DWG model. Desired MR, derived by FTM (circles),
MR of the analytical obtained one-pole filter (squares),
MR of the 5th order IIR filter obtained by LS algorithm
(�).

The LS method for the loss filter design, as described
above, presumes that the DWG simulates all partials at
the right pitch. To derive an approximation of that, a dis-
persion filter of high order must be designed. This is done
in the next section.

3.2. Designing the Dispersion Filter

Dispersion denotes an increase of the frequencies of the
higher partials. In DWG formulation this increase results
in a shorter delay line for the higher partials than for the
lower ones. For the realization of such a task, a filter with
a non-constant phase delay is required. Since the mag-
nitude response of the delay line should not be affected
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by the dispersion filter, it is straightforward to use an all-
pass filter. For the design, we use the method presented
in [21, 22].
The desired phase delay�p;FTM is given by

�p;FTM(!�T ) =
2��

!�T
� �p;loss(!�T ) : (18)

It takes the phase delay�p;loss of the already designed
loss filter into account. For dispersive strings or thin bars,
�p;FTM is a continuously decreasing function. The de-
signed method proposed in [22] minimizes the weighted
squared phase error between the desired phase response
�FTM = !��p;FTM and the phase response of the dis-
persion filter�disp. First we compute the quantities

�� = �
1

2
(�FTM(!�) + P!�) (19)

and solve (20) for the coefficientsak of the filter denom-
inator (witha0 = 1),

PX
k=1

ak sin(�� + k!�) = � sin��; � = 1; : : : ; N :

(20)
Since the number of prescribed phase valuesN is higher
than the filter orderP , the set of equations is overde-
termined, thus it cannot be precisely solved. However,
when the equation error is minimized in the mean-squares
sense, the solution is easily computed.
The error analysis shows that the phase error is weighted
by the magnitude response of the denominator of the all-
pass filterjDAP(e

j!T )j when the allpass filter is designed
by minimizing the squared sum of the equation error. If
the squared inverse of this magnitude response is used as
a weighting functionw�;comp = jDAP(e

j!�T )j�2 when
computing the LS solution, the mean-squared error of the
phase response is minimized. SincejDAP(e

j!T )j is not
known beforehand, the weighted LS solution has to be
computed iteratively with a weighting function computed
from the allpass filter of the previous iterationw(q)

�;comp =

jD
(q�1)
AP (ej!�T )j, whereq is the sequential number of the

iteration.
An additional weighting function is used to minimize with
the algorithm described above the phase delay error in-
stead of the phase error. Therefore, the weights take the
formw�;disp = w�;comp=!

2
�.

For higher filter orders the condition number of equation
(20) increases significantly, therefore it is advisable to use
several lower order allpass filters in series. If the order
and the specification of these filters are the same, the de-
sign procedure remains the same, the only difference is
that we use~�FTM = �FTM=Kdisp as the phase specifi-
cation in (19), whereKdisp is the number of allpass filters
in series. Filter orders of 4 to 6 have been found good in
practice.
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Figure 6: Phase delay of the dispersion filter. Desired
phase delay derived by FTM (circles) and phase delay of
two allpass filters of 5th order obtained by LS algorithm
(�).

By perceptual reasons, it is not necessary to match all the
partial frequencies!� of the FTM perfectly by the DWG
simulation [16]. Therefore, the number of specification
pointsN in (20) usually does not need to exceed 20 or
30, and an additional weighting function is used to put
larger emphasis on the lower partials. Results for the ny-
lon string are shown in figure6 for two 5th order allpass
filters in series.
To tune the single delay line loop of the DWG to the right
pitch the delay line length has to be adjusted. It can be
subdivided into an integer partL� �p;tot (see figure2b),
realized by a delay line and a fractional part, realized by
a fractional delay filterHfd(z). The fractional delay fil-
ter is realized with a third order Thiran allpass filter that
does not change the magnitude response. This filter in-
troduces, besides the desired constant phase delay for low
frequencies, a negligible phase delay error for higher par-
tials (see e.g. [17]).
After calculating the loss, dispersion and fractional delay
filters, the string model for the DWG is designed. In the
next section, the excitation signal applied to the string
derived with FTM is adjusted for the DWG simulation.

3.3. Adjusting the Excitation Function

With the single delay line loop, completed by the filters
designed in sections3.1and3.2, the DWG model approx-
imates the frequencies!� and the decay rates��, given
by the FTM. To excite the single frequencies in the DWG
in the same way as the FTM does, the excitation signal
from the FTM has to be adjusted to the single delay line
loop of the DWG.
As known from commuted waveguide synthesis [15, 13],
the excitation functionf(x; t) has to be convolved with
Hin = 1 � z�2Mi (see figure2a). In the same way
the output position must be filtered, such thatHout =
1� z�(L�2Mo). The excitation signal should also be de-
layed byz�(Mo�Mi). Both the excitation point and the
output point inclusion into the excitation wavetable as
stated above assume a lossless and non-dispersive string
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Figure 7: Deflection and spectrum of the example nylon
guitar string, simulated with FTM (upper plot) and with
DWG (lower plot).

behavior as well as ideal first-order boundary conditions.
Since the combination of FTM and DWG should also
take lossy and dispersive strings into account, further ad-
justments have to be done.
On one hand, the delayed excitation signal will be damped
and on the other hand it will be dispersed, such that the
high frequency components of the excitation signal ar-
rive earlier than the lower ones. These effects can be
included in the excitation wavetable of the DWG by fil-
tering the delayed excitation signals with low-order fil-
ters similar to the filters designed for the delay line loop.
These filters do not have to be simulated as accurately
as the filters for the delay line loop. We chose to design
the one-pole loss filter after (15,16) with !1 replaced by
!exc = L!1=Lpart. This takes into account that the sig-
nal only travels alongLpart delays of the whole delay line
of lengthL.
A similar approximation can be done to design the exci-
tation dispersion filters. The desired phase delays in these
cases are given by�p;dispLpart=L instead of�p;disp.
Figure7 shows the example string deflection as well as
the signal spectra at distancexa = 20 cm from the bridge
position, simulated with FTM and DWG. The string is
struck at the positionxe = 12 cm from the bridge. It can
be seen that the signal deflections look similar after the
first five milliseconds. The spectra are only similar for the
lowest partials due to the dispersion filter approximation.
The rough adjustment of the excitation signal causes an-
other difference between the signals. In the DWG simu-
lation the low order dispersion filter can only disperse the
excitation signal within a few time steps, e.g. at3:5ms.
In contrast to this, the FTM simulates the dispersion ac-
curately from the first samples on.
Since this signal difference is only at the first few mil-
liseconds, nearly no sound difference between the sim-

ulation methods can be perceived. Thus, the combina-
tion of FTM and DWG works well for the simulation of
stringed instruments.

4. LIMITS OF THE COMBINATION

It has been shown in section3 that it is possible to design
the different filters for the DWG from the sound param-
eters derived from the physical model by applying the
FTM. This procedure is done to save computational cost
for the calculation of the string vibration. In the exam-
ple above, the computational saving is more than77% in
comparison to FTM simulation, neglecting the filter de-
sign. For lower fundamental frequencies or lower-order
DWG filters the computational saving can be even higher.
On the other hand, the computational saving of this me-
thod decreases with the desired dispersion. Changing
the string material in section3 from nylon to steel (� =
7800 kg/m3 andE = 200GPa) lowers the computational
savings with the same DWG filter orders to70%, since
only 44 partials have to be calculated with FTM. For
simulations of vibrating bars with a larger cross section
area the computational saving is even lower for the same
DWG filter orders. In addition to that, the DWG must use
a higher-order dispersion filter to approximate the desired
dispersion accurately.
Taking the computational cost for the DWG filter design
into account, the computational savings depend on the
parameter update rate of the physical model. Depend-
ing on the implementation of the DWG filter designs,
105 FLOPS are needed for a filter update. Then a pa-
rameter change may occur every730 samples (17ms for
fs = 44:1 kHz) such that FTM and the combination of
DWG and FTM need the same computational cost. This
rate becomes lower for higher dispersions or higher fun-
damental frequencies, so that this combination is not any
more useful for high parameter update rates. Further-
more, these parameter updates can cause audible tran-
sients in the DWG since the filter coefficients are not
changing as smoothly as in the FTM.

5. CONCLUSIONS

In this paper the combination of two different physical
modelling sound synthesis methods, the frequency-based
FTM and the time-based DWG, was presented. This com-
bination first calculates with the FTM sound parameters
such as the partial frequencies and their decay rates from
the physical model of a musical instrument. These pa-
rameters are then used for the design of low-order filters
included in the delay line of the DWG. It has been shown
that this procedure allows a physics-based sound simu-
lation of linear vibrating strings with low computational
cost. Limitations of this combination have been found
for very dispersive vibrations and for frequent parameter
changes.
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