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ABSTRACT

In this paper a novel method is presented for the physics-based
sound synthesis of the piano, based on digital waveguides. The ap-
proach combines the advantages of the commuted synthesis tech-
nique and the methods using a nonlinear hammer model. The inter-
action force of the hammer-string contact is computed by an aux-
iliary digital waveguide connected to a nonlinear hammer model.
This force signal is used as a target impulse response for design-
ing a low-order digital filter real-time. The piano sound is calcu-
lated by filtering the soundboard response with the hammer filter
and feeding this signal to a synthesizer digital waveguide. A new
method is presented for separating the contribution of the interac-
tion force and the soundboard in measured piano tones. For mod-
eling beating, a new technique is proposed based on a simplified
pitch-shift effect. Considerations on modeling the effect of sustain
pedal are also given. It is shown that the technique of designing
the hammer filter real-time is not only useful for digital waveguide
modeling, but it can be combined with sampling synthesis too.

1. INTRODUCTION

The earliest piano model applying digital waveguides was pre-
sented in 1987 [1], using a semi-physical hammer model. Fully
physical interaction models for the piano were presented later [2,
3]. The advantage of these approaches is that the dynamic proper-
ties of the hammer-string interaction are easily reproduced. Thus,
the model reacts to the change of impact velocity in a physically
meaningful way. A high-order system is needed for simulating
the radiation effect of the soundboard properly. The piano models
based on the straightforward technique provide good sonic results,
except the attack of the notes. This is a serious shortcoming, since
the attack is a distinctive property of piano sound.

A piano model using commuted synthesis was presented in
[4, 5], where the hammer is modeled as a linear filter. There-
fore, the components of the system can be commuted. The sound-
board filter is implemented as a wavetable, whose content is fed to
the digital waveguide through a hammer filter. The wavetable of
soundboard response is computed by soundboard measurements
with impact hammer excitation or modeled by white noise led
trough a time-variant filter. This way, the same problem arises
with the attack of the tones as for the straightforward technique.
An advantage is that no soundboard filter is needed. As a draw-
back, different hammer filters must be designed off-line for all the
notes and hammer parameters, which makes the interaction of the
musician hard to take into account.

Here a novel synthesis method is presented, combining the
advantages of the previous approaches. For the synthesis, the ap-
proach of commuted piano is taken, but the hammer filters are de-

signed real-time. The target response for the filter design is com-
puted by an auxiliary digital waveguide connected to a nonlinear
hammer model. This way, a fully physical approach is used for
that part of the model only which is controlled by the musician.
The soundboard wavetable is computed from recorded piano tones
by inverse filtering, resulting in proper reproduction of the attack.

The paper is organized as follows: first, the basic ideas of
string and hammer modeling are presented. This is followed by
the description of the proposed nonlinear commuted piano model.
Three strategies for designing and implementing the hammer filter
are described in a separate section. After that, some developments
are presented to the basic model concerning string coupling. Con-
nections to sampling synthesis are also outlined. Summary and
future plans conclude the paper.

2. STRING AND HAMMER MODELING

2.1. The digital waveguide

The most efficient approach for string instrument modeling is the
digital waveguide [6]. The method is based on the time-domain
solution of the one-dimensional wave equation. By discretizing the
traveling wave solution with respect to time and space, the model
reduces to a pair of delay lines. By assuming linearity, losses and
dispersion of the string can be lumped to one termination and taken
into account by digital filters. When the loss and dispersion filters
and the two delay lines are consolidated, the model becomes a
filter and a delay line in a feedback loop. The transfer function of
such a model is the following:

���������
	 �
�� ������������� (1)

where
��������	��������������������������������

is the loop filter made up of
three parts. The filter

���������
is responsible for modeling the losses

and
���������

for modeling the inharmonicity of the string. The frac-
tional delay filter

�����������
is used for fine-tuning the fundamental

frequency of the digital waveguide model. This structure
� �������

will be used in this study for synthesizing the tone with the com-
muted synthesis approach.

When the behavior of a specific point on the string has to be
computed, this model has to be amended by simple comb filters.
This is the case when a hammer model is connected to the digital
waveguide. The interaction force ! �#"$� , which forms the basis of
hammer filter design, will be computed by the auxiliary waveguide�&%'�����

in this way.
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2.2. The hammer model

Inspite of its simplicity, considering the hammer as a mass con-
nected to a nonlinear spring seems to describe the behavior of real
hammers amazingly well [7]. The continuous-time equations are
the following:

! ��� � 	��$����� ��� � � 		��
� ��� ��� ��� ��� ����� ��� ������ � ����� ��� ����� (2)

! ��� � 	 ��������� � � ��� �� � � (3)

where ! ��� � is the interaction force,
��� ��� � 	 � � ��� � � �&� ��� � is the

compression of the hammer felt, where
� � ��� � and

�&����� �
are the

positions of the hammer and the string, respectively. The hammer
mass is referred by ��� , 
 is the hammer stiffness coefficient,
and ! is the stiffness exponent ranging from 2 to 4. Due to this
nonlinearity, the tone spectrum varies dynamically with hammer
velocity.

Eqs. (2) and (3) have to be discretized with respect to time
to fit for connecting the hammer to the digital waveguide model.
However, there is a mutual interdependence between two vari-
ables: the hammer force ! ��� � depends on the hammer displace-
ment

� � ��� � according to Eq. (2), while
� � ��� � is computed from

! ��� � by Eq. (3). This results in a delay-free loop, which cannot
be implemented directly. Inserting an additional delay element in
the loop may results in numerical instability. This can be solved
by rearranging the equations with the K-method [2] or by increas-
ing the sampling rate of the hammer model [3]. In this study, the
multi-rate approach of [3] is used.

3. THE NONLINEAR COMMUTED PIANO

3.1. Model structure

The model structure is presented in Fig. 1. First, the auxiliary
waveguide

�&%������
connected to a nonlinear hammer model is run

to compute the interaction force ! �#"$� . This string model
��%'�����

can be relatively simple, i.e., the dispersion and loss filters can be
omitted, since they do not influence the interaction force ! �#"$� sig-
nificantly. The string model

�&%'�����
can be even simplified to one

single delay line, modeling the reflected pulses coming from the
agraffe, since the reflected pulses from the far end of the string
usually return only after the hammer has left the string. After the
hammer leaves the string (typically after 100 samples at

����	 "#"�$ �
kHz), the operation of the auxiliary model is stopped, requiring
a small amount of computation only, meaning about 500 opera-
tions. Note that in this study “number of operations” refers to the
approximate number of MAC (multiply and accumulate) instruc-
tions, since we are considering DSP implementation.

Next, a hammer filter
� � ����� is designed real-time. As the sim-

plest solution, ! �#"$� can be directly implemented as an FIR filter.
More efficient approaches will be presented in Sec. 4. The hammer
filter

� � ����� is then used for commuted synthesis: the soundboard
response % �'& �#"$� is filtered through

� � ����� and lead to the synthe-
sizer waveguide model

� � �����
. This has to be done until the end

of the wavetable is reached: afterwards the string model
� �������

vi-
brates freely. This means that both the reading from the wavetable
and the filtering with

� � ����� is stopped. Note that the synthesizer
waveguide can start to sound only after ! �#"$� is computed and the
filter

� � ����� is designed, leading to a small amount of latency in
the system.
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Figure 1: Model structure of the nonlinear commuted piano.

3.2. Parameter estimation

In this section, we describe the parameter estimation done off-line.
The hammer filter design, which is done during the synthesis real-
time, will be outlined in Sec. 4.

Originally, the motivation of using commuted synthesis was
eliminating the need of soundboard filters. Here the reason is
rather having a proper attack for the synthesized piano tones. There-
fore, the approach of inverse filtering [8] is used. First, the loop fil-
ter of the synthesizer waveguide

� �������
is designed from recorded

piano tones by the methods described in [9] and [10]. The recorded
sound % �#"$� is filtered by the inverse of the synthesizer waveguide
�)( ��� ����� . This can be done, since the inverse filter �)( � � ����� is al-
ways stable, when the corresponding loop filter

�������
is stable, as

can be seen from Eq. (1). Now the inverse filtered signal %+* �#"$�
combines the contributions of the soundboard and the hammer-
string interaction.

The effects of the soundboard and the hammer strike have to
be separated, since they will correspond to different parts of the
piano model of Fig. 1. We propose the following: first, the interac-
tion force % � �#"$� is approximately measured by attaching a small
accelerometer to the piano hammer [7], parallel with recording the
sound pressure signal % �#"$� . Then, % � �#"$� is used to deconvolve
the inverse filtered signal %+* �#"$� to produce the soundboard contri-
bution % �'& �#"$� , since by our definition %,* �#"$��	 % �'& �#"$�.- % � �#"$� ,
where

-
denotes convolution.

Now the signal % �'& �#"$� after windowing (typically up to 2000
samples) can be used as the content of the wavetable, since the
contribution of the hammer and the string are filtered out. Note
that this procedure could be also used for improving the quality
of (linear) commuted piano models. The benefit of the inverse-
filtering approach is that if the impulse response of the hammer
filter

� � ����� is the same as the measured force % � �#"$� , the synthe-
sized tone becomes exactly like the original up to the length of the
soundboard wavetable, preserving the attack. The drawback is that
separate wavetables are needed for each note of the piano.

Unfortunately, the string model
� �������

is only a rough approx-
imation of the real string behavior. Thus, % �'& �#"$� will contain har-
monic components besides the response of the soundboard. Due to
this, when the end of the wavetable is reached, the sound changes
significantly. If the wavetable is short and if its last part is faded
out smoothly, this change is inaudible. Nevertheless, it becomes
a problem when we try to improve the quality of the attack tran-
sients by increasing the length of the soundboard wavetable (e.g.,
up to 5000 samples). This can be avoided by separating the har-

DAFX-2



Proc. of the 5th Int. Conference on Digital Audio Effects (DAFx-02), Hamburg, Germany, September 26-28, 2002

monic (or deterministic) part % ��� � �#"$� of the recorded piano sound
from the residual transient part %�� � ���#"$� prior to inverse filtering
[8]. Now the inverse filtered harmonic and residual parts can be
windowed to different lengths. Thus, the length of the excitation
table can be increased without having any effect on the harmonic
contents of the tone.

4. THE HAMMER FILTER

As the hammer filter
� � ����� should be designed real-time, not only

the filter should be simple, but also the design algorithm, to create
only a small latency in the system. Many approaches can be taken,
we present here three examples working well in practice. These
three techniques lead to different sound quality and different com-
putational requirements.

4.1. FIR filter

As a straightforward solution, the hammer force ! �#"$� computed
by the auxiliary model can be directly implemented as an FIR fil-
ter. The “filter design” takes no computation at all, and the ham-
mer filter

� � ����� is perfectly accurate, but computationally heavy.
Depending on the length of ! �#"$� , filtering consumes about 100
operations per sample. This filtering has to be done in the begin-
ning of the tones, that is, until the end of soundboard wavetable
is reached, which is typically after 2000 samples, leading to a to-
tal number of filtering operations of 200000. This way, the average
load of the signal processing device remains still acceptable. How-
ever, it might be a problem that the computational load is uneven:
each note requires about 5 times more computation at its first 2000
samples compared to the samples computed after the hammer fil-
tering is ended.

As an example, a DSP running at 40 MHz allows about 1000
instructions per sample. If the half its power is used for running
the synthesizer string models, 500 instructions remain for hammer
filtering. This means that 5 hammer filters can be computed in
the same time, i.e., five tones can be started within 2000 samples
(ca. 50 ms), meaning 100 tones in a second, which is appropriate
for most of the musical pieces. However, when more than 5 notes
are started in the same time by playing a chord, some notes have to
wait as much as 50 ms to start. Obviously, this can be completely
avoided if we allow the simultaneous computation of 10 hammer
filters, since the pianist can press maximum 10 keys in the same
time, but this increases the computational requirement even more.

4.2. IIR filter

The attack sound (the knock) of the high notes can be perfectly
rendered only by using longer wavetables ( � 5000 samples), and
in this case the FIR filtering approach of Sec. 4.1 is too demand-
ing. This is the case for those applications as well, where 1000
instructions per sample are not available. Therefore, we present
here a different solution based on IIR filters, strongly reducing the
computational demand.

The hammer filter
� � ����� is now made up of two parts: the

first is an integrating FIR filter
� ��� * ����� providing an impulse re-

sponse of linear segments [11]. This is connected in series with
a second filter

� ��� ������� , which is a low-order IIR filter equalizing
the response. The integrating FIR filter

� ��� * ����� is designed to pro-
duce an output connecting the local minima and maxima of ! �#"$�
with straight lines. The filter

� ��� * ����� consists of a sparsely tapped
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Figure 2: Hammer filter design: the target response ! �#"$� (solid
line) and the impulse response of the hammer filter

� � ����� (dashed
line) for playing forte and mezzoforte (the latter is multiplied by a
factor of 5 for picture clarity) on a

�
	
string.

delay line and two integrators connected in series. In this case, the
delay line is implemented by having multiple reading pointers in
the wavetable. The effect of the two integrators is precomputed in
the soundboard wavetable.

The output of
� ��� * ����� is smoothed by the equalization filter� ��� ������� , which is a low order IIR filter computed by least-squares

filter design. The equalization filter
� ��� ������� is calculated by min-

imizing the � � norm of the error vector � :

� 	��� ��� ��� � � 	 ����� � ��� �� � (4)

where � is equal to the desired output ! �#"$� and
�

is the parameter
vector containing the coefficients of

� ��� � ����� . The matrix


con-
sists of the past values of the desired output ! �#"$� and the present
and past values of input, which is the hammer pulse computed
by linear segments with

� ��� * ����� . The solution
��� � � is obtained

by simple least-squares minimization. Note that this is optimal in
the least-squares sense for FIR filters only. For designing IIR fil-
ters, the previous output values in


are not the real outputs of

the designed filter but the outputs given by the specification. This
distorts our results, but practice shows that the designed IIR fil-
ters are well behaving. More sophisticated system identification
approaches would lead to more accurate filters, but higher compu-
tational demand on filter design.

As for computational requirements, the most demanding parts
of Eq. (4) are

 � 
and

 � � , taking ��� � � ��� operations,
where � is the length of � and � is the length of

�
. As an exam-

ple, the response of the hammer filter
� � �����
	 � ��� * ������� ��� � ����� is

depicted in Fig. 2, dashed line for a
�
	

piano note at two dynamic
levels. Here a

"�� �
order all-pole filter

� ��� ������� is used for equaliza-
tion, requiring about 3000 instructions for filter design. Comput-
ing the parameters of

� ��� * ����� takes about 300 instructions. Run-
ning the filter

� � ����� for synthesis consumes 15-20 instructions,
depending on the number of linear segments in

� ��� * ����� .
The latency due to calculating ! �#"$� and designing

� � �����
strongly depends on how many notes are started in the same time.
Let us assume that 100 operations per sample are available for
hammer filter design, which is 10 % of the computational power
of a DSP running at 40 MHz. The required ca. 4000 operations
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Figure 3: Designing hammer filter based on decomposing the force
signal ! �#"$� (dashed line) to the single pulse of an infinite string
! ���#"$� (solid line) and the contribution of the reflections ! � �#"$�
(dotted line). The dash-dotted line refers to the response of the 3

���

order IIR filter designed in the least-squares sense by Eq. (4). For
better visibility, the signals are scaled proportionately such that
the maximal value of ! � �#"$� has been set to unity.

result in a 40 sample delay, which is less then 1 ms at
��� 	 "#"�$ �

kHz for one note. If 10 notes are started together, this means 10
ms, which is still inaudible. Increasing the computational power
used for hammer filter design reduces this delay even more.

4.3. IIR filter based on force signal decomposition

In some special cases, the computational requirement of 15-20 op-
erations per sample for hammer filtering can be still high. This is
the case for modeling the effect of the sustain pedal, where the fil-
tering with

� � ����� has to be done for the length of the whole note
(see Sec. 5.2.2). Therefore, we present an even simpler solution,
based on the idea proposed in [5].

When the hammer hits an infinite string, where no reflected
pulses are present, the hammer force consists in one single pulse
! ���#"$� with a sharp attack and a slow, nearly exponential decay, as
it can be seen in Fig. 3, solid line. If the string is terminated, the
reflected pulses will interfere with the original, producing multi-
ple maxima in the force signal. This is depicted by dashed line in
Fig. 3. By deconvolving the force signal ! �#"$� with the impulse
of the unterminated string ! ���#"$� , the contribution of the reflected
pulses !�� �#"$� can be obtained (dotted line in Fig. 3), since we de-
fine !�� �#"$� such that ! �#"$� 	 !�� �#"$� - ! ���#"$� . In [5] this idea was
used for designing the hammer filters off-line, and the two different
parts were implemented as separate filters. The filter correspond-
ing to !�� �#"$� was kept the same for all the different dynamic levels
of a note, and only the behavior of the single pulse ! ���#"$� was
varied depending on hammer velocity.

We have found that !�� �#"$� varies significantly by dynamic
level, so it should be kept constant only when sound quality re-
quirements are lower. If we hold ! � �#"$� constant, the soundboard
wavetable can be prefiltered by its response. During synthesis,
only the single pulse ! ���#"$� is computed and the hammer filter
is now designed from this pulse real-time. The least-squares ap-
proach of Eq. 4 is used for designing the hammer filter

� � �����

similarly to Sec. 4.2, but now the input of the system identification
is a unit pulse and the output is the single pulse of ! � �#"$� . As it
can be seen in Fig. 3, a 3

���
order IIR filter produces almost an ex-

act match of the response. The real-time least-squares filter design
consumes about 5600 operations, and the 3

���
order IIR filter takes

7 filtering instructions per sample for each note.
The latency, estimated as described at the end of Sec. 4.2 is

about 60 samples, i.e., 1.5 ms at
���	 "#"�$ � kHz for one note. If 10

notes are started together, it is raised to 15 ms at a computational
load of 100 operation per sample.

4.4. Comparison of filter design approaches

Table 1 shows the estimated computational costs of the filtering
approaches presented in this section. The example is the

�
	
note

taken in Figs. 2 and 3, the length of the force signal ! �#"$� is 100
samples long. The table shows that the total number of compu-
tations for one note are greatly reduced by taking the IIR filter-
ing approach of Sec. 4.2 compared to FIR filtering. This differ-
ence is even higher when the length of wavetable is 5000 samples.
The sound quality decreases slightly compared to using FIR filters.
The IIR filter design of Sec. 4.3 based on decomposition reduces
the computational requirements even more, but the sound quality
drops as well. Therefore, we suggest using the method of Sec. 4.2
for synthesis and the method of Sec. 4.3 for special effects, such
as modeling the sustain pedal in Sec. 5.2.2.

FIR IIR Decomp. IIR
Filter design 0 3000 5600
Filtering (ops./sample) 100 20 7
Total (WT ln. = 2000) 200000 43000 19600
Total (WT ln. = 5000) 500000 103000 40600

Table 1: Estimated number of operations for the three different
hammer filter approaches of Sec. 4.1-4.3. The “WT ln.” refers to
the length of the soundboard wavetable in samples.

5. FURTHER DEVELOPMENTS

As all the strings of the piano are attached to the same bridge-
soundboard system, their vibrations are inherently coupled. This
coupling can be considered at two levels: one is the coupling be-
tween strings belonging to one key, resulting in beating and two-
stage decay. The other is the coupling between different notes,
producing the sustain-pedal effect and determining the character-
istic sound of the undamped high strings. By modeling these phe-
nomena the sound quality of the piano model can be improved
significantly. This will be outlined in the next sections.

5.1. Beating and two-stage decay

Beating and two-stage decay is a distinctive characteristic of piano
sound, coming from the interaction of the two transversal polariza-
tions and the two or three strings belonging to one single key. This
can be simulated by running more string models in parallel, with
the appropriate coupling [12]. Although the method provides ac-
curate results when implemented in the frequency domain, design-
ing coupling filters for time domain modeling is still an unsolved

DAFX-4



Proc. of the 5th Int. Conference on Digital Audio Effects (DAFx-02), Hamburg, Germany, September 26-28, 2002

problem. Therefore, we describe here two simpler approaches,
considering the problem rather from the perceptual point of view.

5.1.1. The multi-rate resonator bank

Informal listening tests show that the existence of beating in piano
sound changes the perceived quality significantly, but the evolution
of partial envelopes do not have to be precisely modeled. Based
on this fact, the multi-rate resonator bank was presented in [13].
There a resonator bank is run parallel with the basic string model���������

. It consists of 5 to 10 resonators, whose frequency, decay
time, initial amplitude and phase parameters can be set separately.
Accordingly, only those partial envelopes are simulated precisely,
where the beating and the two-stage decay are significant, the oth-
ers have simple exponential decay determined by the basic string
model

���������
. By running the resonators at a lower sampling rate,

the computational demand is reduced to 5–10 instructions per sam-
ple.

The parameter estimation is done off-line by analyzing the par-
tial envelopes of the recorded tones. It is relatively simple, since
there is no need for coupling filter design, and the stability prob-
lem of the coupled strings is also avoided. A drawback that the
parameters of the resonator bank are not physically meaningful,
thus they cannot be changed intuitively by the user.

5.1.2. The pitch-shift method

Here we present a new method for simulating beating in a very
simple way. The idea is based on the fact that when two inde-
pendent string models are sounded together mistuned by 1 or 2
cents (where 100 cents correspond to one semitone), it already
produces quite natural beating sound. Obviously, the same effect
can be obtained, when the signal of one string model is mixed to
its pitch-shifted version. Pitch-shifting could be applied as a post-
processing technique for all the notes together, but having differ-
ent mistuning for the different notes, i.e., having separate pitch-
shifters for all the notes produces more natural sound.

The simplest pitch-shifter is a circular buffer, whose content is
read slower than it is written. Ideally, it is a lengthening delay line.
The problem with pitch shifters is that when the delay line gets too
long, the reading pointer has to jump back by a certain amount,
producing some artifacts. In this special case this is simple, since
the period length of the tone is known, so the pointer can jump
back exactly one period. If more memory is available, this “jump
back” can be even omitted: the lengthening delay line gets only
1000 samples long for 2 cents of mistuning after 20 seconds at� ��	 "#"�$ � kHz. This simplifies the structure even more.

In practice, the delay line has to be completed by a fractional
delay filter. We have found that linear interpolation is suitable for
that purpose. Accordingly, modeling beating can be implemented
in a very simple way. The transfer function of the structure is the
following:

� � �	 � ����� � ��� � ��� ��� � � � ��� �	����
�
(5)

where � � � is the total lenght of the delay made up of an integer
part � and a fractional part

�� ��� � . The mixing parameter� � � � � controls the intensity of beating. From Eq. (5) comes
that the technique can also be considered as a time-varying comb
filter, i.e., a special type of flanger effect.

An advantage of the technique is that the user has two intu-
itive parameters: the amount of mistuning and the ratio of mixing
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Figure 4: Model structure for synthesizing the sustain-pedal ef-
fect. Note that blocks required for hammer filter design are not
depicted.

the two signals. Clearly, the beating is not modeled precisely, but
the sound quality is significantly improved when compared to the
model without beating simulation.

5.2. The sustain-pedal effect

Another important feature of the piano sound is the sustain-pedal
effect. When this pedal is depressed, the dampers of all the strings
are opened, thus all the strings are excited by the sounding notes.
Here we describe two strategies for modeling this phenomenon.

5.2.1. Coupling of all the strings

In [2], all the string models were coupled to the same termina-
tion, which was modeled by a complex filter having multiple reso-
nances. This produces natural pedal effects when all the 88 string
models of the piano are run parallel, but this might be too demand-
ing for some applications.

5.2.2. The commuted pedal effect

In [5] the sustain-pedal effect was proposed to be simulated by
recording the soundboard response with open strings and using
that as the soundboard wavetable. Here we suggest the combina-
tion of the original, inverse filtered wavetable % �'& �#"$� and a com-
mon sustain-pedal signal % � �����#"$� .

The soundboard response with the dampers lifted is recorded
by a force hammer. This may be done at two or three different
positions, since the response varies significantly when the low and
high notes are compared. Then, the contribution of the soundboard
has to be separated from that of the coupled string vibrations, since
it is already included in % �'& �#"$� . This is done by measuring the
response at the same position with the dampers down and by sub-
tracting the dry response from the one measured with open strings.

At the synthesis, the contents of the soundboard wavetable% �'& ����� and the pedal effect % � �����#"$� are added together before led
to the string model

���������
. However, % � �����#"$� may be 20 sec-

onds long, therefore filtering with a complicated hammer filter of
Sec. 4.2 is too demanding from a computational point of view.
Therefore, we suggest to compute the hammer pulse ! ���#"$� and
design the filter real-time as described in Sec. 4.3 and use that as
hammer filter

� ��� � ��������� for % � �����#"$� . This is displayed in Fig. 4.
The contribution of the reflected pulses ! � �#"$� now cannot be used
to prefilter % � ��� � ��
 , since !�� �#"$� is different for all the notes and
now we are using only one common pedal wavetable % � �����#"$� for
one region of the soundboard. The general shape of the spectrum is
determined by ! ���#"$� anyway, and the sustain pedal is a secondary
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effect, therefore omitting ! � �#"$� does not influence sound quality
significantly.

The commuted pedal-effect is computationally much less de-
manding compared to the coupled strings approach presented in
[2]. However, it has one serious drawback: if a note is already
started, the pedal effect cannot be added afterwards. In other words,
only those notes can have proper sustain-pedal effect, which were
started after the sustain pedal was depressed. Some tricks might be
used, e.g., starting to read the contents of pedal wavetable % � �����#"$�
from the position corresponding to the time elapsed after the note
has been started to sound, but this is far from an exact solution.

Nevertheless, the commuted pedal-effect can be used for mod-
eling the behavior of the highest octave without any drawbacks.
There no dampers are present, therefore all the high strings start to
sound with open strings around. The approach remains the same
as outlined above, but now the soundboard response around the
region of high strings has to be measured with the dampers down.
The contribution of the soundboard can be separated from that of
the sympathetic string vibrations by a second measurement with
all the high strings damped by rubber or felt.

6. CONNECTIONS TO SAMPLING

In sampling synthesis, the separate tones of the piano are recorded
and then played back by looping the sustained part after the attack.
Time-variant filters and amplifiers account for the spectral change
as a function of time. For the variation of the timbre with respect
to key velocity, simple lowpass filters are used. These usually do
not produce the feel of real piano dynamics.

The method presented here could be used for improving the
quality of sampling synthesizers by replacing the dynamics filter
with

� � ����� calculated by a real-time physical model. In this case,
the wavetables of the sampler would contain piano samples in-
verse filtered with the impact force % � �#"$� , measured as outlined in
Sec. 3.2. Besides leading to better dynamic behavior, the system
would provide the user a more intuitive control on the timbre by
adjusting hammer parameters instead of filter coefficients.

7. CONCLUSION

The paper presented the idea of nonlinear commuted piano by
combining the advantages of previous approaches. The method
provides a sound quality comparable to sampling synthesizers at
an affordable computational cost, while providing a “physical”
control for the musician. Three different techniques were pre-
sented for the design and implementation of the hammer filters.
Different techniques were described for modeling the string cou-
pling and the pitch-shift based beating model was proposed as the
most efficient implementation. The sustain-pedal effect was also
considered and the technique was found to be useful in modeling
the sympathetic vibrations of the open strings in the high register.

As for future work, different approaches could be developed
and compared for hammer filter design. Modeling the sustain
pedal with the commuted approach for notes started before the
dampers have been raised is also an open problem. Considera-
tions have to be made how the restrike of the same string should
be modeled. The proper modeling of the effect of dampers is also
a part of future plans.
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