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Department of Measurement and Information Systems
Budapest University of Technology and Economics 
    {bank|sujbert}@mit.bme.hu

ABSTRACT

In this paper a mixed-paradigm piano model is presented. The ma-
jor development is the ability of modeling longitudinal string vi-
brations. Longitudinal string motion is the reason for the metallic
sound of low piano notes, therefore its modeling greatly improves
the perceptual quality of synthesized piano sound. In this novel
approach the transversal displacement of the string is computed
by a finite-difference string model and the longitudinal motion is
calculated by a set of second-order resonators, which are nonlin-
early excited by the transversal vibration. The soundboard is mod-
eled by a multi-rate filter based on measurements of real pianos.
The piano model is able to produce high-quality piano sounds in
real-time with about 5–10 note polyphony on an average personal
computer.

1. INTRODUCTION

As the piano has hundreds of strings, the bottleneck of piano mod-
eling lies in the strings. For string modeling the digital waveguide
[1] is by far the most efficient approach. Instead of discretizing the
wave equation, it discretizes its traveling-wave solution. Since in
most of the cases the string motion has to be computed correctly
at the excitation and observation points only, the model is reduced
to a delay line and a low-order (N = 10..20) filter in a feedback
loop.

Already high-quality real-time physical models of the piano
have been presented based on digital waveguide modeling [2, 3,
4, 5]. However, in these models the effect of longitudinal vibra-
tions was neglected. The quality of these models can be greatly
improved by including the longitudinal motion of piano strings. In
the low range of real pianos the pitch of the longitudinal compo-
nents can be perceived by the listener, and the subjective quality
of the instrument is highly dependent on the frequency of these
modes [6], pointing out that the longitudinal string motion has an
important perceptual effect.

The longitudinal vibration of piano strings is made up of the
free vibration of longitudinal modes and the forced motion excited
by the transversal displacement. The spectral peaks corresponding
to the forced motion are called “phantom partials” [6]. We have
presented a detailed analysis on how these partials are generated
in [7]. Fig. 1 shows an extract of the spectrum of a G1 piano note,
recorded at 2 m distance from the piano. The phantom partials
are clearly visible between the transversal partial series, so is one
longitudinal mode (marked by circle), which has even larger am-
plitude than the neighboring transversal ones.

Accordingly, it would be highly beneficial to incorporate the
longitudinal modes in the efficient digital-waveguide based piano
models. Borin [8] have amended his real-time piano model with

1000 1200 1400 1600 1800 2000
−40

−30

−20

−10

0

10

20

30

40

50

60

Frequency [Hz]

M
ag

ni
tu

de
 [d

B
]

Figure 1: Spectrum of the first second of a G1 piano note (forte
playing) between 1 and 2 kHz. A prominent longitudinal mode is
marked by a circle.

independent digital waveguides for the longitudinal polarization.
We have also made experiments with similar solutions [7]. In these
models the longitudinal modes are excited during the hammer-
string contact only, therefore the forced longitudinal motion is not
simulated. These simple models capture some aspects of low pi-
ano tones, but sound unnatural. The longitudinal modes sound sep-
arated from the transversal ones, unlike in real piano sounds and
in finite-difference simulations. We suppose that the key to having
coherence between transversal and longitudinal components is that
the longitudinal vibration is continuously excited by the transver-
sal one.

In the next Sections, we will present a new approach to string
modeling, which is able to model the continuous interaction be-
tween the transversal and longitudinal polarizations efficiently. Af-
ter the derivation of the basic equations a finite-difference model
is described. This is followed by the new approach, which is ba-
sically the simplification of the finite-difference model, having the
same perceptual quality at around 10% computational cost. Then,
parameter estimation techniques are described, and simulations
presented. Possible directions of future research conclude the pa-
per.
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2. THE BASIC EQUATIONS

A real piano string is vibrating in two transversal planes, and in the
longitudinal direction as well. Principally, piano hammers excite
one transversal polarization of the string, the other two are gaining
energy through coupling. These polarizations interact with each
other as a result of nonlinear behavior of the string.

For simplicity, let us assume that the string is vibrating in one
plane, thus, one transversal and one longitudinal polarization is
present. We will see later that modeling these two polarizations
produces high-quality piano sound. Naturally, the model can be
easily extended to comprise two transversal polarizations.

When a transversal displacement occurs on the string, the string
elongates. This results in a force exciting a longitudinal wave
in the string. The longitudinal wave modulates the tension of
the string, which influences the transversal vibration. Note that
throughout this Section losses and dispersion are not considered,
since now we are mainly interested to understand the coupling
between the two polarizations. (A more precise derivations in a
vector-based formulation can be found e.g., in [9]).
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Figure 2: The string element.

The element of length dx at equilibrium will have the length
ds, as depicted in Fig. 2, which is calculated as follows:

ds2(x, t) = (ξ(x + dx, t) − ξ(x, t) + dx)2 +

+ (y(x + dx, t) − y(x, t))2 (1)

As dx is infinitesimally small, the differences are substituted
by differentials:

ds =

√

(

∂ξ

∂x
+ 1

)2

dx2 +

(

∂y

∂x

)2

dx2 (2)

where y = y(x, t) and ξ = ξ(x, t) are the transversal and lon-
gitudinal displacements of the string with respect to time t and
space x. As the length of the element changes varies the tension
T = T (x, t) (which equals to T0 at rest) of the string according to
the Hooke’s law:

T = T0 + ES

(

ds

dx
− 1

)

(3)

where E is the Young’s modulus and S is the cross-section area of
the string. By substituting Eq. (2) into Eq. (3) the string tension
can be approximated as:

T ≈ T0 + ES

(

∂ξ

∂x
+

1

2

(
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)2
)

(4)

As the segment ds is nearly parallel to the x axis, the longitudinal
force on the segment ds is the difference of the tension at the sides
of the segment:

Fl ≈
∂T

∂x
dx ≈ ES

(
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2
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This force acts on a mass µdx, where µ is the mass per unit length.
Accordingly, the longitudinal vibration is approximately described
by the following equation:

µ
∂2ξ

∂t2
= ES

∂2ξ

∂x2
+

1

2
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∂
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)2

∂x
(6)

which is the standard wave equation with an additional force term
depending on the transversal vibration of the string according to a
second-order nonlinearity. Note that the transversal string motion
can only excite the longitudinal vibration if the square of the string
slope is significant, i.e., the transversal displacement is relatively
large.

After similar derivations, the wave equation for the transversal
motion can be written as follows:

µ
∂2y

∂t2
= T0

∂2y

∂x2
+ ES

∂
(

∂y

∂x

∂ξ

∂x

)

∂x
(7)

which is again a standard wave equation with an additional force
term depending on the product of transversal and longitudinal string
slope. Consequently, the longitudinal vibration influences the trans-
versal one at large displacements only.

By looking at Eqs. (6) and (7) we can conclude that the cou-
pling of transversal and longitudinal string motion depends on the
magnitude of vibration according to a square law and that the cou-
pling is bi-directional.

3. FINITE-DIFFERENCE MODELING

A straightforward choice for computing the solution of the above
equations is finite-difference modeling, but first the partial differ-
ential equations Eqs. (6) and (7) have to be extended by additional
terms. The equation for transversal vibration including dispersion
and frequency-dependent losses takes the form:

µ
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)
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(8)

which is similar to the equation used in [5, 10], except the right-
most term corresponding to the effect of longitudinal vibration to
the transversal one. The κ sign in the dispersion term refers to
the radius of gyration of the string, and the constants b1 and b2

determine the decay time τk of partial k:

τk = −

1

b1 + b2ω2
k

(9)

where ωk is the angular frequency of the corresponding partial
[5, 10].

Likewise, the equation for longitudinal vibration has to be
completed by frequency-dependent loss terms similar to what was
used for transversal vibration in [5, 10]:

µ
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= ES
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∂x2
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DAFX-2

 

 

Proc. of the 7 th Int. Conference on Digital Audio Effects (DAFx'04), Naples, Italy, October 5-8, 2004

— DAFx'04 Proceedings —90 90



Proc. of the 7th Int. Conference on Digital Audio Effects (DAFx’04), Naples, Italy, October 5-8, 2004

where b1l and b2l set the decay times of the longitudinal modes
in the same way as b1 and b2 for the transversal vibration (see
Eq. (9)). The longitudinal modal frequencies are not in a per-
fect harmonic series in real pianos [7]. The simplest (although not
physically meaningful) way of achieving this effect in the model
is having a not uniform mass density µ(x) in Eq. (10) along the
dimension x.

As the string is assumed to be hinged at both ends, the corre-
sponding boundary conditions become [11]:

y(0, t) = y(L, t) = ξ(0, t) = ξ(L, t) = 0

∂2y(x, t)

∂x2

∣

∣

∣

∣

x=0

=
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∂x2

∣

∣

∣

∣

x=L

= 0 (11)

The solution of the partial differential equations is computed
on a grid xm = m∆x, tn = n∆t by substituting the differentials
by finite differences:
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where u is used as a general notation for either ξ or y. The fourth-
order term in Eq. (8) is computed by using the first line of Eq. (12)
twice. The string model is then connected to a simple finite-differ-
ence hammer model simulating the hammer-string interaction [11].
The resulting finite-difference equations are explicit, meaning that
the next values of y(xm, tn) and ξ(xm, tn) can be easily com-
puted from the previous values without the need of iterations.

We have developed such a model consisting of 100 string ele-
ments [7]. The finite-difference string model produces high sound
quality, but requires a large amount of computation. It is mainly
because of the high traveling speed cl in the longitudinal direction,
which makes large sampling rates (e.g, fs = 500 kHz) neces-
sary in order to avoid numerical instability. With today’s personal
computers this would mean one note polyphony (i.e., monophony).
However, for experimental purposes, this kind of approach is still
beneficial. For example, a commercial computer program based
on similar principles was written by Bernhard [12], to help piano
builders in scale design.

A complete finite-difference string model made it possible to
experiment whether it is reasonable to neglect the coupling from
longitudinal to transversal motion or not. We have found that al-
though the produced waveforms are slightly different, the percep-
tual difference is insignificant. In general, this means that it is
enough to model the coupling from transversal to longitudinal vi-
brations, allowing large simplifications, which will be presented in
Sec. 4.

However, if the transversal-to-longitudinal excitation force (the
rightmost term of Eq. (6)) has strong peaks at the longitudinal
modal frequencies, the longitudinal modes may reach extreme am-
plitude levels if the longitudinal-to-transversal coupling is neglect-
ed. This would not happen if the coupling from longitudinal mo-
tion to the transversal one was also realized, since in that case the
longitudinal mode would diminish the amplitude of those transver-
sal partials from where it originates [7]. On the other hand, piano
builders try to avoid these constellations anyway, therefore we can

do the same by setting the longitudinal modal frequencies different
from the peaks of the transversal-to-longitudinal excitation force
(see also Sec. 5).

4. THE NEW APPROACH

The starting point of our composite model is the finite-difference
approach described in Sec. 3, as the transversal displacement needs
to be known precisely for each point along the string for computing
the transversal-to-longitudinal coupling precisely.

The basic idea allowing the simplification of the original finite-
difference string model described in Sec. 3 is that the longitudinal
displacement should be known at the termination only, since the
feedback from the longitudinal motion to the transversal one is ne-
glected. Therefore, there is no need for a finite-difference model
for computing longitudinal vibrations, which eliminates the prob-
lem of high (e.g., 500 kHz) sampling rates.

Accordingly, the transversal string displacement y(x, t) is com-
puted by a finite-difference model similar to the Eq. (8) excluding
the coupling from longitudinal vibrations at audio sampling rate
(fs = 44.1 kHz). On the contrary, the longitudinal motion is de-
scribed by it’s modal form [13]:

ξ(x, t) =
N
∑

k=1

ak sin(π
kx

L
) cos(2πfkt)e

−

t

τ
k (13)

where k is the mode number, N is the total number of modes to
be computed, L is the length of the string, ak, fk , and τk are the
amplitude, frequency, and decay time of mode k, respectively. The
force at the bridge Fl,br(t) can be approximated by:

Fl,br(t) ≈ ES
∂ξ(x, t)

∂x

∣

∣
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=

π

L

N
∑
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which can be implemented as second-order resonators in parallel.
Eq. (14) describes only the excitation-free motion of the lon-

gitudinal modes. Regarding the forced motion, first the excita-
tion force distribution Fl,exc(x, t) is computed from the transver-
sal displacement according to Eq. (6):

Fl,exc(x, t) =
1

2
ES

∂
(

∂y(x,t)
∂x

)2

∂x
(15)

Then, the force input of mode k is calculated by the following way:

Fl,k(t) =

∫ x=L

x=0

sin(π
kx

L
)Fl,exc(x, t)dx (16)

which is the scalar product of the force distribution Fl,exc(x, t)
and the modal shape of mode k [13].

The equations were presented in continuous time for clarity. In
the synthesis model the differetial and integral operations are sub-
stituted by finite difference and summation. The computationally
heavy part of longitudinal-vibration simulation lies in Eqs. (15)
and (16). Especially the load of Eq. (16) is heavy, since it means
that the force input Fl,k(t) is computed for all the modes (N ≈ 10
in practice) separately. Therefore, further simplifications are nec-
essary.
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Figure 3: The spectrum of the excitation force for longitudinal
mode 5 (Fl,5 – solid line), and mode 9 (Fl,9 – dotted line) for
comparison. These modes contribute to odd phantoms.
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Figure 4: The spectrum of the excitation force for longitudinal
mode 6 (Fl,6 – solid line), and mode 10 (Fl,10 – dotted line) for
comparison. These modes give a rise to even phantoms.

The excitation spectrum (the Fourier transform of Fl,k(t)) of
all the odd and all the even longitudinal modes are very similar,
respectively. It can be seen in Figs. 3 and 4, that the only differ-
ence is that the frequency peaks are slightly shifted as a function of
mode number k because of the inharmonicity of the string [7]. The
amplitudes are also somewhat different, but the general envelopes
are of quite similar structure. Therefore, it is a logical choice to
substitute the excitation force Fl,k(t) of all the odd longitudinal
modes by the excitation force of one odd longitudinal mode (e.g.,
Fl,k(t) = Fl,5(t) for odd k). The same can be done for the even
longitudinal modes. However, it is important to incorporate at least
one odd and one even modal shape, since odd longitudinal modes
give a rise to odd phantom partials, and even modes to even phan-
toms. Having only one modal shape in the model would lead to
an excitation spectrum with odd or even harmonics only. Accord-
ingly, the model can be simplified by computing the force input
for two modes (e.g., Fres = Fl,5 + Fl,6, but any other odd and
even mode would do) and using this as a common excitation for
all the resonators. This leads to almost identical perceptual results
compared to the full model of Eq. (16) for k = 1..N .

String slope

Soundboard
model

Hammer

Finite-difference string model

)(1 zR
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.
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Figure 5: The composite string model applying finite differences
and resonators.

The string model is depicted in Fig. 5. It can be seen that the
transversal string displacement is computed by a finite-difference
string model, which is excited by a finite-difference hammer model
[14]. The transversal force Ft at the bridge is the force at the right-
hand side termination.

Then the excitation force of the resonators Fres is computed
by squaring the string slope at each point, differentiating along
the dimension x (i.e., approximating Eq. (15)) and computing a
scalar product with the modal shape of two consecutive longitu-
dinal modes (similarly to Eq. (16)). The longitudinal force at the
bridge is then computed by feeding the excitation signal to a res-
onator bank R1(z)..RN (z). This signal is filtered by Hl(z) to
take into account that the soundboard has a different response to
longitudinal bridge deflection compared to the transversal one. We
have found that already a simple differentiation Hl(z) = 1 − z−1

produces good results.

Figure 6: The multi-rate soundboard model [4].

The force signals of the two polarization Ft and Fl are added
and sent to a soundboard model based on multi-rate filtering [4].
The soundboard model is depicted in Fig. 6. The string signal is
split into two parts: the signal below 2.2 kHz is downsampled by
a factor of 8 and filtered by a 4000 tap (meaning 360 ms length at
fs/8) FIR filter Hlow(z) precisely synthesizing the amplitude and
phase response of the soundboard for the low frequencies. The sig-
nal above 2.2 kHz is filtered by a 1000 tap (ca. 20 ms at fs = 44.1
kHz) FIR filter. This simplification in the high-frequency chain
can be done because the higher modes of the soundboard decay
faster than the lower ones, while the ear is also less sensitive in
this region. The signal of the high frequency chain is delayed by
N samples to compensate for the latency of decimation and inter-
polation filters of the low frequency chain. The sound produced by
this model is indistinguishable from that calculated by a 16000 tap
FIR filter directly implementing the soundboard impulse response.
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5. PARAMETER ESTIMATION

The parameters of the hammer model are taken from [14]. The
lengths of the strings are measured on a real piano. Instead of
measuring the mass of the string, the mass density µ is computed
from the tension T0 (set to 700 N), the length, and the fundamental
frequency. String inharmonicity and the loss parameters of the
transversal vibration are estimated from recorded piano tones by
polynomial regression. As for the losses, the method is basically
the first step of the one-pole filter design method presented in [15].

The frequencies of the longitudinal modes (i.e., the frequen-
cies of R1..RN ) can be set according to the spectra of real piano
tones. However, the peaks of longitudinal modes cannot be easily
found between the transversal ones automatically, which results
in a huge amount of work. Alternatively, the longitudinal modal
frequencies can be set in a way that they should correspond to a
tone which is in harmonic relationship to the transversal vibration
(e.g., the longitudinal component sounds four octave higher than
the transversal one). This is what piano builders wish to achieve
in real pianos as well [6]. However, these frequencies should not
lie on the peaks of the excitation force Fres (i.e., the solid lines in
Figs. 3 and 3), since that would lead to undesirable ringing. This
can be done automatically by computing the spectrum of the exci-
tation signal Fres and shifting those longitudinal mode frequencies
which are too close to some of the peaks. The decay time of the
resonators were set to around 0.1 sec in most of the cases. The ra-
tio between the transversal and longitudinal vibration is controlled
by the amplitudes of the resonators and was set manually.

The parameters of the soundboard model were taken from force-
hammer measurements of a real piano soundboard [4]. The filters
Hlow(z) and Hhigh(z) are computed as follows: first a 16000
tap target impulse response Ht(z) is calculated by measuring the
force–pressure transfer function of the soundboard. This is lowpass-
filtered and downsampled by a factor of 8 to produce an FIR filter
Hlow(z). The impulse response of the low frequency chain is now
subtracted from the target response Ht(z) providing a residual re-
sponse containing energy above 2.2 kHz. This residual response
windowed to a shorter length (1000 tap).

6. RESULTS

In Fig. 7 the spectrum of a synthesized G1 piano tone is depicted
with 5 m/s hammer impact speed (forte playing). The phantom
partials and the free response of the second longitudinal mode
(marked by a circle) are clearly visible between the transversal par-
tials and sometimes reach higher amplitude levels than the transver-
sal partials (e.g., around 1.5 kHz). It is important to note that the
most important part of the longitudinal vibration is the forced mo-
tion (phantom partials) and not the free mode marked by a circle.
For comparison, the spectrum coming from the transversal string
vibration is displayed in Fig. 8. Note that without longitudinal
modeling the spectrum is clean and contains a quasi-harmonic se-
ries only. Both signals were generated including the multi-rate
soundboard in the model.

Comparing Fig. 7 to Fig. 1 shows that the spectrum of the
synthesized piano tone is much closer to the original if longitudinal
string motion is also considered in the modeling. There are still
some differences between the synthesized and original. However,
this is not considered as a drawback, since in physics-based sound
synthesis the goal is rather to develop a model which has a realistic
piano sound than to imitate a particular type of piano.
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Figure 7: Spectrum of a simulated G1 note computed by the com-
posite model of Fig. 5. The peak of the second longitudinal mode
(modeled by R2(z) in Fig. 5) is marked by a circle.
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Figure 8: Spectrum of a simulated G1 note without longitudinal
modeling (Fl was set to zero in Fig. 5).

Although it is not depicted, the model responds to the varia-
tions of playing dynamics (piano to forte) realistically. The lon-
gitudinal components become significant at high dynamic levels
only similarly to real pianos.

The model is capable of producing similar sound quality com-
pared to the finite-difference model of Sec. 3 at around 10% of
computational cost. Computational savings are achieved by elim-
inating the need of huge sampling rates, which were necessary to
assure numerical stability. This is the reason why the perceptual
quality of the finite-difference model is still preserved: the major
difference is that the new model does not compute anything above
20 kHz, which we would not hear anyway. The new approach has
an other advantage over the finite-difference method: the flexibil-
ity of setting the longitudinal modal frequencies.

Compared to earlier digital waveguide or finite-difference based
piano models the sound quality improved significantly for low pi-
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ano tones. The computational requirements are 10–20 times higher
than that of a digital-waveguide based string model, still allowing
5–10 note polyphony in real-time on an average PC, in C++ im-
plementation. Practically, this means that those piano pieces can
be played which do not require sustain pedal. Sound examples can
be listened at:
http://www.mit.bme.hu/∼bank/publist/dafx04

7. CONCLUSIONS AND FUTURE WORK

In this paper a novel approach was presented for modeling the
longitudinal vibration of piano strings. The method is based on
a finite-difference string model for transversal vibrations, driv-
ing second-order resonators for longitudinal-vibration simulation.
Large computational savings have been achieved compared to the
complete finite-difference string model with no loss of sound qual-
ity, allowing the use of the method in real-time. Simplifications
were done along perceptual lines, i.e., those factors were neglected,
which have no significant effect on the produced sound.

As for further improvements in sound quality, the force-pres-
sure transfer function of the soundboard for the longitudinal po-
larization could be measured on real pianos. This would allow the
use of a separate soundboard model for the longitudinal polariza-
tion. Alternatively, a precise shaping filter Hl(z) in Fig. 5 could
be designed. Another natural choice can be incorporating the other
transversal polarization in the model.

The main area of future investigations should be reducing the
computational complexity. One attempt to this can be substitut-
ing the finite-difference model in Fig. 5 by a digital waveguide for
computing the transversal vibration. Now the difficulty is that the
digital waveguide in its efficient form is intended to compute the
string motion at the observation point (the bridge in this case) only.
Therefore the modal shapes will be different from that of a real
string, since the wavetrains will close through the dispersion filter
at the termination. A solution can be having multiple (50..100) ob-
servation points by distributing the all-pass filters between the de-
lay elements, similarly to what was done in the case of the kantele
[16] for a different reason, namely, for tension-modulation mod-
eling. Unfortunately, this leads to computational requirements al-
most as heavy as of the finite-difference string model.

Larger computational savings could be achieved by concen-
trating more on the perceptual aspects of longitudinal vibration.
As little is known about how these components are perceived, this
calls for psychoacoustic studies.
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de la Méditérranée, Marseille, France, May 2003, URL:
http://www.lma.cnrs-mrs.fr/∼bensa.

[6] Harold A. Conklin, “Design and tone in the mechanoacoustic
piano. Part III. Piano strings and scale design,” J. Acoust.
Soc. Am., vol. 100, no. 3, pp. 1286–1298, June 1996.
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