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ABSTRACT

Above a certain amplitude, the string vibration becomes nonlin-
ear due to the variation of tension. An important special case is
when the tension varies with time but spatially uniform along the
string. The most important effect of this tension modulation is the
exponential decay of the pitch (pitch glide). In the case of nonrigid
string termination, the generation of double frequency terms and
the excitation of missing modes also occurs, but this is perceptu-
ally less relevant for most of the cases. Several modeling strate-
gies have been developed for tension modulated strings. However,
their computational complexity is significantly higher compared to
linear string models. This paper proposes efficient techniques for
modeling the quasistatic part (short-time average) of the tension
variation that gives rise to the most relevant pitch glide effect. The
modeling is based on the linear relationship between the energy
of the string and quasistatic tension variation. When this feature
is added to linear string models, the computational complexity is
increased by a negligible amount, leading to significant savings
compared to earlier tension modulated string models.

1. INTRODUCTION

While the principal behavior of string instruments can be described
by the linear wave equation, it cannot cover some important sec-
ondary effects. This is because above certain amplitude of vibra-
tion, the tension is not any more constant, leading to longitudinal
string motion, which acts back to the transverse vibration.Be-
cause this nonlinearity comes from the geometry of the problem
(the elasticity of the string material is assumed to be linear), it is
called “geometric nonlinearity”. Depending on the parameters of
the string and the excitation force, the vibration can be classified
into five different regimes [1]. This is depicted in Table 1, where
the different classes are separated depending whether the trans-
verse to longitudinal coupling (T→L), the longitudinal to trans-
verse coupling (L→T), or the longitudinal inertial effects (L iner-
tial eff.) are significant.

There are various available models [2, 3, 4], that are able to
model the full effect of geometric nonlinearity, corresponding to
“Bidirectional coupling” of Table 1. However, they are compu-
tationally demanding, and their accuracy is not always required,
because for most of the musical instruments some effects of the
nonlinear behavior can be neglected.

One important special case is “Tension modulation”, when the
transverse vibration acts on the longitudinal one and vice versa, but
the inertial effects of the longitudinal vibration can be neglected.

∗ Part of this work was supported by the EEA and Norway Grants and
the Zoltán Magyary Higher Education Foundation.

T → L L → T L inertial eff.
Linear motion
Double freq. terms ×

Tension modulation × ×

Longitudinal modes × ×

Bidirectional coupling × × ×

Table 1: Main features of the different regimes of string behav-
ior. The “×” sign means that the specific feature of vibration is
significant.

This means that the longitudinal motion of the string immediately
follows that of the transverse one to find equilibrium in the force
along the string, and the longitudinal modes play no role. When
this condition is met, the tension is spatially uniform along the
string and can be directly computed from the transverse slope, as
will be discussed in Sec. 2.

In practice, this is the case for loosely stretched strings where
ratio of the longitudinal and transverse fundamental frequencies is
large. Important examples are electric and steel-stringedacoustic
guitars and ethnic instruments including the Finnish kantele and
some oriental counterparts. The most important perceptualeffect
of tension modulation is the pitch glide, meaning that the pitch of
the string decreases as the sound decays. The pitch glide com-
ing from tension modulation has an even more significant effect
in drums. In the classical drum set, tom-toms have a characteris-
tic pitch glide, but many other percussion instruments produce this
effect. This paper concentrates on string modeling, but thebasic
idea is also applicable to drum synthesis.

Many different models have been presented for tension modu-
lated strings (see Sec. 3), but their computational complexity is sig-
nificantly higher compared to efficient linear string models. In this
paper, a new tension modulation methodology is proposed where
the quasistatic part (short-time average) tension is approximated
from the energy of the string. The method leads to significant
computational savings and makes it possible to include tension
modulation in string modeling also in less powerful computational
environments (such as mobile phones, games, etc.).

The paper is organized as follows: first the theory describing
tension modulation is summarized in Sec. 2, followed by the prior
work on related sound synthesis methods in Sec. 3. Section 4 re-
lates the energy of the string to the tension, while Sec. 5 provides
two efficient modeling techniques. Motivated by its importance
in string modeling, a third alternative is proposed for the digital
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waveguide in Sec. 6. Section 7 concludes the paper and gives fu-
ture research directions.

2. TENSION MODULATION

In the most general case, the wave equation for a single transverse
polarization of the lossless and nondispersive string is

µ
∂2y

∂t2
=

∂
�
T (x, t) ∂y

∂x

�
∂x

, (1)

wherey = y(x, t) is the string displacement,T (x, t) is the tension
of the string, andµ is the linear mass density. Note that in the case
of linear string vibrations, the tension is constantT (x, t) = T0.

When the inertial effects of longitudinal modes can be ne-
glected, the tension is spatially uniform along the stringT (x, t) =
T (t) and can be directly computed from the elongation of the
string according to the Hooke’s law [5]:

T (t) = T0 + QS[(L′(t) − L)/L], (2)

whereL′(t) is the actual length of the string andL is the minimum
length at equilibrium,S is the cross-section area of the string, and
Q is the Young’s modulus. The overline inT emphasizes that the
tension is spatially uniform along the string. The lengthL′ equals
the length of the curvey(x, t) for a givent and0 ≤ x ≤ L and is
given by
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The substitution of Eq. (3) into Eq. (2) gives
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Inserting Eq. (4) into Eq. (1) yields
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which is the Kirchhoff-Carrier equation used by most of the papers
as a starting point (although sometimes extended to thez polariza-
tion). It can be seen that Eq. (5) has the same form as the linear
wave equation but now the constant tensionT0 is replaced by a
time dependent term (parametric nonlinearity).

Legge and Fletcher [6] have investigated the intermodal cou-
pling due to the tension modulation. That is, how a specific trans-
verse mode can gain energy from another transverse mode. First,
the transverse displacement is written in its modal form

y(x, t) =
∞X

n=1

yn(t) sin
�nπx

L

�
, (6)

whereyn(t) is the instantaneous amplitude of the transverse mode
n. Then, Eq. (6) is inserted into Eq. (4), giving

T (t) = T0 +
π2QS

4L2

∞X
n=1

n2y2
n(t). (7)

After the excitation, the string modes decay exponentially, thus
the instantaneous amplitudesyn(t) become exponentially decay-
ing sinusoidal functions

yn(t) = An sin(ωnt + ϕn)e
−

t

τn , (8)

which yields the following expression for tension:

T (t) = T0+
π2QS

8L2
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n2A2
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2t

τn . (9)

The first time-dependent part of Eq. (9) is a quasistatic increase of
tension

Tqs =
π2QS

8L2

∞X
n=1

n2A2
ne−

2t

τn , (10)

which decays slowly. This leads to a proportional increase in the
wave speedc and the modal frequencies, giving a relative change
of
p

(T0 + Tqs)/T0. This shift decreases as a function of time,
leading to a pitch glide which is usually the most relevant percep-
tual effect of tension modulation.

The second part contains the double frequency terms

Tdf = −
π2QS

8L2

∞X
n=1

n2A2
n cos(2ωnt + 2ϕn)e

−
2t

τn , (11)

leading to a continuous modulation of tension, built up of sinu-
soidal functions having double the frequencies of transverse modes.
The amplitude of this modulation decays exponentially, andthe
decay times of its components are the half compared to that ofthe
originating transverse modes.

Substituting Eq. (9) into Eq. (1) and concentrating on the ef-
fects of double frequency terms leads us to the observation that the
different transverse modes cannot efficiently exchange energy if
the string is rigidly terminated [6]. As a practical result,for rigid
terminations, the double frequency terms do not have an effect,
and only the quasistatic part Eq. (10) is relevant.

If the bridge is not infinitely rigid, but has the admittance
Y (ω) at x = L, then the spatial distribution of the transverse
modes are not anymore orthogonal. In this case the force acting on
the bridge contains the frequencies2ωn ± ωm and all the modes
can gain energy from the bridge motion. Strong coupling arises
when the excitation and resonance frequencies are near, thus, the
modep can gain energy from modesp = 2m ± n, as ωp ≈

2ωm ± ωn [6]. For a more realistic bridge, when the string passes
the bridge at an angle, the tension Eq. (9) directly appears in the
bridge movement. This means that the double frequency terms
2ωn can directly excite any of the transverse modes. Naturally,
effective excitation will arise whenp = 2n, as in this case the
excitation frequency2ωn will be close to the resonance frequency
ωp of modep [6].

We have to note that the periodic tension variation Eq. (11)
can lead to very significant audible effects for some musicalin-
struments. This is because the force on the bridge in the longitudi-
nal string direction equals the tension. Therefore, tension variation
can excite the body of the instrument by periodically pulling and
releasing the bridge, leading to double frequency terms. The rel-
evance of this effect depends on how effectively the longitudinal
bridge force is radiated by the instrument body. While for most
of the western instruments this radiation is not significant, it con-
tributes to the characteristic sound of some special instruments.
This is the case for the kantele (traditional Finnish instrument)
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where the string force in the longitudinal direction is effectively
coupled to the body, because the strings are terminated by a verti-
cal tuning peg, instead of a proper bridge [7, 8].

As an example, a simulated electric guitar string vibrationis
displayed in Fig. 1. The example is computed by a finite difference
string model, and the excitation is modeled by applying a triangle-
shaped initial displacement distribution with a peak valueof 5 mm.
The quasistatic tensionTqs (dashed line in Fig. 1(b)) is calculated
by a running average filter with an averaging length equalingthe
time period of the tension variation. The tension at restT0 is 100
N, and the maximal tension variation is around 7.5 N, leadingto
a pitch change of 3.6 %, which is around a half semitone and can
be heard easily. The slow rise of the quasistatic tension (dashed
line) between 0 and 5 ms is the side effect of the running average
computation, since it has zero input at negative times.

0 50 100 150 200
−10

−5

0

5

10
(a)

S
tr

in
g 

ve
lo

ci
ty

 [m
/s

]

0 50 100 150 200
0

5

10

15
(b)

T
en

si
on

 v
ar

ia
tii

on
 [N

]

Time [ms]

Figure 1:Simulated lowE (f0 = 82.4 Hz) electric guitar string
excited by a 5 mm pluck. String velocity at the pickup position
(a) and tension variationT − T0 (b). The quasistatic part of the
tension variationTqs is displayed by dashed line in (b).

3. PRIOR WORK IN TENSION MODULATED STRING
SYNTHESIS

We have seen that the tension can be decomposed to a quasista-
tic and a periodic part. The first attempt to synthesize the effect
of tension modulation has concentrated on the periodic variation
[7]. While usually the most relevant perceptual effect of tension
modulation is the pitch glide coming from the quasistatic part, for
some instruments, like the kantele cited above, the periodic ten-
sion variation is highly significant. For modeling, the output of the
transverse string model (implemented by a digital waveguide) is
lead to a second-order nonlinearity and a lowpass filter, andthe re-
sult is mixed with the string output [7]. The nonlinearity adds the
required double-frequency components, but some unwanted sum-
and difference frequencies too. In [7] the main motivation was to
add a reinforcement to the second harmonic. As a result, efficient
lowpass filtering could be used after the nonlinearity, suppressing
the unwanted peaks.

For modeling the complete (both periodic and quasistatic) tem-
poral modulation of tension, various methods have been presented
for the different string modeling paradigms. The most efficient

linear string modeling technique is the digital waveguide [9, 10].
In this case the effect of tension variation can be taken intoac-
count by varying the delay line length, which is done by a variable
allpass filter at the termination [11, 8]. The first step is thecom-
putation of string tension at each time instant by approximating
Eq. (4), from which the instantaneous propagation speed is ob-
tained. Then, the required length change of the total delay line
is computed by the boxcar integration of the instantaneous speed
change. As the length of the integration is the pitch period,this
is practically the same as calculating the propagation speed from
the quasistatic tension variationTqs(t). The computationally most
demanding part of the algorithm is the calculation of the tension
Eq. (4), increasing the load significantly compared to linear string
models, even when Eq. (4) is approximated as a sparse sum. Re-
cently, an energy conserving variation of the technique have been
presented in [12]. A computationally even more demanding, but
more accurate method is distributing the variable length delays be-
tween the delay elements [13, 14, 15].

For finite-difference modeling, it is relatively straightforward
to implement the tension modulation by changing the tensionpa-
rameter of a linear string model according to Eq. (4). An energy-
conserving variation was presented in [16], which is beneficial as
the stability of the model is guaranteed. A modal-based tension
modulation string model have been presented by [17], where the
model parameters are derived by the Functional Transformation
Method. An energy conserving modal method was proposed in
[18] .

4. RELATION TO ENERGY

For rigid string terminations, it is only the quasistatic variation of
tension that has an effect. For example, the terminations ofthe
electric guitar and the electric bass can be considered perfectly
rigid. Even for nonrigid string terminations, where the periodic
tension variation can play some role in theory, the most promi-
nent effect is the pitch glide due to the quasistatic tensionvariation
(with the exception of some exotic instruments like the kantele).
Therefore, it is reasonable to concentrate on the modeling of the
quasistatic part.

In this section, we derive the relationship between the string
energy and the quasistatic part of the tension. As will be shown
later, the energy of the string can be estimated at lower compu-
tational complexity, thus, the quasistatic tension can be computed
with less operations than by computing the elongation of thestring.

4.1. Basic equations

The energy of the string has two parts: one is the kinetic energy
due to the movement of the string, and the other is the potential
energy due to the stretching of the string. The kinetic energy of a
string segmentdx at positionx is computed as

Ek(x, t) =
1

2
µdx v(x, t)2, (12)

whereµdx is the mass of the element andv(x, t) = ∂y(x, t)/∂t
is the velocity of the string motion. The total kinetic energy is the
integration of Eq. (12) over the string lengthL:

Ek(t) =
1

2

Z L

0

µ

�
∂y(x, t)

∂t

�2

dx. (13)

DAFX-3



Proc. of the 12th Int. Conference on Digital Audio Effects (DAFx-09), Como, Italy, September 1-4, 2009

The potential energy can be computed from the elongation of
the infinitesimally small string elements. The initial length of the
element isdx, and it is stretched tods during string motion. Be-
cause the tension is spatially uniform along the string, allthe el-
ements are stretched by equal amount, that is,ds is not space de-
pendent. Therefore, we may consider the whole string in the lon-
gitudinal direction as a single elastic (spring-like) element. Thus,
the potential energy stored in the “string spring” becomes

Ep(t) =
1

2
K(L′

− L0)
2, (14)

whereL0 is the length of the unstretched string (without any initial
tensionT0), andK is the spring constantQS/L0. Note thatL is
referring to the initial length of the string with tensionT0, andL′ is
the actual length during vibration. Thus, the change fromL0 to L′

has two steps: first, the length changes byL − L0 when the string
is stretched by the forceT0 (the string is put on the instrument and
tuned), and then by∆L = L′

− L during vibration. Thus, the
potential energy becomes

Ep(t) =
1

2
K(L − L0)

2 + K(L − L0)∆L +
1

2
∆L2. (15)

In Eq. (15) the first term is the potential energy of the the stretched,
but not vibrating string (string at equilibrium)Ep,0 = 1/2K(L −

L0)
2, and the initial tension isT0 = K(L −L0). By omitting the

last (second-order) term the total potential energy can be approxi-
mated by

Ep(t) ≈ Ep,0 + T0∆L = Ep,0 + T0
1
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Since the initial potential energyEp,0 is just an additive con-
stant, it will be neglected in the rest of the paper. Accordingly,
Ep(t) will refer to the additional potential energy of the string due
to its vibration. Thus, the sum of the kinetic and potential energy
E = Ek + Ep is the total energy of the string that comes from
string vibration, and the string at rest leads toE = 0.

4.2. Modal formulation

If the transverse displacement is expressed in the modal form, and
Eq. (6) is inserted into Eq. (13), the kinetic energy becomes

Ek(t) =
1

2
µL

∞X
n=1

vn(t)2 =
1
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wherevn(t) = ∂yn(t)/∂t is the instantaneous velocity of moden.
Writing the instantaneous amplitudes in the form of exponentially
decaying sinusoids as in Eq. (8) gives

Ek(t) =
1

4
µL

∞X
n=1

ω2
nA2

n(1 + cos(2ωnt + 2ϕn))e
−

2t

τn . (18)

By using Eq. (6), for the potential energyEp(t), we obtain

Ep(t) =
1

4

T0π
2

L

∞X
n=1

n2[yn(t)]2. (19)

Again writing the instantaneous amplitudes in the form of expo-
nentially decaying sinusoids gives

Ep(t) =
1

8

T0π
2

L

∞X
n=1

n2A2
n(1− cos(2ωnt + 2ϕn))e−

2t

τn , (20)

which is very similar to Eq. (18). The only difference is the sign of
the cosine terms, and apparently the leading constants. However,
it turns out that the leading constants actually equal. The modal
frequenciesωn of a nondispersive string are computed as

ωk = k
π

L

r
T0

µ
. (21)

When Eq. (21) is inserted into Eq. (18) and added to Eq. (20), the
cosine terms cancel out, giving

E(t) = Ek(t) + Ep(t) =
1

4

T0π
2

L

∞X
n=1

n2A2
ne−

2t

τn , (22)

By comparing Eq. (22) with the quasistatic part of the tension
Eq. (10), it turns out thatTqs(t) is a scaled version of the total
energy

Tqs(t) =
QS

2LT0

E(t), (23)

which is the fundamental outcome of this section.

4.3. Finite difference example

The energy of the same electric guitar string as in Fig. 1 is dis-
played in Fig. 2(a), showing a similar decay compared to the qua-
sistatic tension. The small wrinkles on the curve are due to the
approximation in energy computation in Eq. (16).
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Figure 2:Simulated lowE (f0 = 82.4 Hz) electric guitar string
excited by a 5 mm pluck, (a): string energy, (b): quasistatic
tension. In (b), the dashed line displays the quasistatic tension
computed by a running average filter, and the solid line displays
the quasistatic tension computed from the energy of the string by
Eq. (23).

As can be seen in Fig. 2(b), the quasistatic tension computed
from the energy of the string by Eq. (23) (solid line) is very close
to the short time average of the tension variation (dashed line).
Note that the difference in the range of 0–5 ms is due to the error
introduced by the running average (see also in Fig. 1). Therefore,
the energy-based tension variation (solid line) shows the correct
behavior.
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5. EFFICIENT MODELING

We have seen in Sec. 4 and in Fig. 2 that the quasistatic tension
can be accurately computed from the string energy. In the previous
string models mentioned in Sec. 3, tension computation is a sep-
arate model block which varies the parameters of a linear string
model. Therefore, the earlier models can be easily modified by
substituting the tension computation block with an energy compu-
tation block and a simple scaling. This will not yet lead to compu-
tational savings because computing the string energy in a straight-
forward way takes a similar number of operations as computing
the tension. However, the computational complexity of the energy
computation can be decreased significantly, as will be shownin the
following sections.

5.1. Downsampled energy computation

As can be seen in Fig. 2, the energy and the quasistatic tension are
slowly changing signals, in contrast to the total tension variation
(see Fig. 1(b) solid line). Therefore, it is sufficient to compute the
string energy at a lower rate (say, at every 1–10 ms), and the con-
tinuous energy curve is obtained by linearly interpolatingbetween
the computed points. As a result, the average load of energy com-
putation becomes negligible compared to the time-variant linear
string model itself.

5.2. Energy storage model

By looking at Fig. 2, one can notice that the quasistatic tension
decays exponentially. This is also clear from Eq. (10) if we as-
sume that the decay times of the modesτn are the same for all
n. In reality, the decay times of the modes are different, but usu-
ally for the lowest, dominant modes they are in the same order,
and the resulting energy- and quasistatic tension curves are close
to exponential. Therefore, it seems tempting to model the energy
storage of the string as a first order lowpass filter, whose decay
time is determined by the dissipation speed of the string. Ifthe
string excitation is modeled by an initial displacement and/or ve-
locity distribution, such as the triangle-shaped initial displacement
for plucking, then the initial value of the lowpass filter is set to the
initial energy of the string.

In a more general case of a dynamic excitation (like a physical
model of a pluck or strike), the input of the lowpass filter is the
amount of energy∆E[n] that has entered to the string, so the string
energyE[n] is computed as:

E[n] = ∆E[n] + gE[n − 1], (24)

whereg is a constant determining the rate of energy decay. The
energy input∆E(n) can be computed from the energy change of
the excitation∆Eexc[n], since from the law of conservation of
energy we have

∆E[n] = −∆Eexc[n]. (25)

Discussing realistic models of plucking is out of the scope of
the paper. Therefore, the method is illustrated by a hammer strike,
since striking is one of the simplest form of excitation. (Note that
the piano hammer example is only for illustrative purposes.In real
pianos, the rise of longitudinal components is the dominanteffect,
and the pitch glide is negligible. Therefore, for piano modeling,
other models should be used, see, e.g., [19]).

The piano hammer is usually modeled by a small massmh

connected to a nonlinear spring with an exponentPh and stiffness
Kh [20, 21]:

Fh[n] = F (∆y) =

�
Kh(∆y)Ph if∆y > 0
0 if∆y ≤ 0

, (26)

whereFh[n] is the interaction force and∆y[n] is the compression
of the hammer felt. The energy of the hammer is computed as

Eexc[n] =
1

2
mhv2

h +

Z ∆y

0

Fhdx =

=
1

2
mhv2

h + K
∆yp+1

p + 1
, (27)

wherevh is the velocity of the hammer. Since Eq. (27) is simple
to compute, it can be calculated for every time instant. For more
complex excitation models, we may computeEexc[n] at a lower
rate (e.g., every tenth sample), but this is usually not necessary
because most of the excitation models are zero dimensional,lead-
ing to simple calculations. Naturally, the energy of the excitation
block has to be computed only during the excitation.

Then, the energy input to the string is computed as the energy
change of the excitation block:

∆E[n] = −(Eexc[n] − Eexc[n − 1]). (28)

In the case of a lossy excitation mechanism, such as a hysteretic
hammer, the dissipation of the damping element has to be sub-
tracted from the energy input∆E[n].

Figure 3 shows the energy decay of a string excited by a 15
m/s hammer strike. The dashed line displays the string energy
both in linear (a) and logarithmic scale (b). The energy shows a
linear decay on a logarithmic scale, as expected. The dashedline
is the estimated energy computed by the energy storage modelof
Eq. (24), and the energy of the hammer was computed by Eq. (27).
Theg parameter of Eq. (24) was estimated by fitting a line on the
logarithmic energy plot, but it can also be estimated from the de-
cay time of the string. The small discrepancy between the curves
is most probably due to the fact that the losses of the string are
described correctly by Eq. (24) only during the free decay, and
not during the excitation. However, the estimated and real energy
curves are close enough for the accuracy required by sound syn-
thesis.

Note that this physically informed tension computation tech-
nique can also be used with other, not physics-based synthesis par-
adigms, such as sampling and spectral models. This is because
we have a separate energy storage model for the string, instead of
computing the energy from the string model itself. If the energy
of the excitation signal is precomputed as a function of its para-
meters (e.g., hammer velocity), the energy can be computed by
Eq. (24), from which the tension, and finally the pitch can be ob-
tained. Then, this pitch parameter can drive any synthesis model,
e.g., based on spectral synthesis or simple sample playback.

6. MODELING WITH DIGITAL WAVEGUIDES

The digital waveguide technique [9, 10] has a great importance in
string modeling, since it is the most efficient way of simulating one
dimensional wave propagation. As a result, most of the work in
tension modulated strings has concentrated on developing digital
waveguide models. While the two methods proposed in Sec. 5 are
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Figure 3:Simulation of a string excited by a piano hammer: sting
energy in linear (a) and logarithmic (b) scale. The dashed line is
the string energy, and the solid line is the estimated stringenergy
computed by the energy storage model Eq. (24).

easily applicable in the case of digital waveguides as well,here a
third alternative is proposed that computes the string energy E[n]
more precisely than the physically informed technique of Sec. 5.2
at a similar computational cost.

6.1. Energy of the digital waveguide

Digital waveguide modeling is based on the traveling wave solu-
tion of the ideal (lossless and nondispersive) wave equation:

y(x, t) = y+(x − ct) + y−(x + ct), (29)

wherey+ andy− can be considered as two traveling waves, which
retain their shape during their movement. The functiony+ is the
wave going to the right, and the functiony− is the wave going to
the left direction.

The velocity of the string is obtained as

v(x, t) =
∂y(x, t)

∂t
= v+(x − ct) + v−(x + ct) =

− c
∂y+(x − ct)

∂t
+ c

∂y−(x + ct)

∂t
, (30)

wherev+ andv− are the velocity waves traveling to the right and
left, respectively. Once the string displacement and velocity are
known, the string energyE(t) can be computed by the help of
Eqs. (13) and (16). This results in the simple expression

E(t) = µ

Z L

0

[v+(x − ct)]2dx + µ

Z L

0

[v−(x + ct)]2dx, (31)

which is basically the integration of the squared velocities of the
two traveling waves. Note that the usual1/2 leading term is miss-
ing because Eq. (31) computes not only the kinetic energy, but the
total energy of the string, and for a single traveling wave, the total
energy is the double of the kinetic energy (the potential andkinetic
energies equal).

In digital waveguides, the traveling waves are stored in delay
lines, whose content is shifted to model wave propagation. For

simplifying the energy computation, it is beneficial to choose the
velocity as the wave variable for the digital waveguide, instead of
string displacement. (Note that in most of the cases velocity is the
chosen wave variable anyway, because it is related to the force by
the string impedance.) In this case, the energy is simply computed
as the squared sum of the delay elements

E[n] = µ∆x
MX
0

(v+[m, n])2 + (v−[m, n])2, (32)

wherev+[m, n] is the content of the upper delay line at spatial
positionm and time instantn, andv−[m, n] is the content of the
lower delay line in a dual delay line implementation. The con-
stant∆x = c∆t = L/M is the spatial step size of the digital
waveguide, where∆t = 1/fs is the sampling time andM is the
length of the string in samples (the total number of delay elements
is 2M ). If the digital waveguide is implemented as a single delay-
loop model [22], the computation remains the same but now the
squared sum is performed for one delay line only.

6.2. Efficient energy computation

In addition to the ideas proposed in Sec. 5, we may take advantage
of some properties of digital waveguides for efficient energy com-
putation. We have seen that the energy of the digital waveguide
can be computed by a simple squared sum of the delay elements.
In the case of an ideal string, the content of the delay line sim-
ply circulates in the delay-line buffer, and the energy remains con-
stant (there is no energy loss in the delay line). For modeling the
lossy string, the losses are usually consolidated to one point in the
loop, as displayed in Fig. 4, whereHr(z

−1) is the loss filter. The
only point where losses can occur is at the loss filter, and at every
time step it is only one value in the delay line that changes (the
one which passes the loss filter). All the other values are sim-
ply shifted. Therefore, we can easily compute the loss occurring,
∆E[n], by computing the energies of the samples entering and
leaving the loss filter, and taking their difference, as displayed in
Fig. 4. Then, the string energyE[n] is computed as the integration
of ∆E[n]. From the energy, we compute the quasistatic tension by
a simple scaling according to Eq. (23), from which the propagation
speedc[n] is obtained as

c[n] = c0

r
T0 + Tqs[n]

T0

≈ c0

�
1 +

1

2

Tqs[n]

T0

�
, (33)

wherec0 =
p

T0/µ is the nominal propagation speed. The actual
length of the delay lines is computed as

D =
L

c[n]
fs ≈ D0

�
1 −

1

2

Tqs[n]

T0

�
(34)

whereD0 = Lfs/c0 is the nominal length of the delay line. The
integer part ofD[n] is implemented by the delay linez−M in
Fig. 4, while the fractional part is realized by the fractional delay
filter FD, which is typically a first order allpass filter or a Lagrange
FIR filter [23].

It is important to note that in [11, 8] the length of the delay line
is computed by the boxcar integration of the instantaneous prop-
agation speed. This is not necessary here, sincec[n] is already
the averaged version of the instantaneous propagation speed, be-
cause it is computed from the quasistatic tensionTqs[n] instead
of the total tensionT [n]. This explains why the present method

DAFX-6



Proc. of the 12th Int. Conference on Digital Audio Effects (DAFx-09), Como, Italy, September 1-4, 2009

1−

Mz−

+)(zH r

bF

Mz−

FD

FD

(•)2

(•)2

+
1−z

Energy change
computation

Energy integration

Energy to
FD

parameter

E∆E

Figure 4:Energy-based tension modulation modeling with a digi-
tal waveguide.

can be more efficient than that of [11, 8]: instead of computing
the total variation of tension (which takes a significant amount of
computation) and averaging it by boxcar integration, it computes
the average tension variation directly.

Figure 4 does not contain any excitation block for clarity. If
the excitation is modeled as an initial velocity distribution of the
string (e.g., a stepwise function for plucking), then the initial value
of the energyE[0] is set to the energy computed from the initial
shape, and this is corrected by∆E[n] in each time instant. In
the case of a separate excitation block, such as a hammer model
connected to the string, the initial string velocity and theinitial
energy are zero. The string is set to motion by the excitationforce,
which is added to the two delay lines with an appropriate scaling
at a certain spatial positionm. The energy change of the string due
to the excitation force is computed in the same way as for the loss
filter: the energy before the summation point is compared to the
energy after the summation point.

In general, at each point where the lossless wave propagation
in the digital waveguide is broken by a junction (being a filter,
an additional input, or a more complex excitation block), the en-
ergy before and after the junction has to be computed, and this
difference is the energy change for that junction. The totalenergy
change∆E[n] is the sum of the energy changes at the junctions:

∆E[n] = µ∆x

IX
i=1

(Jout,i[n])2 − (Jin,i[n])2, (35)

whereJin,i[n] is the input andJout,i[n] is the output of junction
i, andI is the number of junctions. Naturally, the dimension of
Jin,i andJout,i is velocity (m/s). In a typical scenario of a single
excitation point,I = 3 since the excitation enters the whole delay
line at two points (one point for the upper and one point for the
lower line), in addition to the loss filter. However, after the excita-
tion period when the string decays freely, only the energy change
at the “loss junction” has to be computed.

Compared to the physically informed energy storage model of
Sec. 5.2, the present method provides slightly more preciseresults
because it does not assume exponential energy decay, and theg
parameter of Eq. (24) does not have to be estimated. The largest
advantage is that there is no need to estimate the energy of the
excitation block, since the energy input coming from the excitation
is directly computed by Eq. (35). The computational complexity
of the two methods is in the same order.

7. CONCLUSION AND FUTURE WORK

Tension modulation in strings has two effects: a continuos de-
crease of pitch (pitch glide) and the nonlinear coupling of trans-
verse modes. For rigidly terminated strings (such as the electric
guitar), mode coupling does not occur, and even for nonrigidstring
terminations in most western instruments, the pitch glide is the
most important phenomenon. Coming from this observation, this
paper has presented an efficient modeling methodology basedon
the linear relationship between the energy of the string andthe
quasistatic part (short-time average) of the tension variation. Basi-
cally, the computationally heavy tension calculation block in ear-
lier string models is substituted with a more efficient energy com-
putation block and a simple scaling. As a result, the model pre-
cisely synthesizes the pitch glide occurring in tension modulated
strings, while the additional computational complexity compared
to linear string models is negligible, in contrast to earlier tension
modulated string models.

Future research includes the precise comparison with earlier
methods in terms of sound quality and computational complex-
ity. If needed, the effect of nonlinear mode coupling could also be
added by leading the string output to a second-order nonlinearity,
as was done for kantele synthesis in [7].

It seems feasible to model the tension modulation in mem-
branes based on the energy of the membrane. Thus, the efficient
modeling of pitch glides in drum synthesis is an important field
of future research. Since membrane modeling takes significantly
more computational time than string modeling, the computational
savings provided by the energy-based tension computation can be
even more important than for the string.

The interested reader may listen to the sound examples at
http://www.mit.bme.hu/∼bank/publist/dafx09.
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