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ABSTRACT

Above a certain amplitude, the string vibration becomedinen
ear due to the variation of tension. An important speciakdas
when the tension varies with time but spatially uniform adhe
string. The most important effect of this tension modulai®the
exponential decay of the pitch (pitch glide). In the casearfrigid
string termination, the generation of double frequencynteand
the excitation of missing modes also occurs, but this isqute
ally less relevant for most of the cases. Several modelirajest
gies have been developed for tension modulated stringsettaw
their computational complexity is significantly higher qoaned to
linear string models. This paper proposes efficient tearesdor
modeling the quasistatic part (short-time average) of émsion
variation that gives rise to the most relevant pitch glidecf The
modeling is based on the linear relationship between theggne
of the string and quasistatic tension variation. When teatdre
is added to linear string models, the computational conityléx
increased by a negligible amount, leading to significantrgsv
compared to earlier tension modulated string models.

1. INTRODUCTION

While the principal behavior of string instruments can beoddbed
by the linear wave equation, it cannot cover some importact s
ondary effects. This is because above certain amplitudébodv
tion, the tension is not any more constant, leading to |oigital
string motion, which acts back to the transverse vibrati@e-
cause this nonlinearity comes from the geometry of the prabl
(the elasticity of the string material is assumed to be lindais
called “geometric nonlinearity”. Depending on the paramebf
the string and the excitation force, the vibration can besifeed
into five different regime<]1]. This is depicted in Table heve
the different classes are separated depending whetheratig- t
verse to longitudinal coupling kL), the longitudinal to trans-
verse coupling (-T), or the longitudinal inertial effects (L iner-
tial eff.) are significant.

There are various available modél$ [[2[B, 4], that are able to
model the full effect of geometric nonlinearity, corresgiomg to
“Bidirectional coupling” of TablddL. However, they are comp
tationally demanding, and their accuracy is not always irequ
because for most of the musical instruments some effectiseof t
nonlinear behavior can be neglected.

One important special case is “Tension modulation”, when th
transverse vibration acts on the longitudinal one and wcea; but
the inertial effects of the longitudinal vibration can beyleeted.

* Part of this work was supported by the EEA and Norway Grants an
the Zoltan Magyary Higher Education Foundation.
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T—L L —T Linertaleff.
Linear motion
Double freq. terms X
Tension modulation X X
Longitudinal modes X X
Bidirectional coupling X X X

Table 1: Main features of the different regimes of stringdeh
ior. The “x” sign means that the specific feature of vibration is
significant.

This means that the longitudinal motion of the string imnaselly
follows that of the transverse one to find equilibrium in tbeck
along the string, and the longitudinal modes play no role.eWh
this condition is met, the tension is spatially uniform ajothe
string and can be directly computed from the transverseeslap
will be discussed in Sefl 2.

In practice, this is the case for loosely stretched stringere
ratio of the longitudinal and transverse fundamental fezmies is
large. Important examples are electric and steel-strirzgedstic
guitars and ethnic instruments including the Finnish Kented
some oriental counterparts. The most important percegfiedt
of tension modulation is the pitch glide, meaning that thetpof
the string decreases as the sound decays. The pitch glide com
ing from tension modulation has an even more significantceffe
in drums. In the classical drum set, tom-toms have a chaiscte
tic pitch glide, but many other percussion instruments peechis
effect. This paper concentrates on string modeling, bubtssc
idea is also applicable to drum synthesis.

Many different models have been presented for tension modu-
lated strings (see Sdd. 3), but their computational conitylexsig-
nificantly higher compared to efficient linear string modétsthis
paper, a new tension modulation methodology is proposedevhe
the quasistatic part (short-time average) tension is aqpeated
from the energy of the string. The method leads to significant
computational savings and makes it possible to includeidens
modulation in string modeling also in less powerful compiotzl
environments (such as mobile phones, games, etc.).

The paper is organized as follows: first the theory desagibin
tension modulation is summarized in Sdc. 2, followed by therp
work on related sound synthesis methods in Bec. 3. Sddtien 4 r
lates the energy of the string to the tension, while Bec. Giges
two efficient modeling techniques. Motivated by its impaea
in string modeling, a third alternative is proposed for thgitell
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waveguide in Se€l6. Sectifh 7 concludes the paper and gives f
ture research directions.

2. TENSION MODULATION

In the most general case, the wave equation for a singlevieeses
polarization of the lossless and nondispersive string is

0%y

B 8(T(m,t)%)
Pz == oz

S (1)
wherey = y(z, t) is the string displacemerit;(z, t) is the tension

of the string, and. is the linear mass density. Note that in the case
of linear string vibrations, the tension is constditt:, t) = To.

When the inertial effects of longitudinal modes can be ne-
glected, the tension is spatially uniform along the stfli{g;, t) =
T(t) and can be directly computed from the elongation of the
string according to the Hooke'’s laWl[5]:

T(t) = To + QS[(L'(t) — L)/L], @
whereL' (t) is the actual length of the string adds the minimum
length at equilibrium S is the cross-section area of the string, and
Q is the Young’s modulus. The overline i emphasizes that the
tension is spatially uniform along the string. The lengthequals
the length of the curvg(x, t) for a givent and0 < z < L and is
given by

L 2
L/:/ ,/1+(@> de ~ L +
0 Ox

The substitution of Eq]3) into EJ1(2) gives

%/OL <%)2dm. 3)

— 1QS [ (ay\*
T_TO+§T o <%) dm (4)
Inserting Eq.[(#) into Eq1) yields
Py 1QS [F (oy\°, | 0%
Woe = |t 3T ) (a) de) 5z O

which is the Kirchhoff-Carrier equation used by most of tapgrs
as a starting point (although sometimes extended to tf@ariza-

After the excitation, the string modes decay exponentidliys
the instantaneous amplitudgs(¢) become exponentially decay-
ing sinusoidal functions

yn(t) = Ay sin(wnt + ¢n)67%ﬁ, (8)
which yields the following expression for tension:
= 7T2QS > 2 (2 _ 2t
T(t) =To+ Y T;n AL [1—cos(2wnt+2pn)]e” ™ . (9)

The first time-dependent part of Efl (9) is a quasistaticeiase of
tension

oo
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E n’AZe

n=1
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8L2

Tys = (10)
which decays slowly. This leads to a proportional increastne
wave speed and the modal frequencies, giving a relative change
(To + T4s)/To. This shift decreases as a function of time,
leading to a pitch glide which is usually the most relevantpp-
tual effect of tension modulation.
The second part contains the double frequency terms

oo

2
Qs Zn2Ai cos(ant+2g0n)67%, (11)
n=1

Tar = =312

leading to a continuous modulation of tension, built up ofusi
soidal functions having double the frequencies of trarsverodes.
The amplitude of this modulation decays exponentially, el
decay times of its components are the half compared to thaeof
originating transverse modes.

Substituting Eq.[9) into EqI1) and concentrating on the ef
fects of double frequency terms leads us to the observdtadritie
different transverse modes cannot efficiently exchangeggnié
the string is rigidly terminated[6]. As a practical resti rigid
terminations, the double frequency terms do not have arteffe
and only the quasistatic part EE110) is relevant.

If the bridge is not infinitely rigid, but has the admittance
Y(w) atz = L, then the spatial distribution of the transverse
modes are not anymore orthogonal. In this case the forasgaati
the bridge contains the frequencis,, + w,, and all the modes
can gain energy from the bridge motion. Strong couplingesris
when the excitation and resonance frequencies are near,ttteu
modep can gain energy from modes = 2m + n, asw, =~
2wm + wy, [B]. For a more realistic bridge, when the string passes

tion). It can be seen that E](5) has the same form as the linea the bridge at an angle, the tension EQ. (9) directly appentise

wave equation but now the constant tensinis replaced by a
time dependent term (parametric nonlinearity).

Legge and Fletchef]6] have investigated the intermodat cou
pling due to the tension modulation. That is, how a specifingr
verse mode can gain energy from another transverse mods, Fir
the transverse displacement is written in its modal form

(6)

nﬂ'.T)
)

y(x,t) = Z yn (t) sin (T

bridge movement. This means that the double frequency terms
2wy, can directly excite any of the transverse modes. Naturally,
effective excitation will arise whep = 2n, as in this case the
excitation frequencgw,, will be close to the resonance frequency
wyp of modep [B].

We have to note that the periodic tension variation Eql (11)
can lead to very significant audible effects for some musdical
struments. This is because the force on the bridge in thétiatig
nal string direction equals the tension. Therefore, tengéiation
can excite the body of the instrument by periodically pgjlamnd
releasing the bridge, leading to double frequency term® réh

whereyy, (t) is the instantaneous amplitude of the transverse mode gyance of this effect depends on how effectively the lomtiital

n. Then, Eq.[[(b) is inserted into E@] (4), giving

QS &
412

n=1

T(t)=To + n’ya(t). @)

bridge force is radiated by the instrument body. While forsmo
of the western instruments this radiation is not significérton-
tributes to the characteristic sound of some special imstnis.
This is the case for the kantele (traditional Finnish insteat)
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where the string force in the longitudinal direction is effeely
coupled to the body, because the strings are terminated bstia v
cal tuning peg, instead of a proper bridgE{ll7, 8].

As an example, a simulated electric guitar string vibrai®n
displayed in FigtlL. The example is computed by a finite diffiee
string model, and the excitation is modeled by applyingantgle-
shaped initial displacement distribution with a peak valfi® mm.
The quasistatic tensidfy,s (dashed line in Fidd1(b)) is calculated
by a running average filter with an averaging length equatireg
time period of the tension variation. The tension at f&sis 100
N, and the maximal tension variation is around 7.5 N, leading

linear string modeling technique is the digital wavegulEl0].
In this case the effect of tension variation can be taken &uto
count by varying the delay line length, which is done by aalasle
allpass filter at the terminatiof [}, 8]. The first step is ¢tben-
putation of string tension at each time instant by approkimya
Eg. [@), from which the instantaneous propagation speed-is o
tained. Then, the required length change of the total detey |
is computed by the boxcar integration of the instantanepaesd
change. As the length of the integration is the pitch pertbd
is practically the same as calculating the propagationdsfreen
the quasistatic tension variatidiys(¢). The computationally most

a pitch change of 3.6 %, which is around a half semitone and candemanding part of the algorithm is the calculation of thesiam

be heard easily. The slow rise of the quasistatic tensioghfeth
line) between 0 and 5 ms is the side effect of the running geera
computation, since it has zero input at negative times.
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Figure 1: Simulated lowE (fo = 82.4 Hz) electric guitar string
excited by a 5 mm pluck. String velocity at the pickup pasitio
(a) and tension variatiol” — Ty (b). The quasistatic part of the
tension variatiorl s is displayed by dashed line in (b).

3. PRIOR WORK IN TENSION MODULATED STRING
SYNTHESIS

Eg. [@), increasing the load significantly compared to lirstgng
models, even when Ed(4) is approximated as a sparse sum. Re-
cently, an energy conserving variation of the techniquestmen
presented in[[12]. A computationally even more demanding, b
more accurate method is distributing the variable lengthydebe-
tween the delay elemen{s]13] {4] 15].

For finite-difference modeling, it is relatively straigbiivard
to implement the tension modulation by changing the tenpan
rameter of a linear string model according to Hq. (4). An gper
conserving variation was presented[inl[16], which is berafas
the stability of the model is guaranteed. A modal-basedidens
modulation string model have been presentedby [17], wheze t
model parameters are derived by the Functional Transfaomat
Method. An energy conserving modal method was proposed in

8] .

4. RELATION TO ENERGY

For rigid string terminations, it is only the quasistaticiation of
tension that has an effect. For example, the terminatiorthef
electric guitar and the electric bass can be considerecqibrf
rigid. Even for nonrigid string terminations, where theipdic
tension variation can play some role in theory, the most prom
nent effect is the pitch glide due to the quasistatic tengéiation
(with the exception of some exotic instruments like the kajt
Therefore, it is reasonable to concentrate on the modelirigeo
quasistatic part.

In this section, we derive the relationship between thegtri
energy and the quasistatic part of the tension. As will bavsho
later, the energy of the string can be estimated at lower cemp
tational complexity, thus, the quasistatic tension candreputed

We have seen that the tension can be decomposed to a quasistavith less operations than by computing the elongation ofttieg.

tic and a periodic part. The first attempt to synthesize tifecef
of tension modulation has concentrated on the periodiatian
[7]. While usually the most relevant perceptual effect afsien
modulation is the pitch glide coming from the quasistatirt far
some instruments, like the kantele cited above, the peritafhi-
sion variation is highly significant. For modeling, the auitpf the
transverse string model (implemented by a digital wavegjuisl
lead to a second-order nonlinearity and a lowpass filtertlzade-
sult is mixed with the string outpuf][7]. The nonlinearitydstthe
required double-frequency components, but some unwanied s
and difference frequencies too. [1 [7] the main motivaticaso
add a reinforcement to the second harmonic. As a resultjezftic
lowpass filtering could be used after the nonlinearity, sepging
the unwanted peaks.

For modeling the complete (both periodic and quasistatit) t
poral modulation of tension, various methods have beerepted
for the different string modeling paradigms. The most effiti

4.1. Basic equations

The energy of the string has two parts: one is the kineticgner
due to the movement of the string, and the other is the paienti
energy due to the stretching of the string. The kinetic enefa
string segmendz at positionz is computed as

Ex(z,t) = %udm v(x, t)?, (12)
whereudz is the mass of the element anflx,t) = dy(z,t)/0t
is the velocity of the string motion. The total kinetic engig the
integration of Eq.[CIR) over the string length
1 [L Ay(x,t) 2
P / b (T -

Ex(t) = (13)
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The potential energy can be computed from the elongation of which is very similar to EqI{8). The only difference is thgrsof

the infinitesimally small string elements. The initial lehgf the
element isdz, and it is stretched tds during string motion. Be-
cause the tension is spatially uniform along the stringttedlel-
ements are stretched by equal amount, thatdgs not space de-
pendent. Therefore, we may consider the whole string indhe |
gitudinal direction as a single elastic (spring-like) et Thus,
the potential energy stored in the “string spring” becomes

%K(L’ — Lo)?,

Ep(t) =
whereLy is the length of the unstretched string (without any initial
tensionTy), and K is the spring constar®S/Lo. Note thatl is
referring to the initial length of the string with tensi@h, andL’ is
the actual length during vibration. Thus, the change filanto L’
has two steps: first, the length changes/by L, when the string
is stretched by the forc#, (the string is put on the instrument and
tuned), and then bAL = L’ — L during vibration. Thus, the
potential energy becomes

(14)

By (t) = %K(L — Lo)® + K(L — Lo)AL + %ALQ. (15)
In Eq. [IB) the first term is the potential energy of the thetstred,
but not vibrating string (string at equilibriun®, 0 = 1/2K (L —

Lo)?, and the initial tension ig, = K(L — Lo). By omitting the
last (second-order) term the total potential energy carppeoai-

mated by

0
Ep(t) = Epo+ToAL = Epo + To / ( y) dz. (16)
2 0 81'

Since the initial potential energh,, o is just an additive con-
stant, it will be neglected in the rest of the paper. Accagtyin
E,(t) will refer to the additional potential energy of the stringed
to its vibration. Thus, the sum of the kinetic and potentiz gy
E = FEx + Ej is the total energy of the string that comes from
string vibration, and the string at rest leadgtc= 0.

4.2. Modal formulation

If the transverse displacement is expressed in the modal fand
Eqg. [@) is inserted into Eq{)L3), the kinetic energy becomes

oo oo 2
_ %“L;”"(t)2 —pee Y (252) . an

wherev, (t) = 9y, (t) /0t is the instantaneous velocity of mode
Writing the instantaneous amplitudes in the form of expdiaén
decaying sinusoids as in Efl (8) gives

pLan 1+cos(2wnt+2g0n))ef*%. (18)
By using Eq.[[B), for the potential enerdy, (), we obtain
1 T 72
=1 9 Z n”[yn(t (19)

Again writing the instantaneous amplitudes in the form gh@x
nentially decaying sinusoids gives

1 ToTl'2
Ep(t) =3

ST 2A2(1—c05(2wnt+2¢n))6 Tzn (20)

n=1

the cosine terms, and apparently the leading constants etyw
it turns out that the leading constants actually equal. Theah
frequenciesu,, of a nondispersive string are computed as

T Ty
wk =k " (21)
When Eq.[[21) is inserted into Eq18) and added to EQ. (2@), t
cosine terms cancel out, giving

_ _1 2 42 -2t
E(t) = Bx(t) + Bp(t) = ; L n2A%e" 7,

(22)

By comparing Eq.[[&2) with the quasistatic part of the temsio
Eq. (I0), it turns out thaf,s(¢) is a scaled version of the total
energy

QS

2LTy ®),
which is the fundamental outcome of this section.

Tos(t) = (23)

4.3. Finite difference example

The energy of the same electric guitar string as in Hig. 1 s di
played in Fig[P(a), showing a similar decay compared to the q

sistatic tension. The small wrinkles on the curve are duééo t
approximation in energy computation in EG.J(16).
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Figure 2: Simulated lowE (fo = 82.4 Hz) electric guitar string
excited by a 5 mm pluck, (a): string energy, (b): quasistatic
tension. In (b), the dashed line displays the quasistatisita
computed by a running average filter, and the solid line digpl
the quasistatic tension computed from the energy of thegsty

Eq. 23).

As can be seen in Fifld 2(b), the quasistatic tension computed
from the energy of the string by Eq23) (solid line) is velyse
to the short time average of the tension variation (dashe).li
Note that the difference in the range of 0-5 ms is due to thar err
introduced by the running average (see also in[Hig. 1). Toexre
the energy-based tension variation (solid line) shows tireect
behavior.
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5. EFFICIENT MODELING

We have seen in Sedl 4 and in HIj. 2 that the quasistatic tensio
can be accurately computed from the string energy. In theqrs
string models mentioned in Sdd. 3, tension computation &pa s
arate model block which varies the parameters of a lineargstr
model. Therefore, the earlier models can be easily modified b
substituting the tension computation block with an ene@yjgu-
tation block and a simple scaling. This will not yet lead tongu-
tational savings because computing the string energy iraayht-
forward way takes a similar number of operations as comgutin
the tension. However, the computational complexity of thergy
computation can be decreased significantly, as will be showre
following sections.

5.1. Downsampled energy computation

As can be seen in Fifll 2, the energy and the quasistatic teaso
slowly changing signals, in contrast to the total tensionaten
(see Fig[L(b) solid line). Therefore, it is sufficient to quute the
string energy at a lower rate (say, at every 1-10 ms), anddhe c
tinuous energy curve is obtained by linearly interpolatietyveen
the computed points. As a result, the average load of enengy c
putation becomes negligible compared to the time-variseial
string model itself.

5.2. Energy storage model

By looking at Fig[®2, one can notice that the quasistaticitens
decays exponentially. This is also clear from Hgl (10) if vge a
sume that the decay times of the modegsare the same for all
n. In reality, the decay times of the modes are different, Isutu
ally for the lowest, dominant modes they are in the same prder
and the resulting energy- and quasistatic tension cuneslase
to exponential. Therefore, it seems tempting to model tlegyn
storage of the string as a first order lowpass filter, whoseydec
time is determined by the dissipation speed of the stringhef
string excitation is modeled by an initial displacement/ande-
locity distribution, such as the triangle-shaped initiajpdacement
for plucking, then the initial value of the lowpass filter &t $0 the
initial energy of the string.

In a more general case of a dynamic excitation (like a physica
model of a pluck or strike), the input of the lowpass filterhe t
amount of energyA E'[n] that has entered to the string, so the string
energyE[n] is computed as:

Efn] = AE[n] + gE[n — 1], (24)
whereg is a constant determining the rate of energy decay. The
energy inputA E(n) can be computed from the energy change of
the excitationA Ecx.[n], since from the law of conservation of
energy we have

AE[n] = —AFEcxc[n]. (25)

Discussing realistic models of plucking is out of the scope o
the paper. Therefore, the method is illustrated by a hamtrikes
since striking is one of the simplest form of excitation. {dlthat
the piano hammer example is only for illustrative purposeseal
pianos, the rise of longitudinal components is the domie#fect,
and the pitch glide is negligible. Therefore, for piano nodg
other models should be used, see, €.dl, [19]).
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The piano hammer is usually modeled by a small mass
connected to a nonlinear spring with an exponBnand stiffness

Ky [20,23]:

Kn(Ay)™
0

ifAy >0

itAy<o @+ (20

Al = F(ay) = {

whereFj, [n] is the interaction force andy[n] is the compression
of the hammer felt. The energy of the hammer is computed as

1 5 Ay
= —muvp, + Findx =

Eexc [n] 2

0
Ayp-H
p+1

= %mhvﬁ + K , (27)
wherewy, is the velocity of the hammer. Since ERX27) is simple
to compute, it can be calculated for every time instant. Foran
complex excitation models, we may compuie..[n]| at a lower
rate (e.g., every tenth sample), but this is usually not seamy
because most of the excitation models are zero dimensieaal,
ing to simple calculations. Naturally, the energy of theieton
block has to be computed only during the excitation.

Then, the energy input to the string is computed as the energy
change of the excitation block:

AFE[n] = —(Eexc[n] — Eexc[n — 1]). (28)
In the case of a lossy excitation mechanism, such as a hiistere
hammer, the dissipation of the damping element has to be sub-
tracted from the energy input E[n].

Figure[® shows the energy decay of a string excited by a 15
m/s hammer strike. The dashed line displays the string gnerg
both in linear (a) and logarithmic scale (b). The energy shaw
linear decay on a logarithmic scale, as expected. The ddsteed
is the estimated energy computed by the energy storage rabdel
Eg. [Z3), and the energy of the hammer was computed byHq. (27)
The g parameter of Eq[{24) was estimated by fitting a line on the
logarithmic energy plot, but it can also be estimated fromdh-
cay time of the string. The small discrepancy between theesur
is most probably due to the fact that the losses of the stniag a
described correctly by EqC{R4) only during the free decayg a
not during the excitation. However, the estimated and reaigy
curves are close enough for the accuracy required by sound sy
thesis.

Note that this physically informed tension computatiorntec
nigue can also be used with other, not physics-based systes
adigms, such as sampling and spectral models. This is becaus
we have a separate energy storage model for the stringathsfe
computing the energy from the string model itself. If the rgge
of the excitation signal is precomputed as a function of &sp
meters (e.g., hammer velocity), the energy can be computed b
Eqg. [23), from which the tension, and finally the pitch can be o
tained. Then, this pitch parameter can drive any synthesitein
e.g., based on spectral synthesis or simple sample playback

6. MODELING WITH DIGITAL WAVEGUIDES

The digital waveguide techniquil [9.110] has a great impogan
string modeling, since it is the most efficient way of simuigtone
dimensional wave propagation. As a result, most of the work i
tension modulated strings has concentrated on developgitgld
waveguide models. While the two methods proposed in[Bee 5 ar
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Figure 3:Simulation of a string excited by a piano hammer: sting
energy in linear (a) and logarithmic (b) scale. The dashee: lis
the string energy, and the solid line is the estimated stengrgy
computed by the energy storage model Eq (24).

easily applicable in the case of digital waveguides as \kelle a
third alternative is proposed that computes the stringgnein]
more precisely than the physically informed technique af.[5€2
at a similar computational cost.

6.1. Energy of the digital waveguide

Digital waveguide modeling is based on the traveling wave-so
tion of the ideal (lossless and nondispersive) wave equatio

y(@,t) =y (x—ct) +y (z+ct), (29)

wherey™ andy~ can be considered as two traveling waves, which
retain their shape during their movement. The functjonis the
wave going to the right, and the functign is the wave going to
the left direction.

The velocity of the string is obtained as

v(w,t) = 8y(89;,t) =vi(z—ct)+v (z+ct) =
Ayt (z — ct) Oy~ (z + ct)

wherev™ andv ™ are the velocity waves traveling to the right and
left, respectively. Once the string displacement and vslare
known, the string energy’(¢) can be computed by the help of
Eqgs. [IB) and{d6). This results in the simple expression

E(t) :/1/0 [v+(mfct)]2dm+/1/0 [v” (z 4 ct)]’dz, (31)

which is basically the integration of the squared velosité the
two traveling waves. Note that the usug® leading term is miss-
ing because EqC{B1) computes not only the kinetic energythieu
total energy of the string, and for a single traveling wate, total
energy is the double of the kinetic energy (the potentiallanetic
energies equal).

In digital waveguides, the traveling waves are stored iaylel
lines, whose content is shifted to model wave propagatioor. F

simplifying the energy computation, it is beneficial to ckedhe
velocity as the wave variable for the digital waveguideteasl of
string displacement. (Note that in most of the cases veligithe
chosen wave variable anyway, because it is related to tioe for
the string impedance.) In this case, the energy is simplypcoed
as the squared sum of the delay elements

M

E[n) = pAx) (" [m,n))* + (v"[m,n])*,  (32)

wherev*[m, n] is the content of the upper delay line at spatial
positionm and time instank, andv ™ [m, n] is the content of the
lower delay line in a dual delay line implementation. The-con
stantAxz = c¢At = L/M is the spatial step size of the digital
waveguide, wheré\t = 1/f; is the sampling time and/ is the
length of the string in samples (the total number of delaynelets

is 2M). If the digital waveguide is implemented as a single delay-
loop model [Z2], the computation remains the same but now the
squared sum is performed for one delay line only.

6.2. Efficient energy computation

In addition to the ideas proposed in dc. 5, we may take aglgant

of some properties of digital waveguides for efficient egergm-
putation. We have seen that the energy of the digital wadegui
can be computed by a simple squared sum of the delay elements.
In the case of an ideal string, the content of the delay line si
ply circulates in the delay-line buffer, and the energy rexmaon-
stant (there is no energy loss in the delay line). For modete
lossy string, the losses are usually consolidated to or@ pothe
loop, as displayed in Fif 4, whei&, (') is the loss filter. The
only point where losses can occur is at the loss filter, andeaye
time step it is only one value in the delay line that changhe (t
one which passes the loss filter). All the other values are sim
ply shifted. Therefore, we can easily compute the loss otayr
AFEIn], by computing the energies of the samples entering and
leaving the loss filter, and taking their difference, as ldiged in
Fig.[A. Then, the string enerdy[n] is computed as the integration
of AE[n]. From the energy, we compute the quasistatic tension by
a simple scaling according to Ef.]23), from which the prajiag
speed:[n] is obtained as

[To + Tys 1 Tys
C[TL]:CO O—"_Tq[n]%q) (1+§%),

wherecy = /To/u is the nominal propagation speed. The actual
length of the delay lines is computed as

JM)

(33)

_ L
"~ c[n]

D (34)

s~Dg (1
/ 0( 2 Tp

whereDy = Lfs/co is the nominal length of the delay line. The
integer part ofD[n] is implemented by the delay line™ in
Fig.[d, while the fractional part is realized by the fractibdelay
filter FD, which is typically a first order allpass filter or adgrange
FIR filter [23].

Itis important to note that i [1 L] 8] the length of the delmel
is computed by the boxcar integration of the instantaneoop-p
agation speed. This is not necessary here, sificgis already
the averaged version of the instantaneous propagation spee
cause it is computed from the quasistatic tensigpn| instead
of the total tensiori’[n]. This explains why the present method
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Figure 4:Energy-based tension modulation modeling with a digi-
tal waveguide.

can be more efficient than that &f]1d, 8]: instead of commutin
the total variation of tension (which takes a significant antamf
computation) and averaging it by boxcar integration, it pates
the average tension variation directly.

Figure[@ does not contain any excitation block for claritfy. |
the excitation is modeled as an initial velocity distrilautiof the
string (e.g., a stepwise function for plucking), then théahvalue
of the energyE|[0] is set to the energy computed from the initial
shape, and this is corrected ByFE[n] in each time instant. In
the case of a separate excitation block, such as a hammer mod
connected to the string, the initial string velocity and thiial
energy are zero. The string is set to motion by the excitdtioee,
which is added to the two delay lines with an appropriateisgal
at a certain spatial position. The energy change of the string due
to the excitation force is computed in the same way as fordse |
filter: the energy before the summation point is comparedé¢o t
energy after the summation point.

In general, at each point where the lossless wave propagatio
in the digital waveguide is broken by a junction (being a fjlte
an additional input, or a more complex excitation blockg &n-
ergy before and after the junction has to be computed, arsd thi
difference is the energy change for that junction. The tetargy
changeA E[n] is the sum of the energy changes at the junctions:

AB[] = pde Yy " (Jowiln])” = (Jniln)?,  (35)

where Jin ; [n] is the input and/ous,; (7] is the output of junction

i, and[ is the number of junctions. Naturally, the dimension of
Jin,i @and Jout,; 1S velocity (m/s). In a typical scenario of a single
excitation point,/ = 3 since the excitation enters the whole delay
line at two points (one point for the upper and one point fa th
lower line), in addition to the loss filter. However, afteetéxcita-
tion period when the string decays freely, only the energnge

at the “loss junction” has to be computed.

Compared to the physically informed energy storage model of
Sec[&.P, the present method provides slightly more preesmeéts
because it does not assume exponential energy decay, angd the
parameter of EqL{24) does not have to be estimated. Thestarge
advantage is that there is no need to estimate the energyeof th
excitation block, since the energy input coming from thetation
is directly computed by EqLTB5). The computational comityex
of the two methods is in the same order.

Conference on Digital Audio Effects (DAFx-09), Comaly, September 1-4, 2009

7. CONCLUSION AND FUTURE WORK

Tension modulation in strings has two effects: a continues d
crease of pitch (pitch glide) and the nonlinear couplingrahs-
verse modes. For rigidly terminated strings (such as thetrede
guitar), mode coupling does not occur, and even for nongtridg
terminations in most western instruments, the pitch glgl¢he
most important phenomenon. Coming from this observatiois, t
paper has presented an efficient modeling methodology k@ased
the linear relationship between the energy of the string thed
quasistatic part (short-time average) of the tension tiariaBasi-
cally, the computationally heavy tension calculation Elatear-
lier string models is substituted with a more efficient egergm-
putation block and a simple scaling. As a result, the modei pr
cisely synthesizes the pitch glide occurring in tension ohatd
strings, while the additional computational complexityrgmared
to linear string models is negligible, in contrast to earteEnsion
modulated string models.

Future research includes the precise comparison witheearli
methods in terms of sound quality and computational complex
ity. If needed, the effect of nonlinear mode coupling coutbde
added by leading the string output to a second-order naariitye
as was done for kantele synthesisih [7].

It seems feasible to model the tension modulation in mem-
branes based on the energy of the membrane. Thus, the dfficien
modeling of pitch glides in drum synthesis is an importanifie
of future research. Since membrane modeling takes signifjca
more computational time than string modeling, the comjurtat

€avings provided by the energy-based tension computatiote

even more important than for the string.
The interested reader may listen to the sound examples at
http://www.mit.bome.hutbank/publist/dafx09.
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