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ABSTRACT

In the recent years, digital waveguide modeling of mu-
sical instruments has proven to be an e�ective tool for
sound synthesis purposes, but some practical questions
still have remained unanswered. In this paper a new
equivalent structure of the digital waveguide for string
synthesis is presented. This structure can be used for
highly e�cient modeling of beating and two-stage de-
cay, an important characteristic of the piano sound. The
complexity of the traditional structure can be reduced
by replacing one of the string models with a resonator
bank.

1 INTRODUCTION

Physical modeling has gained more and more interest
in the last decade. In contrast to traditional synthesis
methods, it concentrates on the sound producing struc-
ture instead of modeling the resulting sound signal itself.
This results in very e�cient and realistic control of the
model parameters, e.g., velocity of the piano key.
The piano can be decomposed into three functional

parts. The �rst part is the excitation. It includes the
hammer strike. The second is the string, which deter-
mines the frequencies of the harmonics and acts as a
�lter with a very low damping factor. The string sig-
nal is �ltered through the radiator, which is the third
part of the system and simulates the soundboard of the
piano. The interaction between the string and the ham-
mer is bidirectional, since the hammer force depends on
the displacement of the string as well [1]. In this paper
we focus on the modeling of string behavior.
Smith and Van Duyne used commuted waveguide

synthesis for physical modeling of piano sound [2],
[3]. Borin, Rocchesso, and Scalcon presented a digital
waveguide model with nonlinear excitation [4]. A di�er-
ent approach was taken by Laroche and Meillier [5]. In
their implementation a precomputed common excitation
signal was �ltered through second-order resonators.
This paper �rst describes the principles of digital

waveguide modeling, a commonly used method for

string simulation. After presenting the basic idea of
beating and two-stage decay, a novel resonator-based
structure for their simulation is proposed. The paper
shows the abilities of the method with simulation exam-
ples. Summary and future plans conclude the paper.

2 MODELING THE STRING BEHAVIOR

A powerful approach for modeling the string and the
acoustical tube was proposed by Smith [6]. The method
called digital waveguide modeling is based on the time-
domain solution of the one-dimensional wave equation.
The solution can be presented as the sum of two waves
traveling in opposite directions:

y(x, t) = f+(x− ct) + f−(x + ct) (1)

where x denotes the spatial coordinate, t is the time, c
is the propagation speed, and y refers to the transverse
displacement of the string. In Eq. (1) f+ and f− are the
traveling wave components and they can be any twice
di�erentiable functions [7].
Spatial and time-domain sampling of Eq. (1) results in

a simple delay-line representation. In the case of an ideal
string with perfectly rigid terminations, the two travel-
ing wave components form two separate delay lines con-
nected by multipliers (−1) realizing the inverting re�ec-
tion at the boundary. Modeling a lossy, dispersive, and
non-rigidly terminated string can be also easily achieved
using a digital �lter such as Hr(z) in Fig. 1. If the linear-
ity and time-invariance of the string is assumed, all the
distributed losses and dispersion can be consolidated to
one end of the digital waveguide [6]. In the case of one
polarization of a piano string, the system takes the form
shown in Fig. 1, where M is the length of the string in
spatial sampling intervals and Min denotes the position
of the force input.
For a given input Fin the force Fout at the bridge

(termination) can be computed as follows:

Fout

Fin
=

1
1− z−2MHr(z)

(
1− z−2Min

)
z−(M−Min) (2)
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Figure 1: Digital waveguide model of a piano string with
one polarization of vibration.

In this model, Hr(z) is responsible for all the losses
and dispersion. This structure can be viewed as a �lter
with a positive feedback loop, which emphasizes those
frequencies where the denominator approaches zero.

Because of practical reasons, it is worthwhile to sep-
arate the loop �lter Hr(z) into two parts [6]. The part
that is responsible for the dispersion can be realized
as an allpass �lter. The other part, introducing the
losses, has an almost linear phase response. Methods
for dispersion-�lter design can be found in [8] and [9].
In the case of low piano strings, typically 20th order all-
pass �lters are needed for good results, in contrast to
the low-order loss �lters.

3 BEATING AND TWO-STAGE DECAY

Since two or three slightly mistuned strings are sounding
together when a single piano key is depressed (except for
the lowest octave), a complicated modulation of the am-
plitudes is brought about. Weinreich [10] studied the be-
havior of two coupled strings and found that the normal
modes of vibration are two exponentially decaying sinu-
soids for each harmonic frequency. All the frequency,
initial amplitude, initial phase and decay time param-
eters can be di�erent for these two modes. Depending
on these di�erences, two-stage decay and beating can
appear in the sound.

Two-stage decay means that in the early part of the
tone the decay rate is higher than in the latter. Beating
is an amplitude modulation, which is superimposed on
the exponential decay. Another reason for the two-stage
decay is the di�erent decay rate of the horizontal and
vertical polarizations of vibration [10].

Most piano keys correspond to three slightly mistuned
strings, all with two polarizations, which would corre-
spond to six normal modes. However, Weinreich's model
[10] with two exponentially damping sinusoids was found
to be a good approximation in describing the evolution
of these complicated envelopes.

These e�ects can be taken into account by using two
separate digital waveguides with di�erent parameters
[11], but it raises the computational complexity by a
factor of two as well (see Fig. 2). Another problem with
that approach is that the characteristic of the decay will

Figure 2: Parallel digital waveguide implementation of
two-stage decay.

be similar for all the harmonics, which is not found in
real piano sounds.

4 THE NOVEL STRUCTURE

A new method is presented here which is based on the
equivalent resonator structure of the digital waveguide
in [12]. As shown there, Eq. (2) can be rewritten in the
following way:

Fout

Fin
=

1
N

{
a1

1− z−1p1
+ . . . +

aN

1− z−1pN

}
z−M

pn = rne−jϑn (3)

where N = 2M , ak are the complex amplitudes of the
resonators forming conjugate pairs, ϑk refer to the pole
frequencies, and rk to the pole radii. The complex con-
jugate pole-pairs of Eq. (3) can be realized using second-
order resonators. Their transfer function is of the form:

R(z) =
2Re{a2k} − 2Re{a2kp2k}z−1

1− 2Re{p2k}z−1 + p2kp2kz−2

p2k = p2k+1 a2k = a2k+1 (4)

As the two-stage decay of the piano sound is mostly
audible in the lowest harmonics, modeling only these us-
ing �ve or ten resonators yields a more e�cient imple-
mentation than the parallel digital waveguide structure.
The need for a high-order allpass �lter can be avoided.
The use of resonators gives a greater �exibility in con-
trolling the amplitude envelopes, since it can be done
for all the harmonics separately.
In Fig. 2, Sv(z) and Sh(z) refer to the digital waveg-

uide string models (illustrated in Fig. 1) of the vertical
and horizontal polarizations, respectively. This struc-
ture is similar to what can be found in [11]. The g
parameters are real coe�cients, which control the input
and output amplitudes of the waveguides and determine
the amount of coupling. In the new realization presented
in Fig. 3 the second digital waveguide Sh(z) is replaced
with a set of resonators (R1(z) . . . RK(z)) resulting in
the reduction of the computational complexity.
Note that the need for implementing the delay z−M of

Eq. (3) can also be eliminated. In this case the output
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Figure 3: New realization of two-stage decay with one
string model and a resonator bank.

Fout of the waveguide Sv(z) is at the node Min in Fig. 1,
which is the force input position. The delay z−Min of
the waveguide cannot be further reduced. In order to
compensate for this the initial phases of the resonators
should be altered accordingly.

Table 1: Estimated implementation costs in terms of
number of multiplications (MUL), additions (ADD),
and unit delays (DELAY). WG stands for waveguide.

MUL ADD DELAY

WG for note C2 (65 Hz) 50 50 700
WG for note C4 (262 Hz) 30 30 180
WG for note C6 (1050 Hz) 10 10 50

5 resonators (any frequency) 20 24 15

As shown in Table 1, the replacement of the second
digital waveguide with resonators is most bene�cial for
the lowest piano tones, although for the higher ones less
resonators are needed. Savings are obtained in terms
of reduced number of multiplications and additions and
even more concerning the reduced need of fast memory.

5 PARAMETER ESTIMATION

The parameters of the resonators can be computed as
follows: �rst the loss and dispersion �lters of the digital
waveguide have to be designed. The decay times of the
harmonics can be measured by extracting the harmonics
using heterodyne �ltering and applying linear regression
on the logarithm of the envelopes [13]. From these values
the loss �lter can be designed.

The measurement of beating and two-stage decay uses
the same technique as a starting point. The linear re-
gression curve is then subtracted from the envelope in
the logarithmic amplitude scale. As a result, the devia-
tion from the ideal exponential decay is obtained. Going
back to the linear amplitude scale, our aim is to �t an
exponentially decaying or growing sinusoid on this devi-
ation, since that completely characterizes the two-mode
model. Details of the analysis procedure will be pub-
lished later.
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Figure 4: Di�erent amplitude envelopes generated by
the structure of Fig. 3.
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Figure 5: Amplitude envelopes of the original piano
tone.

6 SIMULATION EXAMPLES

In Fig. 4 the envelopes of an imaginary piano tone are
displayed. The parameters of the resonators were set
to show the abilities of our model. Envelope No. 1 is
simulating a two-stage decay, No. 3 is an envelope with
beating, and No. 5 is a normal exponential decay. The
envelopes No. 2 and 4 have interesting properties: No. 4
is an exponential decay but has almost zero amplitude
at 1 sec, and No. 2 �rst grows before it decays. The
latter can be used for the simulation of the generation of
missing modes, often found in other string instruments
[14].

Fig. 5 illustrates the amplitude envelopes of the note
A#

4 (466Hz), and Fig. 6 shows the envelopes of the syn-
thetic signal. In the simulation, the structure of Fig. 3
with 5 resonators was used.

As it can be seen from the �gures, the envelopes of the
most prominent harmonics (1, 2, 3, 4, 5) are matched
quite well, while the others have a simple exponential
decay. Informal listening tests show that the precise
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Figure 6: Amplitude envelopes of the synthesized tone
using the structure of Fig. 3.

simulation of �ve or ten harmonics increases the qual-
ity of the synthesized tone signi�cantly, while adding
only a little computational load compared to the one-
polarization, single delay-line case.

7 CONCLUSION AND FUTURE PLANS

A new method for the implementation of the beating
and two-stage decay was presented facilitating e�ective
yet high-quality synthesis of the piano sound. This ap-
proach, besides its bene�ts in the computational com-
plexity, enables great �exibility in controlling the en-
velopes of individual harmonics, resulting in a more nat-
ural sound.

When the measurement of all the notes of the piano
is possible, this method can give accurate simulation
results, since the envelopes of the most prominent par-
tials can be matched quite precisely. Furthermore, this
method can take the advantage of nonlinear excitation
and coupling between di�erent notes, issuing in a dy-
namically varying timbre.

When the measurement of all piano notes is not pos-
sible, another solution could be the impedance measure-
ment of the bridge. The normal modes can be calculated
from the terminating impedance [10]. The measurement
of bridge impedance at about �ve points could give ad-
equate results, which would speed up the measurement
and analysis process to a great extent.

Another open question is how the signi�cance of the
beating of di�erent harmonics should be determined.
In an e�cient implementation, typically �ve or ten res-
onators are available, and thus it is necessary to deceide
which partials should have their envelopes precisely
matched. The best choice would be to use psychoacous-
tic criteria, but unfortunately they are not available in
the literature.

It should be noted that the method presented here
can be used not only for the simulation of piano sound,

but of any other struck or plucked instrument.
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