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Sound synthesis algorithms modeling the linear behavior ofstrings are well developed. However, some
musical instruments require the modeling of such nonlinearphenomena as the appearance of longitudinal
string modes, phantom partials, or mode coupling and pitch glide due to tension variation. Accordingly,
the effects of geometric nonlinearities in strings are gaining more and more interest in the sound synthesis
community. These effects can be grouped into four differentregimes, depending on the transverse slope
and on the ratio of longitudinal and transverse fundamentalfrequencies. In some cases only the coupling
from the transverse to the longitudinal polarization is significant, while in others both directions of coupling
are important. Another question is whether the inertial effects of longitudinal modes have to be modeled
or not. The four cases arising from the combinations of thesefactors are outlined in the paper. The most
common string modeling approaches – finite difference modeling, digital waveguides and modal models
– are investigated with respect to their ability to model thedifferent effects of geometric nonlinearities.
The paper proposes the combined use of different modeling approaches to reduce the computational cost
required for modeling the aforementioned phenomena.

1 Introduction

Modeling of the nonlinear behavior of musical instrument
strings has become a vivid research direction in the re-
cent years, mostly because these complex models have
become realizable in real time due to the increasing com-
putational power. The purpose of this paper is to give a
guideline about the different domains of geometric non-
linearity, together with the possible modeling methods.

The paper first outlines the basic string equations for the
transverse and longitudinal polarizations, and estimates
the relative significance of nonlinear terms by a simple
model. This model is used to appoint the different para-
meter values where the string behavior changes qualita-
tively. Then, the most important properties of the five
domains of string behavior are described, followed by
outlining the modeling methods given in the literature.
Finally, an efficient method is proposed for modeling the
bidirectional coupling of the transverse and longitudinal
polarizations.

2 The significance of nonlinearity

This section investigates the factors on which the signif-
icance of nonlinear behavior depends on. The goal is to
find out whether the longitudinal modes and the longi-
tudinal to transverse coupling have to be modeled for a
given parameter set of the string.

2.1 String equations

For simplicity, it is assumed in this paper that the string
is vibrating in one plane, i.e., one transverse and one lon-
gitudinal polarization are present. Losses and dispersion
are also neglected here, while they will be included in the
simulations.

The derivations of the nonlinear motion of the string can
be found in the literature, e.g., in the textbook of Morse
and Ingard [1]. Here only the results are presented, al-
though with different notations. The equation for the lon-
gitudinal displacementξ(x, t) is
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where E is the Young’s modulus andS is the cross-
section area of the string,t stands for the time andx is
the position along the string. Equation (1) is a standard
one-dimensional wave equation with an additional force
term nonlinearly depending on the transverse vibration
y(x, t).

The wave equation for the transverse motion can be writ-
ten as
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which is again a one-dimensional wave equation with an
additional force term depending on the product of the
transverse slope and the tension variation. The constant
T0 refers to tension of the string in equilibrium.
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The radiated sound is approximated as the linear com-
bination of the longitudinal and transverse forces at the
string termination. Here we assume that the instrument
body is a linear system, and that the string termination
cannot exchange energy between the two polarizations.

The bridge force in the longitudinal direction can be ap-
proximated by the tension variation at the termination of
the string (x = L) as

Fl(t) = −[T (L, t)− T0] =
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showing that the forceFl(t) depends not only on the lon-
gitudinal motion but on the transverse vibration as well.
Note thatT0 has been subtracted fromT (L, t) because
it only acts as a constant strain on the instrument body,
which does not appear in the radiated sound.

The transverse forceFt at the bridge is the product of the
string slope∂y/∂x and the tensionT (x, t):
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again showing that the transverse force at the bridge de-
pends on both the transverse and longitudinal string mo-
tion. However, for small vibration amplitudes (linear be-
havior) only the first term is significant.

Note that Eqs. (1)–(4) become more complicated in the
case of rubber-like strings, where the assumptionES ≫
T0 does not hold [2].

2.2 Parameter dependence

It can be seen from Eqs. (1)–(4) that the character of
string vibration depends not only on the physical prop-
erties, but also on the amplitude of vibration. As musical
instrument strings are generally excited in the transverse
polarization, we will concentrate on the effect coming
from the variation of the transverse slope∂y/∂x. The
Euclidean norm (root mean square value) of the trans-
verse slope at the termination (x = L) will be referred as
||∂y/∂x||.

From Eq. (4) it follows that the linear transverse compo-
nent (that component which would arise if the string was
ideal) of the bridge forceFt,lin has the magnitude

||Ft,lin|| = T0
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Equations (1) and (3) show that the magnitude of longitu-
dinal force at the bridge||Fl|| is approximately a second

order function of the string slope:

||Fl|| ≈ ClES
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whereCl is a constant in the order of unity, which de-
pends on the type of string excitation.

Similarly, from Eqs. (2) and (4) it follows that the mag-
nitude of the nonlinear transverse component can be ap-
proximated as a third order function of transverse slope:

||Ft,nonlin|| ≈ CtES
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whereCt is a constant in the order of unity.
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Figure 1: Euclidean norm of simulated bridge forces as
a function of the Euclidean norm of the transverse slope
||∂y/∂x|| at the bridge: linear transverse force||Ft,lin||
(thick solid line), longitudinal force||Fl|| (dashed line),
and nonlinear transverse force||Ft,nonlin|| (thin solid
line). The approximate values computed by Eqs. (6) and
(7) are displayed by dotted lines. Fig. 1 (a) has the pa-
rameters of aG1 piano string, while Fig. 1 (b) has a 100
times higherE value.

Figure 1 shows the Euclidean norm of bridge forces for
the first 100 ms of simulated struck piano strings, com-
puted by the nonlinear string model of Sec. 3.5. Figure 1
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(a) displays a string with the physical parametersµ, T0,
E, S, andL corresponding to aG1 piano string. Losses
and dispersion are also included in the simulation. The
dotted lines show the approximate curves computed by
Eqs. (6) and (7) withCl = 0.25 andCt = 10. TheseCl

andCt values have been found to be also acceptable ap-
proximations for other kind of excitations, such as pluck-
ing. The thick solid line shows the Euclidean norm of the
linear transverse bridge force. The magnitude of nonlin-
ear transverse component (thin solid line) is computed by
subtracting the output of a linear string model from the
output of the nonlinear model. Finally, the dashed line
displays the Euclidean norm of the longitudinal bridge
force.

Figure 1 (b) shows a simulation with the same parame-
ters, except that the Young’s modulus was increased by a
factor of 100, corresponding to a loosely stretched string.
It can be seen that now the magnitude of the longitudi-
nal component and that of the nonlinear transverse com-
ponent reach the level of the transverse component at a
much lower transverse slope compared to Fig. 1 (a).

Figure 1 (a) and (b) demonstrate that the approximate
curves follow the simulated ones until the nonlinear trans-
verse component reaches the level of the linear transverse
component. The reason for this is that the generation of
the longitudinal motion draws energy from the transverse
vibration (which is not included in Eqs. (6) and (7)), and
this energy leakage from the transverse motion starts to
be significant only above a certain level.

2.3 Classification

Let us assume that the longitudinal forceFl is significant,
if its Euclidean norm||Fl|| reaches the 10% (–20 dB) of
the transverse linear component||Fl|| = 0.1||Ft,lin|| in
Eqs. (5) and (6), giving
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Similarly, the parameter values where the nonlinear trans-
verse component is –20 dB lower than the linear one are
on the line
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In Eqs. (8) and (9) the parameter dependence is written as
a function of

√

ES/T0, as
√

ES/T0 equals to the ratio of
the longitudinal and transverse fundamental frequencies

f ′

0

f0
=

√

ES

T0
, (10)

wheref0 is the transverse andf ′

0 is the longitudinal fun-
damental frequency. The change off ′

0 may change the
string behavior significantly, as discussed in Sec. 2.4.
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Figure 2: Classification of the nonlinear string behav-
ior. At parameter values above the solid line the non-
linearly generated longitudinal component becomes sig-
nificant compared to the linear transverse one. Above the
dashed line the nonlinear transverse component starts to
appear. On the right-hand side of the dotted line, the ten-
sion can be considered spatially uniform along the string
(assuming 20 significant transverse partials).

The curve of Eq. (8) is plotted by a solid line in Fig. 2 and
the function of Eq. (9) by a dashed line. Above these lines
the longitudinal and nonlinear transverse components are
considered significant.

Note that as the perceptual significance of the nonlinear
components vary from instrument to instrument, the lines
of Fig. 2 may shift to some extent. Moreover, the in-
harmonicity coefficientB of the string is a second or-
der function of

√

ES/T0. As the nonlinear terms can be
found at the sum or difference of the transverse modal
frequencies, these nonlinear peaks will depart from the
transverse ones more and more at increasingB values,
leading to a more audible effect [3].

For musical instruments,f ′

0/f0 =
√

ES/T0 values
around 3–5 are typical for nylon strings, while this value
is around 10–20 for metal strings. Note that

√

ES/T0

values in the order of 100 correspond to loosely stretched
strings, which are often used in experimental setups, as
in this case the nonlinearity is larger, i.e., more easily ob-
servable. As for the slope, the value||∂y/∂x|| = 10−2

corresponds to a fortissimo hammer strike (5 m/s hammer
velocity) in the case of a piano string.

2.4 Spectral content of the excitation

Another important factor that influences the nature of
nonlinear vibration is the spectral content of the trans-
verse vibration. If all the longitudinal modes are excited
under their resonant frequency, the tension can be consid-
ered uniform along the string [4, 5].
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This is indicated in Fig. 2 as a dotted line for a trans-
verse vibration containing the first 20 partials as an exam-
ple. The bandwidth of the force exciting the longitudinal
modes is the double of that of the transverse motion. Ac-
cordingly, forf ′

0/f0 =
√

ES/T0 values higher than 40
the string tension can be considered uniform. Naturally,
this dashed line should be shifted to the right or to the left
depending on whether there are more or less significant
partials in the transverse vibration.

It is interesting to note that while increasing
√

ES/T0

complicates the string motion by increasing the effect of
the nonlinear terms, it also changes the nature of string
behavior by raising the longitudinal modal frequencies.
Above a certain value the tension becomes spatially uni-
form along the string, leading to a motion which can be
explained by simpler equations.

3 Modeling strategies

As it can be seen from Fig. 2, there are five different do-
mains in which the string behavior can be classified, four
of them comprising nonlinear motion. Note that the lines
separating the fields are not sharp, as the string behavior
changes gradually as a function of the string and excita-
tion parameters.

3.1 Linear motion

When
√

ES/T0 and∂y/∂x are small, the string obeys
the standard linear wave equation. In this case the trans-
verse and longitudinal polarizations are independent.

Many techniques have been presented for modeling the
linear behavior of the string, the digital waveguide mod-
eling [6] being the most efficient one. These techniques
are well known, thus, not discussed here.

3.2 Even phantom partials

In this case the string tension varies with time but spa-
tially uniform along the string (see Sec. 2.4). The longi-
tudinal force component will include terms having double
the frequency of transverse modes [7, 5]. These are called
even phantoms in the notation of Conklin [3]. The tension
variation is negligible compared to the initial tensionT0,
so it cannot excite any “nonlinear” transverse modes.

For modeling, a linear string model is applied for the
transverse polarization, and the tension is computed from
the elongation of the string

T (x, t) = T (t) = T0 + ES
1

2L

∫ L

x=0

(

∂y

∂x

)2

dx. (11)

Note that the longitudinal motionξ(x, t) does not need to

be computed, since the longitudinal bridge force is sim-
ply obtained asFl(t) = −[T (L, t)−T0] = −[T (t)−T0].

The perceptual effect of even phantoms might be simu-
lated by adding a simple second-order nonlinearity to the
output, as it was done for the kantele [8].

3.3 Tension modulation

This case is similar to that of Sec. 3.2 in a way that the
tension is spatially uniform along the string, but now the
temporal variation of the tension is no longer negligible
in comparison withT0. This leads to the nonlinear excita-
tion of transverse modes, giving appearance to new com-
ponents, nonplanar motion, and pitch glide. This regime
of string motion is well studied both theoretically and ex-
perimentally, see, e.g., [4, 7, 9].

For modeling, the tension has to be computed by the dis-
cretization of Eq. (11), and it has to be fed back to the
string by varying the string tension. This is relatively easy
in the case of finite-difference models, nevertheless, en-
ergy conservation still needs consideration [10]. The dig-
ital waveguide is also well suited for this kind of string
behavior, as the effect of tension variation can be taken
into account by varying the delay line length, which is
done by variable allpass filters [11].

3.4 Modeling of longitudinal modes

In this case the frequencies of the excitation terms in
Eq. (1) are around or above the longitudinal modal fre-
quencies. As a result, the tension varies with both time
and space along the string. This leads to the appearance
of both odd and even phantom partials and the free mo-
tion of longitudinal modes [5]. As the tension variation is
small compared toT0, the longitudinal motion does not
influence the transverse vibration.

For modeling, the largest difference from the cases of
Secs. 3.2 and 3.3 is that now the motion of longitudinal
modes also have to be computed. Efficient models for
the longitudinal components in piano strings have been
presented in [12, 13], although these models had a loose
connection to physical reality.

Two physics-based models are outlined in [5], both of
them model phantom partials and longitudinal free modes
jointly. In these models second-order resonators are non-
linearly excited according to the transverse string shape
computed by either a finite difference model or a modal
formulation. The output of these resonators represent
the instantaneous amplitudesξk(t) of the longitudinal
modes, from which the longitudinal displacement is com-
puted as

ξ(x, t) =
∞
∑

k=1

ξk(t) sin

(

kπx

L

)

. (12)
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The instantaneous amplitudeξk(t) of the longitudinal
modek is obtained as

ξk(t) = Ft→l,k(t) ∗ ξδ,k(t), (13)

Ft→l,k(t) =

∫ L

0

Ft→l(x, t) sin

(

kπx

L

)

dx, (14)

ξδ,k(t) =
1

πLµ

e− t
τ ′

k

f ′

k

sin (2πf ′

kt) , (15)

where the∗ sign denotes time-domain convolution. The
time-domain impulse response of longitudinal modek is
denoted byξδ,k(t), wheref ′

k and τ ′

k stand for the fre-
quency and decay time of the longitudinal modek.

The excitation force acting on the longitudinal modek is
referred byFt→l,k(t) and is computed as the scalar prod-
uct of the modal shape of modek and the excitation force
densityFt→l(x, t). The latter is the rightmost term of
Eq. (1), calculated as

Ft→l(x, t) =
1

2
ES

∂
[

∂y(x,t)
∂x

]2

∂x
. (16)

The most heavy part of computing the longitudinal re-
sponse is the scalar product of Eq. (14), as it should be
done for all the resonators separately. Therefore, large
computational savings can be achieved by using the same
excitation signal for all the modes [5]. The models using
this simplification produce convincing piano sound.

Note that a similar approach could be used to extend
digital-waveguide based transverse string models. How-
ever, for inharmonic strings the allpass filters have to be
distributed between the delay elements, as a lumped dis-
persion filter would unnaturally alter the modal shapes.

3.5 Bidirectional coupling

Here neither the tension is uniform along the string, nor
its variation is negligible in comparison withT0. This is
the most complex situation, since odd and even phantom
partials and the longitudinal free modes also appear and
they influence the transverse motion by generating new
transverse components. Although some papers discuss
the phenomenon for rubber-like strings (see, e.g., [2]), a
detailed analysis which would be applicable to musical
instrument strings has not appeared yet.

A straightforward approach for modeling the bidirec-
tional coupling is finite-difference modeling, i.e., the dis-
cretization of Eqs. (1) and (2). However, because of the
higher propagation speed in the longitudinal direction, 10
or 100 times higher sampling rates are required compared
to the standard audio sampling rates, which increases the
computational load dramatically.

Another option is computing the longitudinal string dis-
placementξ(x, t) by the modal model of Eqs. (12)–(16)

and feedingξ(x, t) back to a finite difference model im-
plementing Eq. (2). Unfortunately, ifN transverse modes
are present on the string,K = 2N longitudinal modes
have to be computed, leading to large computational
complexity.

Here we propose an efficient method, which is based on
the idea that first the string tension is computed as if it
would be uniform along the string (like in Secs. 3.2 and
3.3), then this tension is corrected by the contribution of
the longitudinal modes. The new method can be consid-
ered as the combination of the tension modulation models
of Sec. 3.3 and the modal model of Sec. 3.4.

The transfer function of longitudinal modek is the
Laplace transform of Eq. (15):

L{ξδ,k(t)} =
2

Lµ

1

s2 + 2
τ ′

k

s + 1
τ ′2

k

+ 4π2f ′2
k

, (17)

from which the low frequency responseξ̂δ,k(t) of the res-
onator can be approximated as a constant gain by assum-
ing s → 0 and1/τ ′

k ≪ f ′

k:

ξ̂δ,k(t) = −
2

Lµ4π2f ′2
k

δ(t). (18)

If Eq. (18) holds for all the longitudinal modes, the
tension computed by the modal model equals with the
tension computed from the elongation of the string by
Eq. (11), as proven in the Appendix of [5].

Equation (18) holds for most of the longitudinal modes.
Nevertheless, it does not hold for the lowest ones, which
are excited around or above their resonant frequency. For
these modes a correction is made by subtracting their
false dc response (which is already included in the ten-
sion computed by Eq. (11)) and adding their real, fre-
quency dependent response:

T (x, t) = T (t) + ES

K
∑

k=1

{

kπ

L
cos

(

kπx

L

)

×

×
[

Ft→l,k(t) ∗ (ξδ,k(t) − ξ̂δ,k(t))
]}

. (19)

As this correction has to be done only for the first longi-
tudinal modes (5–20 depending on the number of trans-
verse modes and thef ′

0/f0 ratio), this method provides
significant computational savings compared to comput-
ing K = 2N (ca. 100–200) longitudinal modes.

In this case, the tensionT (x, t) is fed back to a finite
difference string model for computing the transverse vi-
brationy(x, t), but similar ideas could be applied for ex-
tending digital waveguide string models.

The model output for aG1 piano string is displayed in
Fig. 3, solid line. The dotted line is the output com-
puted by a full finite difference model running at 10
times higher sampling rate (441 kHz). The difference be-
tween the two models is almost invisible (and inaudible),
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while the novel approach requires 10–20% computational
power compared to the full finite difference model.
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Figure 3: Transverse (a) and longitudinal (b) bridge
forces computed by the new bidirectional string model
for the first 40 ms of aG1 piano string. The dotted line
(almost invisible under the solid one) is computed by a
full finite difference model and shown as a reference.

4 Conclusion

In this paper we have provided a classification of the
geometric nonlinearity of strings. This can be used as
a guideline whether a specific phenomenon for a given
parameter set of the string has to be modeled or not. The
most important properties of the four cases of nonlinear
string have been described, followed by outlining the pos-
sible modeling methods. Finally, an efficient method has
been proposed for modeling the bidirectional coupling of
the transverse and longitudinal polarizations, which com-
bines tension modulation modeling with the modal model
of longitudinal vibration.
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