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ABSTRACT

In the audio signal processing field, multiple IIR filters are required
in many applications. As an example, equalizing a Wave Field Syn-
thesis system requires massive filter processing in real time. Graph-
ics Processing Units (GPUs) are well known for their potential in
highly parallel data processing. Up to now, the use of the GPUs
for implementing IIR filters has not been clearly tackled in audio
processing because of its feedback loop that prevents its total paral-
lelization. However, using the Parallel form of IIR filters, this feed-
back is reduced, since every single sample is computed in a parallel
way. This paper analyzes the performance of multiple IIR filters
using GPUs and compares it with a powerful multi-core computer.
The proposed GPU implementation can run up to 1256 concurrent
IIR filters of order 256th in real time, which means 321,536 total
filter order, with a latency time of 0.72 ms (sampling frequency of
44.1 kHz). This demonstrates that GPUs are well suited for comput-
ing massive IIR filtering.

Index Terms— Audio systems, IIR filters, parallel architec-
tures, parallel processing

1. INTRODUCTION

Modeling or equalizing an acoustic or electro-acoustic transfer func-
tion by digital filters is a typical task in audio signal processing. By
taking into account the properties of the human hearing, significant
savings can be achieved in the required computational power at a
given sound quality. As an example, the frequency resolution of the
human auditory system has led to the development of special fil-
ter design methodologies with a logarithmic frequency resolution,
as opposed to the linear frequency resolution of traditional FIR and
IIR filters. These techniques include frequency warping [1], Kautz
filters [2], or fixed-pole parallel filters [3]. Typically, the required
filter order is reduced by a factor of 5 compared to traditional IIR
filters (e.g., designed by the Steiglitz–McBride method [4]) with all
the above techniques. This advantage is slightly reduced in the case
of warped and Kautz filters, because they are implemented by spe-
cial filter structures, but not for fixed-pole parallel filters, since they
are simply implemented as a set of second-order sections. 1
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1A strong contender of these logarithmic filter design methods in terms
of computational complexity is FFT-based partitioned convolution [5]. How-
ever, the performance comparison of partitioned convolution to logarithmic
filter design methods is out of the scope of the paper.

One application that is specially important in the context of mul-
tichannel acoustic signal processing using IIR filters is the equaliza-
tion of a Wave Field Synthesis (WFS) system. WFS systems re-
quire high computational capacity since they involve multiple loud-
speakers, such as the WFS system at the Universitat Politècnica
de València (UPV) (shown in [6]) that has 96 loudspeakers, or the
IOSONO WFS system (shown in [7]) that has 120 loudspeakers.
Equalizing a WFS system requires such a massive amount of filter-
ing that even when using parallel filters, a significant amount of CPU
time is taken for filtering, and in some cases, real-time operation is
not possible even in modern multi-core computers.

Recently, Graphics Processing Units (GPUs) have gained a
strong interest in the audio community due to their massive com-
putational power. Applications include room acoustics modelling
[8, 9, 10, 11], computer-music synthesis using additive synthesis
[12, 13], sliding phase vocoder [14], beamforming [15], audio ren-
dering [16, 17, 18], and adaptive filtering [19, 20, 21] among others.
There are also GPU-based implementations of WFS systems such
as [22, 23], but they do not perform any equalization. Interestingly,
implementing IIR filters on GPUs has not been investigated much in
the audio field. A preliminary approach was presented in [24], where
only the non-recursive operations are parallelized. Since fixed-pole
parallel filters are among the most efficient methodologies for audio,
it is a natural choice to implement them in GPUs to allow even faster
filtering. Besides their computational efficiency, a further motivation
for using parallel filters is their full potential for code parallelization.

Therefore, this paper presents a multichannel GPU-based im-
plementation of parallel IIR filters that can be used for equalizing a
WFS system and compares its computational performance with the
performance of a powerful multi-core computer.

2. FIXED-POLE PARALLEL FILTERS

Traditionally, the parallel second-order form of digital filters has
been used because of its lower sensitivity to coefficient quantiza-
tion and better quantization noise performance compared to direct
form IIR filters [25]. In these applications, first a direct form IIR fil-
ter is designed and then factored to a parallel form using the partial
fraction expansion.

In fixed-pole parallel filters, the filter is designed directly in the
second-order form by first setting the poles to predetermined posi-
tions. The advantage of fixing the poles is that now the filter de-
sign reduces to a linear-in-parameter problem which has a unique
solution. Nevertheless, the most important property of parallel fil-
ters is that the pole frequencies allow a direct control of the fre-
quency resolution: the more poles are placed in a specific frequency
range, the higher resolution is obtained. For example, placing the
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Fig. 1. Structure of the parallel second-order filter.
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Fig. 2. Structure of the second-order section used in Fig. 1

poles according to a logarithmic frequency scale results in a loga-
rithmic frequency resolution, and the modeled response resembles
the fractional-octave smoothed version of the target [26]. For a thor-
ough comparison of pole positioning methods see [27].

The general form of the parallel filter consists of a parallel set
of second-order sections and an optional FIR filter path [28]. In
this paper the FIR part is reduced to a single signal path, and the
following form is used:

H(z−1) =

K∑
k=1

bk,0 + bk,1z
−1

1 + ak,1z−1 + ak,2z−2
+ d0, (1)

where K is the number of second-order sections. The filter struc-
ture and the second-order section are depicted in Fig. 1 and Fig. 2,
respectively.

2.1. Filter design

We can assume that the poles of the parallel filter pk are known (e.g.,
set to a logarithmic scale). Then the denominator coefficients are
determined by the poles (ak,1 = pk + pk and ak,2 = |pk|2), and the
filter design problem becomes linear in its free parameters (weights)
bk,0, bk,1 and d0.

Using the substitution z−1 = e−jϑn in (1) and writing it in
matrix form for a finite set of ϑn angular frequencies yields [28]

h = Mp, (2)

where p = [b1,0, b1,1, . . . bk,0, bk,1, d0]
T is a column vector com-

posed of the free parameters. The first column of the modeling

matrix M contains the all-pole transfer function of the first sec-
tion 1/(1 + a1,1e

−jϑn + a1,2e
−j2ϑn) for the ϑn angular frequen-

cies, and the second column contains its delayed version version
e−jϑn/(1 + a1,1e

−jϑn + a1,2e
−j2ϑn) for all ϑn. The third and

fourth columns are the all-pole transfer functions for the second
section 1/(1 + a2,1e

−jϑn + a2,2e
−j2ϑn) and its delayed version

e−jϑn/(1 + a2,1e
−jϑn + a2,2e

−j2ϑn) for all ϑn. The remaining
part of matrix M is constructed similarly, except the last column,
which belongs to the constant gain path, and it is 1 for all ϑn. Fi-
nally, h = [H(ϑ1) . . . H(ϑN )]T is a column vector composed of
the resulting frequency response.

The optimal parameters popt in the mean squares sense are
found by the well-known least-squares (LS) solution

popt = (MHM)−1MHht, (3)

where MH is the conjugate transpose of M, and ht is the tar-
get frequency response. Note that (3) assumes a filter specifica-
tion Ht(ϑn) given for the full frequency range ϑn ∈ [−π, π].
Matlab code for parallel filter design can be downloaded from
http://www.mit.bme.hu/∼bank/parfilt.

3. PARALLEL IMPLEMENTATIONS

This section describes how the parallelization is organized inside the
GPU and multi-core architectures.

3.1. GPU and CUDA

The appearance of CUDA [29] has allowed to use the GPUs for
applications beyond graphics rendering. GPUs have the potential
of highly parallel data processing. The recent Nvidia GPU Kepler
architecture [30] is composed of multiple Stream Multiprocessors
(SMX), where each SMX consists of 192 pipelined cores. A GPU
device has a large amount of off-chip device memory (global-
memory) and a fast on-chip memory (shared-memory). The code to
be executed on the GPU concurrently by multiple elementary pro-
cesses, called threads, is written on a kernel function. The threads
are grouped in Thread Blocks (TB). Before launching the GPU code,
the programmer must define the number of TBs and its size, i.e.,
the number of threads. This is important, since only the threads that
belong to the same TB can share data through shared-memory.

The total number of TBs launched in a kernel can exceed the
number of SMX. At runtime, the kernel distributes all the TBs
among SMXs. Each SMX can host up to 16 TBs or up to 1024
threads in total (summing up all the threads of all the TBs). If the
number of TBs exceed the resources of the GPU, these TBs wait
until other TBs finish their computation in order to be later hosted.
Each SMX manages all the TBs jointly, and executes all the threads
(regardless of the TB they belong to) in groups of 32 parallel threads
called warps that are scheduled by warp schedulers for execution.

It is important to have multiple warps in a SMX, since it allows
to hide latency. This means that, in case all threads of a warp must
carry out a memory access that can last several clock cycles, the
warp schedulers select other warp that is ready to execute in order to
hide latency. The warp schedulers are responsible to switch among
different warps in order to try full utilization of SMXs. Thus, it is
recommended to have multiple TBs in an SMX. To this end, and
following the recommendations of [29], we assign to each TB 128,
256 or 512 threads. If we use 1024-size TBs, only one TB would fit
in a SMX. We will tackle different TB sizes in order to seek the best
performance.
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Fig. 3. GPU-based Parallel Implementation of one IIR filter processing.

3.2. GPU-based parallel implementation

If we want to equalize a WFS system composed of N loudspeak-
ers, we need to carry out N IIR filter processes concurrently. Thus,
we launch N TBs to run the CUDA kernel. Each TB of L threads
(L ∈ {128, 256, 512}) corresponds to one IIR filter that has K
second-order sections. A thread inside a TB computes K

L
sections,

and stores its result in the shared-memory. Then, a synchroniza-
tion barrier is set in order to wait that all the threads have finished.
After that, the reduction algorithm described by Harris [31] is im-
plemented. It consists in summing up in a parallel way all the values
of a vector that is stored in the shared-memory. Finally, the FIR co-
efficient d0 is executed at the end by only one of the threads of the
TB. Figure 3 illustrates the described operations for one parallel IIR
filter process.

3.3. Multicore-based parallel implementation

In order to assess the computational performance achieved by the
GPU implementation, a comparison with a powerful multicore com-
puter is required. To this end, we implement our algorithm using
openMP [32]. This programming framework allows us to parallelize
our algorithm using all the cores that a computer owns. The multi-
core computers are more suited to task-based parallelism, instead of
the fine-grain parallelism, which can be easily managed by a GPU.
The advantage of a multicore implementation is that data transfer-
ring from/to GPU to/from CPU is not needed.

The serial algorithm to carry out N IIR filters is composed by
three nested loops: number of filters, number of samples per filter,
and number of second-order sections. By using openMP, we imple-
ment our algorithm by distributing the iterations of the most external
loop among all the cores, since each filter process is independently
performed. In case that our multicore computer is composed of P
processors, each processor is responsible for carrying out N

P
filters.

Comparing to the GPU-based implementation, one CPU proces-
sor computes at least the same operations as a TB. However, one TB
only computes one filter process, while one CPU processor could
compute more than one. GPU-based parallelization presents two lev-

els: concurrency in computing multiple filter processes, and concur-
rency in computing multiple second-order sections inside one filter.
In contrast, the CPU-based parallelization presents only concurrency
in multiple filter processes.

4. RESULTS

We test our GPU-based implementation on an Nvidia Tesla K20c
that is based on the Kepler architecture and is composed of 13 SMXs,
and our multicore-based implementation on a computer composed of
two SMPs (Symmetric Multi-Processing) Intel Xeon CPU X5680 at
3.33 GHz, which is a hexacore. Thus, our multicore computer is
composed of 12 cores.

We use a standard audio card at the laboratory. The audio card
uses the ASIO (Audio Stream Input/Output) driver to communicate
with the CPU and provides 32, 64, and 128 samples per channel
every 0.72 ms, 1.45 ms, and 2.90 ms, respectively (sample frequency
fs=44100 Hz), which we call buffer times tbuff . Assuming that our
WFS system requires to equalize N loudspeakers, we define tproc as
the processing time since the N input-data buffers are available till
the N output-data buffers are totally processed. Data transfer times
in the case of GPU-based implementation are included in tproc. The
equalization of a WFS system works in real-time as long as tproc <
tbuff .

Figure 4 shows the results when a system is executed using a
buffer size of 32 samples. Computational performance has been as-
sessed by assuming that all filters are composed of 128 second-order
sections for the first example, and with filters composed of 1024
second-order sections for the second example. We execute the sys-
tem by increasing N gradually and by measuring each time tproc.
Note that the maximum number of filters that can be executed in
real time are marked with a circle ◦ in Fig. 4, and their values are
shown in the legend of the figure for all cases. The proposed GPU-
based implementation can run 1256 filters in real time with 0.72 ms
latency when the filters are composed of 128 second-order sections.
In case of 1024 second-order sections, 272 equalization filters can
be executed.

Very similar results are obtained if we increase the buffer size



Table 1. Maximum number of real-time IIR filters for the GPU im-
plementation using different thread block sizes L and buffer sizes of
32 and 64 samples. The best results are bolded.

SIZE L = 128 L = 256 L = 512 L = 1024
32 192 272 168 120
64 208 280 176 128

to 64 and 128 samples, as can be appreciated in Fig. 5. The number
of filter processes that can be achieved in real time increases slightly
as the buffer size does, in spite that transfer times between GPU and
CPU increase. This occurs because transfer time is still not signifi-
cant compared to the parallelization resources that GPUs offer. For
filters composed of 128 second-order sections, GPU outperforms in
2.75, 2.6, and 2.55 times the CPU, for buffer sizes of 32, 64 and
128 samples, respectively. Otherwise, for filters composed of 1024
second-order sections, GPU outperforms in 5.23, 4.8 and 4.66 times
the CPU for the same previous buffer sizes. Thus, computing fil-
ters composed of 1024 second-order is more efficient on GPU, since
more computational resources of the GPU are utilized. Note that
the speed-up GPU/CPU decreases slightly as long as the buffer size
increases.

The CPU-based implementation runs on a powerful computer
composed of 12 cores, which is a fair comparison with the GPU. In
all cases, the GPU-based implementation outperforms the multicore-
based implementation, which indicates that GPUs are well suited for
performing massive IIR filter processes, even more when the sample
buffer sizes are very short.

Regarding GPU-based computational aspects, filters composed
of 128 second-order sections require to launch a CUDA kernel com-
posed of TBs with L=128, where each thread performs one section.
However, filters composed of 1024 second-order sections first re-
quire to test different values for L (see subsec. 3.1). Table 1 shows
the maximum number of equalization filters that can be executed in
real time for different values of L. It can be noticed that using the
TB size of 256 threads gives the best performance.

As another performance measure, taking into the number of
loudspeakers of the WFS systems referenced in sec. 1, we have
tested the maximum number of second-order sections that an equal-
izer filter of these systems can have by using the GPU. Regarding the
WFS system at the Universitat Politècnica de València (UPV), we
have achieved to equalize the 96 loudspeakers using filters composed
of up to 2048 second-order sections under real-time conditions. Oth-
erwise, as IOSONO WFS system is composed of 120 loudspeakers,
the massive equalization can be carried out also under real-time
conditions if we use up to 1536 second-order sections. Thus, GPUs
allow us to use high filter orders for equalizing large-scale WFS
systems.

An additional advantage of the GPU-based implementation is
that the GPU can be used as a co-processor where all audio process-
ing is being carried out, while the CPU could be used for other tasks
at the same time.

5. CONCLUSION

This work has demonstrated the power of the parallel form of IIR
filters in parallel computing. This form allows us not only the robust
design of high-order filters with logarithmic frequency resolution,
but also a very efficient implementation on GPUs. The proposed
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implementation can carry out up to 1256 equalizers with a filter or-
der of 256 in real time, which means 321536 total filter order, for a
buffer size of 32 samples. Many applications can be favored from
this result, including a total equalization of a WFS system. In ad-
dition, we have compared the proposed GPU-based implementation
with a multicore-based implementation in a powerful computer. Re-
sults show that GPU outperforms the powerful multicore computer
in all example cases.
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