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ABSTRACT

The paper discusses a crucial part of the piano model, the hammer
model – digital waveguide interaction. The discontinuity problem
arising when feeding the interaction force into the digital wave-
guide is investigated, and a solution for its avoidance is proposed.
The stability problem of the hammer model is overcome by a
novel multi-rate implementation.

1 INTRODUCTION

The digital waveguide (Smith 1992) has been of high interest in
the recent years, mainly because of its computational efficiency.
It is based on the spatial and time domain discretization of the
wave equation. When the model consists of linear elements, the
so called “commuted synthesis” (Karjalainen and Välimäki 1993;
Smith 1993) technique can be used, which eliminates the need
for a complicated body or soundboard filter. On the contrary,
the introduction of nonlinear interaction can lead to more natu-
ral sounds, since it reacts to the intervention of the musician in a
physical manner. The influence of the model parameters becomes
more meaningful as well.

By inserting interaction force to the digital waveguide, a dis-
continuity arises on the string, which cannot be interpreted phys-
ically, it is due to the sampling of the wave equation. The digital
waveguide describes the physical phenomena in a correct way ev-
erywhere but at the excitation point. When there is a feedback
from the string to the excitation, this will lead to incorrect results.

Another problem in the hammer model comes from the dis-
cretization of the differential equation of the hammer. When the
assumption that the variables of the model change only a little with
respect to time is not met, the stability of the model is at risk.

The paper first overviews the different hammer models found
in the literature. Then, the discontinuity problem, which arises
when feeding the interaction force into the digital waveguide is
discussed. After that, the hammer model is presented, which over-
comes the discontinuity problem and ensures the stability of the
model.

2 PRIOR WORK

The piano hammer is generally considered as a mass connected to
a nonlinear spring (see, e.g., Boutillon1988). As it has an initial
velocity, it hits the string. The spring compresses, and the interac-
tion force pushes the hammer away from the string. The equations
for the hammer behavior are the following:

F (t) = f(�y) =

�
K(�y)p if�y > 0
0 if�y � 0

(1)

F (t) = �mh

d2yh(t)

dt2
(2)

whereF (t) is the interaction force,�y = yh(t)�ys(t) is the felt
compression, i.e., the difference of hammer and string displace-
ment,K is the stiffness coefficient, andp is the stiffness expo-
nent. In Eq. (2)mh refers to hammer mass andyh(t) denotes the
hammer displacement.

The most straightforward approach for modeling the hammer
is discretizing the differential equation of the mass. This approach
was taken in (Chaigne and Askenfelt 1994), where the hammer
was connected to a finite difference model of the string. Borin et
al. (1992) applied the same kind of power law model to the digital
waveguide. Note thatf(�y) can be arbitrary, it does not have to
follow the power law of Eq. (1).

For avoiding the stability problems of the simple model, Borin
and De Poli (1996); Borin et al. (1997) proposed a method which
is based on the separation of known and unknown terms. The
drawback of the model is that the computation of the interaction
force is quite complicated, and that the model can only be used
with specialf(�y) felt characteristics.

An elegant solution for the hammer model based on the travel-
ing wave decomposition of the mass-spring system was proposed
in (Van Duyne et al. 1994). There, a distributed hammer model
was attached to the string by a scattering junction. The disadvan-
tage of this technique lies in its complexity.

In (Smith and Van Duyne 1995; Van Duyne and Smith 1995),
a linear hammer model was used. The hammer was modeled by a
linear filter, whose parameters were determined by nonlinear sim-
ulation. The advantage of the linear approach is that the sound-
board filter can be commuted through the string and the hammer,
hence it can be implemented as a wavetable. A drawback is that
the nice feature of the nonlinear model, that it responds to the ini-
tial velocity in a physically meaningful way, is lost. Moreover, the
restrike of the string cannot be simulated correctly.

3 THE DISCONTINUITY PROBLEM

There are two different tasks when connecting the hammer to
the string. One is introducing the interaction force to the digi-
tal waveguide and the other is determining the displacement of
the string, since that is the feedback signal to the hammer model.
These can be done as shown in Fig. 1, whereMout = Min for this
case. The displacement of the string can be determined by inte-
grating the velocity signalvout. However, there is a problem with
this simple approach. The present paper deals with the problem
thoroughly, since it has not been discussed in theliterature.

Let us assume that the string is infinite, or terminated by aZ0

impedance, i.e., there is no reflection from the terminations. There
are two possibilities for connecting the hammer model to the dig-
ital waveguide, according to Fig. 1. One is first to read the string
velocity from the delay lines and then to add the excitation signal
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Figure 1: Digital waveguide model (Smith 1992) of the ideal
string.

to the cells. After this, the delay lines are shifted (method No. 1).
In this case, the velocity which is read from the cells at the ham-
mer position will always be zero. Consequently, all parts of the
string will be moving, but not the excitation point. Since the feed-
back to the hammer model is coming from the displacement of the
excitation point, the hammer will behave as if it was bouncing to
a rigid wall. Obviously, this method is not appropriate.

The other approach is the opposite: first we add the excitation
signal to the delay cells at the position of the hammer, then read
the string velocity, and shift the delay lines (method No. 2). Now
the problem is that the string velocity and displacement at the ex-
citation point will be twice the value of any other cells. This is
illustrated in Fig. 2 (a), whereTs = 1=fs is the sampling pe-
riod. Assume that a discrete unit impulse is added to the cells
corresponding to the hammer position, and the delay lines of the
digital waveguide are consecutively shifted. The velocity of the
string, which is displayed in the figure, is calculated by summing
the content of the delay cell pairs corresponding to the same spa-
tial position. Note that the velocity of the excitation point will
be twice that of the impulse. However, as this pulse travels fur-
ther in the delay lines, the velocity values will be the same as the
pulse amplitude. Integrating the string velocity in the time domain
shows a discontinuity in the string displacement in Fig. 2 (a).
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Figure 2: String velocities and displacements: (a) discrete and
(b) continuos case.

The continuos string does not show this behavior: Fig. 2 (b) re-
veals the velocity and the displacement of a string excited with a
continuos time Dirac velocity impulse. The velocity and displace-
ment values of the string are displayed for the same time instants
as the discrete model, and the arrows refer to Dirac impulses. The
difference comes from the fact that although there are two contin-
uos Dirac pulses in the region corresponding to the spatial sample
of the excitation position, these stay within this region only a half
time step. They travel from the midpoint of this section to its bor-
ders withinTs=2. Thereafter, in every spatial section of the string
there will be only one impulse, staying forTs. Since in the discrete
model an impulse cannot be in a cell for less than the sampling pe-

riod, we have to diminish the amplitude of the impulse by a factor
of two at the interaction position. Nevertheless, the amplitude of
the impulse in the other cells should not be altered.

This can be done by first adding only half of the excitation to
the delay lines at the hammer positionMin, and after one temporal
sampling interval, when the impulses moved further, we can add to
them the remaining part (Bank 2000). Another solution is keeping
track of the string velocity at the excitation point separately. This
approach is taken in the proposed hammer model.

4 THE HAMMER MODEL

The proposed model isillustrated in Fig. 3. Now the displacement
of the string is not calculated directly by integrating the output
of the digital waveguide, but with the help of a separate variable
inside the hammer model. Consequently, it does not matter that
the digital waveguide cannot compute the string velocity at the
excitation point properly.
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Figure 3:The core of the proposed hammer model.

The hammer model of Fig. 3 first computes the velocity differ-
ence of the the hammer and the string�v = vh� vs, wherevh is
the velocity of the hammer. The string velocityvs is calculated in-
side the hammer model:vs = vin;h+Fout;h=(2Z0), wherevin;h
is the incoming string velocity,Z0 is the string impedance, and
Fout;h is the force signal computed by the power law in the previ-
ous time instant. Note that with the traditional methods discussed
in Section 3 the string velocities at the excitation point would be
vs = vin;h, andvs = vin;h + Fout;h=Z0, respectively. The felt
compression�y is calculated by integrating�v with respect to
time. The interaction force is computed by the felt characteris-
tic f(�y), here the power law of Eq. (1) was used. A unit delay
z�1 has been inserted to avoid a delay-free loop. The velocity of
the hammervh is calculated by integrating the hammer acceler-
ationah = Fout;h=mh. The initial velocityvh0 of the hammer
is controlled by sending an appropriate acceleration pulse to the
integrator, or by setting the initial value of integrator tovh0.

The model of Fig. 3 can be directly connected to the digital
waveguide model of Fig. 1, by settingvin;h = vout, Fin =
Fout;h, andMout = Min. The sampling rate of the hammer
model now equals to that of the entire system,Ts;h = Ts. It
works as follows: first the cells at positionMin are read and used
as the inputvin;h of the hammer model. Then, the hammer model
computes the force inputFin to the string, and this value is added
to the delay lines. After that, the delay lines are shifted. Since the
string velocityvs = vin;h+Fout;h=(2Z0) is computed inside the
hammer model, the discontinuity problem mentioned in Section 3
is avoided.



Fig. 4 shows the outputFout;h of the hammer model. The pa-
rameters of the hammer and the string were taken from (Chaigne
and Askenfelt 1994),C4 note, and the impact velocity was set to 4
m/s. The solid line shows the interaction force of the finite differ-
ence string and hammer model of (Chaigne and Askenfelt 1994),
but the stiffness of the string was set to zero. The dash-dotted
line shows the hammer force when the same hammer model is
connected to lossless, nondispersive digital waveguide in the tra-
ditional way (Section 3,method No. 2). This differs from the force
of the finite difference method largely. The force signal ofmethod
No. 1of Section 3 is not shown because the model becomes unsta-
ble, i.e., the force signal approaches infinity, when such a method
is applied. The dashed line displays the interaction force when the
structure of Fig. 3 is used. The force curve is now close to that of
the finite difference method.
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Figure 4: Interaction force for noteC4 calculated by the finite
difference method of Chaigne and Askenfelt (1994) (solid line),
by a digital waveguide using the traditional technique (Section 3
method No. 2) (dash-dotted line), and by the hammer model of
Fig. 3 (dashed line).

The method based on discretizing the differential equation of
the hammer works well for the low and middle range of the piano,
but for the high notes with large impact velocities the model be-
comes unstable. This is because the assumption, that the interac-
tion force changes only a little in one temporal sampling interval,
is no longer valid for those cases. This was also noted by Borin
and De Poli (1996), but their solution to the problem seems to be
too complicated.

5 THE MULTI-RATE HAMMER

Here a novel multi-rate hammer model is proposed, which over-
comes the stability problems. The idea comes from the fact that
by increasing the sampling rate of the whole string model, the
instability can be avoided. The hammer model is based on the
discretization of a differential equation. It is stable when the vari-
ables change only a little in every temporal sampling interval. The
stability of such a system can be always maintained by choosing
a sufficiently large sampling rate, assuming that the correspond-
ing continuos time system was stable. When the sampling period
converges to zero, the discrete system will behave as the original
differential equation.

Unfortunately, increasing the sampling rate by a factor of two
of the whole string model would double the computation time as
well. Nevertheless, if only the hammer model operates at a dou-
ble rate, the computational complexity is raised by a negligible
amount. Therefore, in the solution proposed here the string model
operates at normal, but the hammer model runs at double sampling
frequency. This is illustrated in Fig. 5.
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Figure 5:The multi-rate hammer and the digital waveguide.

In the proposed implementation, the core of the hammer model
(Fig. 3) runs at a double sampling rate, that is,Ts;h = Ts=2.
Upsampling (" 2 in Fig. 5) is done by linear interpolation (Schafer
and Rabiner 1973). In this manner, the unknown samples will be
the average of two consecutive known values. To be able to do this
without introducing a delay, one should know the next incoming
sample. This is easy in the case of the digital waveguide, since the
upcoming values at the excitation point are already in the delay
lines, exactly one spatial sampling interval away. Hence, the input
for the hammer model can be calculated using linear interpolation
for upsampling by the following equations:

vin;h(nTs) = y+(n;Min) + y�(n;Min)

vin;h(nTs + Ts=2) =
y+(n;Min) + y+(n;Min � 1)

2
+

+
y�(n;Min) + y�(n;Min + 1)

2
(3)

wherey+(n;m) andy�(n;m) refer to the content of the upper
and lower delay lines of the digital waveguide, at the time instant
n and positionm, respectively.

The force input for the string is computed by simply averag-
ing the two output samples of the force model, i.e.,Fin(nTs) =
(Fout;h(nTs) + Fout;h(nTs + Ts=2))=2.

In Fig. 6 the interaction force is shown for noteC5 (522 Hz).
For the simulation, an ideal digital waveguide model was used,
without any dispersion or losses. The parameters of the hammer
were taken from (Chaigne and Askenfelt 1994),C4 hammer. The
impact velocity wasvh0 = 6 m/s. The dash-dotted line refers to
the single-rate hammer model withfs = 44:1 kHz. The solid
line shows the force of the single-rate model, but both the dig-
ital waveguide and hammer models operate at a double sample
rate, that is,fs = 88:2 kHz. This is our reference structure. The
dashed line in Fig. 6 is the force of the multi-rate implementa-
tion, by usingfs = 44:1 kHz for the waveguide model. It can be
seen that the traditional technique operating at normal sampling
rate becomes unstable, while the output of the proposed multi-rate
hammer model is close to the output of the single-rate model op-
erating at double sampling frequency.



For noteC7 (2090 Hz) of the piano model (with losses and dis-
persion), the multi-rate hammer starts to be unstable for an impact
velocity as much as20 m/s, while the single-rate model is already
unstable at around5 m/s.
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Figure 6: Simulated interaction forces for noteC5 (522 Hz),
vh0 = 6 m/s, computed by the single-rate model (dash-dotted
line), the single-rate model operating at double sampling fre-
quency (solid line), and the multi-rate model (dashed line).

Surprisingly, the multi-rate method is more stable than the
single-rate operating at double sampling rate. For the same string
and hammer parameters as in the previous example, the single-
rate model at double sampling frequency becomes unstable for
vh0 > 18 m/s, the multi-rate model is still stable untilvh;0 = 42
m/s. This comes from the up- and downsampling: the hammer
model operates at2fs, but its inputvin;h is upsampled from a sig-
nalvout whose sampling rate isfs. Consequently, the input can-
not contain strong frequency components higher thanfs=2. This
way, the incoming high frequency components, which are mainly
responsible for stability problems, are suppressed.

6 CONCLUSION

The paper dealt with connecting a nonlinear excitation to the digi-
tal waveguide with the application to piano hammer. The disconti-
nuity problem was pointed out, which arises when feeding the in-
teraction force into the digital waveguide. This leads to incorrect
sonic results when there is a feedback from the excitation point of
the string to the model of the excitation. A solution to the problem
is computing the string velocity of the excitation point separately,
e.g., within the excitation model. Detailed analysis was presented
with the application to the piano hammer, although this treatment
is valid for other instruments in which a nonlinear interaction be-
tween the digital waveguide and the excitation is present (e.g., in
the violin).

With the application to the piano, a new multi-rate hammer
model was proposed. The model overcomes the discontinuity
problem discussed in Section 3. This is done by computing the
string displacement at the excitation point within the hammer
model. The stability of the hammer model is ensured by the multi-
rate approach. This makes the model more stable since higher
sampling rate yields a better discrete time approximation of the
differential equation. It is also because the high frequency com-

ponents of the input signal, which are mainly responsible for in-
stability problems, are suppressed by the linear interpolation. An-
other benefit of the model is that it is simple, easy to implement,
and any kind of nonlinear function can be used as a felt character-
istic f(�y).
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