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Abstract—Compact spherical loudspeaker arrays are nowa- is the spherical Hankel function of the second kigg,, are

days investigated as sources for directional measuremen&nd the spherical harmonic coefficients describing the divéyti
audio playback. Their microphone-based calibration is nottrivial pattern at the radiusy, andi? = —1; cf. [7]. At the ideal

as it requires an elaborate measurement setup of highly aceu di _ th diati duced insto b herical
rate geometry. This contribution shows how measurements of '2dIUS" =1y, (N€radiation produced remains to be a spherica

accurate geometric alignment were obtained to the authorshest harmonics expansion
knowledge, and systematically discusses how possible icaca-

N n
cies affect the resulting spherical harmonic radiation paterns. . m
Eventually, a method is developed to estimate geometric esrs p(6) = Z Z Y ¥y (0) @)
from the measured responses. This geometry estimation isnéed n=0m=-n

by tests with intentional errors. Finally, results are sucessfully \ynich is determined by the spherical spectral coefficignts.

employed to make calibration measurements more robust agast Radiation svnthesis aims to brod tbitrary radiation
geometric errors of the setup. This is done by both time adiation synthesis aims {o produce a ary radiation as

realignment of the responses compensating for radial errs and  SPecified by Eq. (2). Cf’:llibration is done by measuring the
the correction of the angles in the spherical harmonic tranform.  directivity patternsp(l)(efr‘l)ic) ofalll =1,...,L loudspeakers
with i = 1... M microphones at uniformly surrounding direc-

l. INTRODUCTION tions effl)ic on a constant radiusy;. The spherical harmonic

.. ) . .
Dodecahedral loudspeakers are common measurement ttﬁj’ smmentsw"m are obtained by the least squares solution of

. . : . Simultaneous Egs. (2) [8], i.e.

in room acoustics due to their nearly omnidirectional soun

radiation. The idea behind these arrays was to have a stap) = ;. — ¢ = (Y.L Y, ,)"'Y.L p, (3)
dardized source for measuring room acoustic parameters. As

however, a human speaker or musical instrument do not eadiesing the vectorp(® := [p® (8% )}; and 9 ® := [\n]
omnidirectionally, researchers have been consideringsimo and the matrixY;,;. = [Y,’;”(egfl)ic)]igm.

sources with variable radiation patterns adjusted to fit anyThe task in radiation control is to design a frequency-

target, [1], [2], [3], [4]. This was shown to improve thedependent matrixG(w) of which each column contains

accuracy of quality measures for speech intelligibilitytbe complex “gains” to produce one spherical harmonic [8]

clarity of music reproduction, cf. [5]. by superimposing the loudspeakers’ directiviti@qw) =
The radiation and control of compact spherical loudspeaKes(!) (w), ..., 1) (w)] so that

arrays is usually described in terms of spherical harmonics

which form basis functions similar to that of the Fourier ¥(w)Gw) =1 4)

series, but depend on the zenithand azimuthy angles. A desired spherical directivitys is synthesized by the gains
They appear in the solution of the Helmholtz equation ng(w)¢_

spherical boundary value problems and therefore provide we Driving the array through a decodr, = Y;, (Y,1Y; )~

described means for acoustic holophony, the synthesis j@fygyantageous and yields a tentative, frequency indemend
controlled sound radiation [6]. The sound pressure of aRy¥nirol. A modified control systerG(w) is then employed to

acoustic radiator with limited order < N is perfect the rough synthesis @
N n
B (Kr) U(w)DGw) =1 (5)
_ V) ym 1 Is :
p(k’l",e) Z Z wnrn hn(krM) n (0)’ ( )

n=0m=-—n

This formulation usually yields a sparse mat@¥w), whose
wherein 8(¢,9) = [cosy sindd, sing sind, cosd]|t is a implementation is more efficient than the one®fw), cf. [9].
normalized direction vector depending on the zenittrand Its simplified role after the rough synthesis usify is to
azimuth ¢, k is the wave numberp and m are order and accomplish frequency independence of all synthesizedrsphe
degree of the spherical harmoniif” (6), respectivelyh,, (kr) ical harmonics and to remove all spherical harmonics that ar



erroneously synthesized due to acoustic crosstalk. A sgigh
of 1 is obtained by the gain®,,G(w) 1.

It is clear that when the microphone-based directivity cal-
ibration is inaccurate, then the control systa@(w) will
try to produce correct patterns using wrong data. This not
only brings additional complexity into the control system
and counteracts efficient implementations but also destroy
radial directivity focusing. Hence accurate measuremargs
paramount in the design of the control system. The most
important source of errors is geometric: loudspeaker aoray
microphones that are misplaced by just a few centimeters can
render measurement data useless for control.

The present paper focuses on such geometric errors, their
estimation, and the minimization of their impact. After de-
scribing a real measurement scenario and possible geametri
deficiencies, the effects of geometric errors are systealbii
discussed. Then, the acoustic delay from a spherical loud-
speaker array to a measurement point is modeled acougticall
and shown to produce the results of a geometric model after
minimum phase removal. Based on this model, we present, to
our knowledge, the first method for estimating such measure-
ment geometry errors. The estimates are applicable to check
the accuracy of the geometry and to successfully diminish
geometry-induced errors prior to radiation control design

Il. MEASUREMENT OF SPHERICAL LOUDSPEAKER ARRAYS

We have performed impulse response measurements on the
available arrays of IEM, one for the low- (with radils =
28.5 cm usingL = 20 loudspeaker elements, Fig. 1(a)) and the
other One, designed for the mid-frequency range=(8.5cm, Fig. 1. Low and mid frequency spherical loudspeaker arryyb)ahat were
L = 16, Fig. 1(b)). measured using the microphone array setup in c).

Each loudspeaker array was mounted on a turntable, while
the radiated measurement signal was recorded with a semicir
cular arc of18 ml.croghones at a radius = 0.7m COVering  nder the displacemert = [Az, Ay, Az]
all zenith angles inl0° steps. The turntable permits repeated
measurement in FOazimuthal steps in order to sequentially

(c) measurement setup

T and rotation

gather impulse responses measured by a virtual spherical R(r) := R,y (p,0) R, (r) Ryy(p,9), ©)
microphone array withl8 x 36 = 648 positions in zenith cos(d) 0 —sin(J)
and azimuth in total. Ideal positio,,;. of the virtual array R,y (p,9) := R,(p) 0 1 0 , (10)
are defined by sequentially applying rotatiaRs aroundz on sin(d) 0 cos(V)

the coordinateX,,. of the semicircle
o o o with the rotationr parametrized in spherical coordinates:
Xumic = [R2(0°)Xare, R (10°)Xare, -, Ra(350°)Xare],  measures the rotation angle and the rotation axis is odente
cos(5°) cos(15°) ... cos(175°) towardsf(p, ) = [cos ¢ sin 4, sin ¢ sin o, cos 9] T, cf. [10].

Xarc = 0.7m ) 0 ) 0 R 0 , (6) The spherical loudspeaker array could be shifted with re-
sin(5°)  sin(15°) ... sin(175°) spect to all three coordinate axes @y = [Axs, Ays, Az,
cos(p) —sin(p) 0 and rotated byr.
R,(p) := |sin(p)  cos(p) 0. (7)  Thesemicircular microphone array could be shifted on the
0 0 1 horizontal planed,.. = [AZarc, Ayare, 0] and rotated around
A. Geometric errors axis on the horizontal plang,,;. = rarc [COS Qarc, SIN Parc, 0].

The array geometries of the semicircular array and the louff?!S c?vers_ misalignments of the S_emICIr]E:I(; axis fr<|3m_the
speaker arrays and the incremental rotation of the turetaie Urntable axis and may cause deviations of the virtual micro
highly accurate compared to errors appearing in the rela@one array from spherical.

positioning of both arrays. Generally, a vectotransforms to A misplaced semicircular microphone array yields absolute
, positions X ,ic o from X,.., Eq. (6). The more convenient
z' = R(r)z +d, relative positionsX ;. are obtained by including the inverse



loudspeaker misplacement

2 2

-5 ! -5
4 4

Xmic == R(Tls>T [Xmic,A - dls [1 v 1” ) 6 -0 6 ] e
Xnie,A = [Ro(0°) X pe, R,(10°) X e, -, Ru(350°) X[, @ o .
X;ch = Rz (Tarc) Xarc + darc [1 <o 1} . (11) 12 =25 i || 25
_30 -30
Each column of X,,;. corresponds to a microphone mea-* s -35

.. 7 . . . 6 6
surement position, i . Geometric errors cause a deviation' 0 . SR -40

from the ideal radiu$|wff;)ic|\_7é ryv in Egs. (1) and the ideal (a) 3cm shift alongz (b) 3° rotation aroundz
directions:ch;)ic/ﬂwf;)ic|| # effl)ic in Eq. (3).

B. Achievable physical alignment

For positioning the loudspeaker and turntable the follawin
procedure was used: a piece of paper withagnscale was
placed on the top of the loudspeaker at its center. At th,,
0° rotation of the turntable, speaker was aligned such tha.
the plumb line hanging from the semicircle microphone arras o ‘ -
showedzge = yoo = 0 on thezy scale. How much the 5 10 15 ° 10 15
turntable is eccentric to the plumb line was found after a  (¢) 3cm shift alongy (d) 3° rotation aroundy
turntable rotation of 18Q showingxigpe = —2Ax,,. and )
Y1800 = —2Ayac ON the paper scale. Therefore, centering, o
for both loudspeaker and turntable is obtained by shiftinis
both with —z150/2 and —y150/2. To become accurate, the s
procedure was repeated until the paper scales showediognteio
errors of only 1...2mm. The height of the loudspeaker wa
adjusted by the help of a laser pointer, and here the precisi*
is more about in the range of 0.5cm. a

© o K~ N

5 10 15 5 10 15

I1l. THE EFFECT OF GEOMETRIC ERRORS (€) 3cm shift alongz (f) 3° rotation arounde

Smc_e the control of spherlcal Iouds_peal_<er_ arrays I1s LbisuaHig. 2. Spherical harmonic crosstalk in idealized measergratl kHz due
done in terms of spherical harmonics, it is reasonable #misaligned source in dB. The source is shiftedstayn alongz, y, or z and
examine how the different geometric errors affect the sphkr rotated by3° aroundz, y, or z. The indices on the: andy axes correspond
harmonic transform of Eq. (3). If no geometric errors ar® 2 nearindex; = n* -+ 4m + 1 used for the spherical harmonics.
present, then driving the, m spherical harmonic of the ideal
source exclusively yields the’ = n,m’ = m component

iN ¢y, = 0™ according to Eq. (3). By contrast, misalign- . . . .
Vrm nn g a. (3. By 9 eE“%servatlon at the microphone positions. While these &rror

ments in the measurement setup cause an apparent “crésst v f d dent. h | f
an ideal source radiating one spherical harmadrj¢ seems are generaly Irequency dependent, here only one irequency
(1 kHz) is analyzed. The virtual speaker is an ideal spherica

to produce also other components = n, m’ # m in the . . s
analysis of the virtual spherical microphone array. This Earmomc source described b.y Eq. (1), whqse souh_d Is picked
up by a virtual array of microphones with positions that

because ideal angular and radial locations used for thgsisal . .
comply with our measurement setup (Sec. II). The simulated

deviate from the real ones. ; . . .
icrophone signals are encoded to spherical harmonics by

In general, angular errors result in an apparent frequen%l (3). Figure 2 (a), (c), and (e) show how much signal all

independent crosstalk between the spherical harmon . . . .
through sampling”™ (8) at wrong angles. On the other hand® the 16 spherical harmonics of the simulated microphone
i ) measurement receive when there is a shift along, or z of

radial (distance) errors result in a frequency-dependeant e . .
( ) g y-dep source. Theth column in each Figure corresponds to an

due to the fact that all the microphone signals are delayed al source that radiates one spherical harmonic indexed b
different amount, which cause phase cancellations when { & 5 P . X
= n“+n+m+ 1. ldeally, the crosstalk matrix should only

signals are summed during the spherical harmonic transfor‘?gntain diagonal elements (nonwhite in the Figures)
Since the same time delays lead to larger phase difference§¥ 9 9 '
high frequencies, distance errors are increasing as aifunct Plain rotational errors of the source orientation yield e fr

of frequency. guency independent leakage between the spherical harsnonic
) as it is displayed in Fig. 2 (b), (d), and (f) for3& rotation
A. Displacement of the source around thez, y, and z axis, respectively. The crosstalk for

If an ideal source is shifted kx|, Ays, or Az this will  rotation can only occur between the spherical harmonics of
cause bhoth distance and angle errors between the source thedsame order.



0 A. Acoustic model

10 The most accurate model of the acoustic delay is the
-5 analytic model of sound radiation from a spherical loudgpea
-0 [2], [11]. Fig. 4(a) shows a cross-section of the rotatignal
- symmetric analytic model of a vibrating cap. The normal
¢ velocity on the sphere is a unit step functief) in the polar

angle
5 10 15 40
(@) 3cm shift alongz (b) 3° rotation arounds ol (@) = u(2 - 19 Z vy, Py (cosd), 12)
n=0
-5
. 1 —cos%g n=0
N with b, = 2n+1 27 a a a ’
15 5oy [ n—1(cos §) — cos § Py (cos 5], else
-20 . )
L, and P, are the Legendre polynomials, which are angular

o  Solutions to rotationally symmetric wave fields [7]. The sdu
s pressure involves spherical Hankel functions and theiivder
-0 tives, the air density, and speed of sound

5 10 15 5 10 15

(c) 3cm shift alongy (d) 3° rotation aroundy

pc ho, (kT)
k 19 n n 19 13
p(kr, ) = IZ w ) Drcos?)- (13)
Fig. 3. Spherical harmonic crosstalk in idealized measergrat1 kHz due

to misaligned measurement array. The rotation axis iseshifly 3cm along - From this, the group delay can be estimated at any point in
x ory, or rotated by3° degrees around or y. space '

B. Geometric model

B. Displacement of the measurement array ) _ _ )
- . N The geometric model describes the shortest diffractioh pat
If the semicircular microphone array is misplaceddy... cim one point on a rigid sphere to a point in space, cf.

with regard to the turntable axis, this causes a somewrll_ag 4(b). It has two cases
ellipsoidal distortion of the virtual microphone array Bubat

its horizontal radius is larger than its vertical one. Thisstly 1 [ vr2+R2 —2rRcos?, rcostd —R <0
yields radial errors for the microphones around the hotiion 7 (V) = c {WJF (9 — arccos 2) R, else.

plane and angular errors for microphones at the top or bottom re (14)

of the sphere. In between, both effects take place. Thetatkss

at 1 kHz is displayed in Fig. 3 (a) fohz,.. = 3 cm. A comparison between the frequency independent geometric

If the semicircular microphone array is misplaceddy,,., model Eg. (14) and the acoustical group delay computed from
this will mostly resemble a rotation of the virtual spheticaEq. (13) is plotted in Fig. 5, modeling the mid-frequencyagur
microphone around the-axis. Since there is little distanceat various angles. It turns out that the acoustical cap mat|
error, the crosstalk is largely frequency-independerd. Bi the geometric model give a perfect match in the estimated
(c) displays the crosstalk between spherical harmonics f@ioup delay when the minimum phase component is removed
Ay..e = 3 cm. A displacement of the semicircular arrajrom the acoustically modeled transfer function (cf. dotyeid
towards z is equivalent to the opposite displacement of thines and dashed lines in Fig. 5).
source, which was discussed in Sec. IlI-A.

If the semicircular array is rotated around the axis, |
this is equivalent to shifting the microphone positionshwit [
respect to the zenith angle. Therefore, this results inuagy
independent angular distortion errors, however with fssi
crosstalk between the orders. This is shown in Fig. 3 (d). |R31
Rotations around are shown in (b) and are mostly frequency |
independent, and again with crosstalk between spherical ha I/

F\A ‘ r2+ RZ — 2rR cos(V)

monics of different order. \ Y &

IV. M ODELING THE DELAY OF ACOUSTICAL
MEASUREMENTS

The following models use the notatidn for the radius of

X - (a) Cap model (b) Geom. distance model
the loudspeaker array, andfor the radius of an observation
i it )
point. LOUdSpeaker positions, ' enclose polar angle8 = g 4 cap model of sound radiation from spherical loudkgeand
arccos < I, /R, wmlc/r > with microphone posmons:( ) geometric model of acoustic time delays.



TABLE |

60 GEOMETRIC ERRORS DETECTED IN THREE MEASUREMENTS
58%
sph. array meas. 1 meas. 2 meas. 3

1]
L 56 di.incm | 02, 0.1,03] 0.1,03-04] 02 01,03
§ 54 rsin° | -1.1,-1.2, 1.1| -0.6, 0.0,6.0 | -1.3,-1.4,-0.4
S 5 dare in CM 0.9, 0.7 0.3,0.9 2.8-1.3
8 Tarc IN © 0.8,-0.5 0.3, 0.9 0.7,-0.7
S 50}
Q.
3
g 48

B. Geometry estimation with modeled and measured delays

Rotation and displacement dependent positions of measure-
ment microphones have been modeled in Eq. (11) and they
can be employed in Eq. (14) to model time delayé"
between loudspeakers and microphones. However, rotations
and displacements are unknown. Moreover, Eq. (17) has been
used to determine time delays from measurements.

The MATLAB Optimization Toolbox functionlsgnonlin
was used to retrieve the displacemeiats,(d...) and rotations
(715, Tarc) that are involved ik by minimizing the mismatch
70 — 70 petween model and measurement. The optimizer
also retrieved the initial delay, we removed from all impulse
response data in common. Delays get inaccurate when the

Geometric errors can be estimated by comparing the magbeaker element is on the other side of the sphere, so the mis-
eled and measured delays between all loudspeaker elememasch was weighted by (") = cos[min (9 1592 /2 7 /2)]
and microphones. before minimizing its squared sum

minz w®D (760 _ 76D _ )2,
i,
As we have seen in Secs. IV-A and IV-B, the transferhe standard deviation of the unweighted mismatch achieves
function from a cap on the sphere to a point in space can & mm for the36 x 18 x L paths after optimization.
described by a minimum phase transfer function and a delay
Hyaa(w)e~ 7. The transfer function of a loudspeaklir, (w) © Examples
and a microphoné,;.(w) are usually minimum phase. The Table | shows examples that have been evaluated out of
whole signal path is selected measurement series done in August 2011 both with
the low- and mid-range loudspeaker arrays. Meas. 1 shows
the results for an unmodified geometric setup for the mid-
(15) range array. The estimated total rotation stays belévand
where Hypn(w) is the minimum phase version off (w) the displacement stays beloixcm. Meas. 2 was done with
obtained by replacing its phase with the Hilbert transforim ehe icosahedral array which has been rotated on purpose by
the log-magnitudén |H (w)]. 5° aroundz compared to Meas. 1, leading to an estimated
Accordingly, the delay of a particular measurement channeitation of6°. Meas. 3 was done with a shifted rotation axis
(i,1) is calculated by first removing the minimum phase palty Az, ~ 2cm andAy,,. ~ —2cm compared to meas. 1,
and indeedd,,. of meas. 3 differs from that of meas. 1 by

N
<)

I
N

500

fin Hz

Fig. 5. Comparison of geometric delays (dotted grid linegg ghe
acoustically modelled group delay with (solid) and withdbe minimum
phase component (dashed) for different angles, and the Inoddbe mid
frequency spherical loudspeaker array.

V. ESTIMATION OF GEOMETRIC ERRORS

o (18)
A. Time-delay estimation

H(w)= Hls(w)Hmic(w)Hrad(w)e*iw‘r = Hpppn(w) e—iun—7

() () = HOD (w) (16) 19 and -2 cm.
nonmph H(i,z})l(w)' The table indicates that the method yields fairly accurate
mp

results with only one or two millimeters of uncertainty for

Then,Hr(lf)’fl)H1 L (w) is converted to the time-domain by inverséj'ﬁe_ren_t tests. I_t is also o_bwous _that the modified parm.t
P are indicated with a quality that is reasonable for monitgri

. il il
the Fourier transfqrnmflorl)mph(t) = IFT{HI(lon)mph(w)}' The e geometric accuracy.
delay is found as its peak
V1. ERROR COMPENSATION IN MEASURED RESPONSES
i0) _ (4,0) . . .
700 = argmax hyg o (0)- (17)  Once the geometric errors are estimated, they can be used in

! order to correctly interpret the measured responses. Thst mo

In practice, this is done by IFFT, and the discrete-time &ligin significant effect of the geometric errors of the measurémen
are upsampled by a factor of 256 prior to peak finding teetup is that all the microphone signals are delayed diftgre
provide fractional-sample accuracy. A delay compensation is achieved in the frequency domain
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Fig. 6. Measurement of the spherical harmonic responsehefnid-
frequency array. The loudspeaker array is displacedMay, = 2cm. The
first spherical harmonic is excited. The thick line is thepmsse of the first
spherical harmonic, the thin lines are harmonics 2-16 wilwbuld be zero.
In comparison to the uncompensated case (a), the resuligedmetric error
compensation in (b) show significantly less crosstalk.

by applying the compensatian(«/<)(" =) Moreover, the

estimated microphone positions have to be used as correc

directions8'?)

mic

form applied in Eq. (3).

Figure 6 displays the spherical harmonic transfer funetion

of the mid-range loudspeaker array with /&), = 2cm

of the speaker elements. Thus, any error in the measurements
will result in a suboptimal control system and an erroneous
radiation pattern. In this paper we have demonstrated gt g
metric measurement errors can introduce significant appare
spherical harmonic crosstalk, even for small misalignment

We have shown that acoustic delay information can be
modeled by a simple geometric model after the non-minimum
phase part of the transfer function is removed. Based on this
geometric model, an optimization procedure was succegsful
employed to estimate geometric errors with an accuracyean th
range of a millimeter. The geometric estimates were vadidiat
by running the optimizer on various data sets where differen
geometric errors were introduced intentionally.

Moreover, the estimated geometric errors are applied to
obtain a substantially corrected interpretation of the mea
surement data by delay compensation and corrected spherica
harmonic transform. More elaborate corrections could take
frequency dependent magnitude correction of near field into
account in the future, especially for higher order radiatio
components. Future work also includes applying our method
for the measurement of spherical microphone arrays.
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