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Longitudinal vibration of piano strings greatly contributes to the distinctive character of low piano
notes. In this paper a simplified modal model is developed, which describes the generation of
phantom partials and longitudinal free modes jointly. The model is based on the simplification that
the coupling from the transverse vibration to the longitudinal polarization is unidirectional. The
modal formulation makes it possible to predict the prominent components of longitudinal vibration
as a function of transverse modal frequencies. This provides a qualitative insight into the generation
of longitudinal vibration, while the model is still capable of explaining the empirical results of
earlier works. The semi-quantitative agreement with measurement results implies that the main
source of phantom partials is the transverse to longitudinal coupling, while the string termination
and the longitudinal to transverse coupling have only small influence. The results suggest that the
longitudinal component of the tone can be treated as a quasi-harmonic spectrum with formantlike
peaks at the longitudinal modal frequencies. The model is further simplified and applied for the
real-time synthesis of piano sound with convincing sonic results.2005 Acoustical Society of
America. [DOI: 10.1121/1.186821]2

PACS numbers: 43.75.Mn, 43.75.Wx, 43.40.OMHF] Pages: 2268-2278

I. INTRODUCTION phantoms” those which appear at the s@ignt f,, or differ-
encef ,— f,, frequencies of two transverse modes. Conklin’s
In this paper the generation mechanism of longitudinalmeasurements have shown that odd phantoms generally
vibration in piano strings is investigated. The purpose of thisoriginate from adjacent parents, i.e., can be founéisatf
paper is twofold: to explain the experimental results of earrather than at,+ f,. Phantom partials have also been found
lier papers and to provide a guideline for physics-basedn the spectrum of guitar tonésin a recent paper about
sound synthesis. guitar transients, Woodhouse states that the amplitude of the
The importance of longitudinal vibration of piano strings phantom partials seems to be modulated according to the
was recognized long ago by piano builders. Cortkiem-  |ongitudinal modal frequenciésThe present paper gives a
onstrated that the pitch relation of the transverse and longitheoretical explanation for these experimental results.
tudinal component strongly influences the quality of the tone  |n an earlier work some of the properties of phantom
and described a method to tune these components. Giordapartials and longitudinal modes have been investigated. It
and Korty’ found that the amplitude of the longitudinal vi- was pointed out and it is emphasized here again that longi-
bration is a nonlinear function of the amplitude of transversaudinal modes and phantom partials are two different mani-
vibration, confirming the assumption that the longitudinalfestations of the same phenomenon: they are the free and
component is generated by the nonlinearity of the string angorced response of the same system, respectively. Therefore,
not by the “misalignment” of the hammer. in the theoretical treatment of the present paper they are cov-
Nakamura and Naganurhéound a second series of par- ered jointly. This paper outlines some of the findings of Ref.
tials in piano sound spectra having one-fourth of inharmo6 and provides a more refined theoretical background.
nicity compared to the main partial series. They attributed  Theoretical works on nonlinear string vibrations that
these to the horizontal polarization of the string, but theyconsider longitudinal motion include the papers of
have actually found the series that later was named “phanNarasimhd, Anand® Watzky? and O'Reilly and Holme?
tom partials” by Conklin. Conklifi pointed out that the phan- As these papers discuss the nonlinear coupling of the first
tom partials are generated by nonlinear mixing and their fremodes of the two transverse polarizations, the inertial effects
quencies are the sum or difference of transverse modeff the longitudinal vibration are neglected. This leads to the
frequencies. He named “even phantoms” those havingniformity of the tension and equals to computing the ten-
double the frequency (£,) , of a transverse mode and “odd sjon from the relative elongation of the strifigThis is also
studied in the AppendixThe uniform tension approximation
Aportions of this work have been presented in “Modeling the longitudinal (thoroughly discussed by Legge and Flet¢heoften forms
vibration of piano strings,” Proceedings of the Stockholm Music Acousticsthe basis for the sound synthesis of nonlinear strings. Papers

Conference, Stockholm, Sweden, August 2003, and “A piano model in-y¢)de tension-modulated string modéi*based on digital
cluding longitudinal string vibrations,” Proceedings of the 7th International

Digital Audio Effects Conference, Naples, Italy, October 2004. Wavegmdfg' a_nd _energy'conservm_g Tinite difference
PElectronic mail: bank@mit.bme.hu schemes?® The inertial effects of longitudinal modes have
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been considered in the case of rubberlike strings by Leam
and GottlieB® and by Kurmyshe¥’ y

However, the results of these earlier papetst®t’can- T
not be directly applied for the present purposes. This is be R, S
cause the present problem is more complex in the sense th ds(x,t)
not only the first few but 50 to 100 transverse modes have t Deflected
be taken into account in the case of a struck piano string. O yen) string element
the other hand, it is simpler in the way that the longitudinal o o
to transverse coupling and the coupling of different trans- T T(x+dxp) (X +dsn)
verse modes are not investigated, as the primary interest
on the longitudinal vibration itself. Therefore, in this paper a <> de <>
modal model is developed that computes the spectrum of th E(x,0) E(x+dx,t)
longitudinal vibration in the case of arbitrary transverse
model frequencies. It turns out that the most important prop-
erties of the longitudinal vibration can be explained by this
simplified modal approach. The Appendix shows that thehat similar derivations in a different formulation can be
uniform tension approximation of earlier papers is the  found in earlier works, e.g., in the textbook of Morse and
special case of the tension computed from the modal modehgard?® The equations are developed here to make the pa-
presented here. per self-explanatory.

The synthesis of the longitudinal components in piano  When a transverse displacement occurs on the string, the
tone is quite a recent topic. In an earlier wotke digital  string elongates. This results in a force exciting a longitudi-
waveguide string mod¥ has been extended by an auxiliary nal wave in the string. The longitudinal wave modulates the
digital waveguide for computing the response of the phantension of the string, which influences the transverse vibra-
tom partials and by second-order resonators for modeling thgon.
longitudinal free modes. A very efficient method for model- The element of lengthilx at equilibrium will have the
ing the phantom partials was proposed by Befis@ihe lengthds as depicted in Fig. 1, which is calculated as fol-
model had a loose connection to physical reality, since in thapws:
work spatially uniform tension was assumed. In a recent
worklgz phyzics—based solution is presented for modeling ds*(x, 1) =[£0xHdx,t) =0 1) +dx]?
the longitudinal components jointl{i.e., phantom partials +y(x+dx,t)—y(x,t)]% (1)
and free modes togethewhich is able to produce high qual- o ) )
ity piano sounds. In this model second-order resonators are S dXis infinitesimally small, the differences are substi-
nonlinearly excited according to the transverse string shapi/ted by differentials
computed by a finite difference model. This paper outlines
the above approach and presents an alternative technique ds= \/
having lower computational cost.

The paper is organized as follows: first the differentialwherey=y(x,t) and&= £(x,t) are the transverse and longi-
equations are derived from basic principles in Sec. Il. In Sectudinal displacements of the string with respect to tinaed
Il a modal model is presented, which analytically computesspacex. The tensiorT = T(x,t) of the string(which equals to
the longitudinal vibration under certain assumptions. In SecT at resj is calculated according to Hooke’s law,
IV the measurements of other authforsare explained by the 5( ds

——1
o1

X

FIG. 1. The string element.

g€ \* , [ay
54‘1 dx +(5

dx?, 2

results of the proposed model, and some measurement results T=T,+E
of the present authors are also given. Section V describes

efficient algorithms for the synthesis of piano sound includ-whereE is the Young’s modulus an8 is the cross-section
ing the longitudinal vibrations. The Appendix relates the uni-area of the string. By substituting E) into Eg. (3) and
form tension approximation to the modal model presented imeglecting the higher order terms the tension can be approxi-
this paper. mated as

()

II. EQUATIONS FOR ONE PLANE OF VIBRATION T~To+ Eg{a_ng E

ox 2 “)

ay\?
X

A real piano string is vibrating in two transverse planes, . . _
and in the longitudinal direction as well. Principally, piano AS the segmendsis nearly parallel to the axis, the longi-
hammers excite one transverse polarization of the stringudinal force on the segmeds can be approximated as the
while the other two polarizations are gaining energy througtflifference of the tension at the sides of the segment
cogpling. For s_imp_licity, it is assu_med in this section that the PE 1 a(aylox)?
string is vibrating in one plane, i.e., one transverse and one F,~-—dx~ES -5+ 5 ———|dx

2 o . . X axs 2 X
longitudinal polarization are present. Losses and dispersion
are neglected for the time being and they are included later iNote that the resolution of the force would only introduce a
Sec. lll. The differences arising from the incorporation of negligible correction term for metal stringévhere T,
two transverse polarizations are outlined in Sec. Il E. Note<EYS). The forceF, acts on a masgdx whereu is the mass

©)
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per unit length. Accordingly, the longitudinal vibration is ap- where f,, is the frequencyy, is the decay timeA, is the
proximately described by initial amplitude, andp,, is the initial phase of the transverse
> > 2 moden, andL refers to the length of string. This form is of
M&_f:Es&_ng EESM, (6) particular interest since the motion of the piano string be-
at Ix= 2 2 haves similarly after the hammer-string contégpically af-
which is the standard one-dimensional wave equation witfier 1-2 ms.
an additional force term depending on the transverse vibra- As a general case, the transverse displacement of a rig-
tion. According to Eq(6), the transverse string motion can idly terminated string can be described by a similar formula:

only excite the longitudinal vibration if the square of the o narx
string slope is significant, i.e., the transverse displacementis  y(x,t)= >, y,(t)sin _> (9)
relatively large. Note that neglecting the tema(d%&/dt?) n=1 L

leads to the uniform tension approximaticsee the Appen- \yhere the time-dependent terms of E8). are substituted by

dix). o o ] the series of functiong,(t), which can be considered as the
After similar derivations the wave equation for the trans-jstantaneous amplitudes of the moaes1,...,o. This no-
verse motion can be written as tation is used to obtain simpler formulas in the following

Py Py _a{(aylax)[aglox+ S(aylax)?]y  derivations.
“W:Toa_xZ+ES I , According to Eqg.(6), the transverse to longitudinal
@) excitation-force distributiorr,_,;(x,t) is computed as
which is again a one-dimensional wave equation with an t):}Esﬂ[W(X,t)/ﬂX]z 10
additional force term depending on the product of the trans- =R 2 IX '

verse slope and the tension variation. Consequently, the I0r§ - : :
o ) o . ubstitution of Eq(9) into Eq. (10) yields
gitudinal vibration influences the transverse one if both the alo) a.(10y

transverse and longitudinal displacements are relatively 1 (9[2‘,’::lyn(t)(mr/L)cos(m-rx/L)]2
lar Fe(x,t)=5ES ,
ge. 2 ox
To sum up, both Eq96) and (7) can be considered as (11

izar::e?irrdriliqnheti:avﬁvgi;gsu_alg:)onri Vé'ctg) alltd Sglr??)zl I:%rﬁ::rllt? dtsdrmsvvhich, after some derivations, takes the following form:
that the level of transverse to longitudinal coupling depends s

on the magnitude of transverse vibration according to a Fr-1(Xt)=—ES73 21 21 Ym(Dyn(t)mn
square law. From Eq(7) it turns out that the amount of e
longitudinal to transverse coupling is a third-order function
of the amplitude of transverse vibration, sinéds in the
order ofy? [see Eq(6)].

© [

X
L

m+n
(m+ n)sin( WX)

. (12

IIl. TRANSVERSE TO LONGITUDINAL COUPLING L

As the main interest of this paper is to clarify the gen-Note that the indicesn and n belong to variables of trans-
eration of longitudinal string vibration, a further simplifica- verse modes throughout the paper. The variables of longitu-
tion is made: the longitudinal to transverse coupling is ne-dinal modes are indexed by
glected. Moreover, the string termination is assumed to be
infinitely rigid. The effects of these assumptions are covered
in Sec. llHF.— _ B. Longitudinal motion

These limitations lead to a model that cannot be in com-
plete quantitative agreement with measurements. On the The longitudinal displacement can be written in the
other hand, its simplicity helps to gain a better understandin§@me form as Eq9), resulting in
of the phenomenon. This simple model is already enough for o narx
the qualitative explanation of the measurements of earlier — &(x,t)= >, gk(t)sin( —) (13
papers~ as discussed in Sec. IV later. Furthermore, sound k=1 L
synthesis modeltsee Sec. Ybased on these principles pro- By applying the derivations of Mor&& (which were origi-
duce realistic piano sounds. nally developed for transverse vibrationthe instantaneous
amplitude¢,(t) of the longitudinal modé is obtained as

m-—n
+(m—n)sin< wx)

A. Excitation force

For the freely vibrating, dispersive, lossy, and rigidly &0 =F i (D*&5k(0), (143
terminated string the transverse displacement for a given po- L Karx
sition O<x=<L and timet=0 can be written in the following Fm,k(t):J Ftﬂ(x,t)sin( —)dx, (14b
form:? 0 L
- naX U
y(x,t)= > A,cog2mf t+e,)e mn sin( —) , (8 Es(t)= —— ——sin(2mft), (149
n=1 L WL/’L fk
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where the=* sign denotes time-domain convolution and odd longitudinal modes are excited by components having

Fi_1x(t) is the excitation force acting on the longitudinal the same frequencies as the odd transverse modes. Similarly,
modek. The time-domain impulse response of longitudinalthe even longitudinal modes are excited at the even trans-
modek is denoted by ((t), wheref, and 7, stand for the verse modal frequencies.

frequency and decay time of the longitudinal mddeéNote These frequencies form the inputs of the time-domain
that the single quote iy and 7 is used to distinguish the impulse responseg;(t), which can be considered as
longitudinal variables from the transverse ones. second-order resonatofsee Eq.(140]. The output of a

The first step in calculating the longitudinal motion is resonator has two types of components: one component is
the computation of the excitation force, ., (t) by Eq. the free response, which is a decaying sinusoid at the fre-
(14b), which is the scalar product of the excitation-force dis-quencyf, . The other component is the forced response con-
tribution F,_,(x,t) and the longitudinal modal shape. From sisting of the frequency serie§,, ; or f,,_, with n
Egs. (12) and (14D it follows that F, ., (t) is nonzero for =1,....c. The amplitudes of these spectral lines are amplified
m+n=k and [m—n|=k only, since in all other cases the around the peak of the resonafgr. As the responses of all
spatial distribution of the excitatioR,_,;(x,t) is orthogonal the longitudinal modes are summed together, the output be-
to the modal shape of mode comes similar to having formants on a rich harmonic spec-

The two cases can be computed separately by defininjum. In any case, the forced components are indistinguish-
Fiix(t) as a sum of two components, i.ef; . (t) able from the transverse ones since they are exactly at the
=F k()" +Fx(t) . The component originating from same frequencies.
the transverse modes that satigfiy- n=Kk is

3 k=1 2. Inharmonic transverse vibration
o
Fioak(t)"=— ESg 2 2 Yien(DYa(Dk(k=n)n. In the case of the piano, due to the stiffness of the string,
n=1 (159 the transverse partial frequencies do not form a perfect har-
monic series but rather obey the equation
The component coming fropm—n|=k becomes
P g . d:n | f,=fon\V1+BnZ, a7
Fooi(t) ™= _25377_2 2 Ve n(DYa(Dk(k+n)n. where B is the inharmonicity coefficient anfly~f, is the
8L =1 fundamental frequency of the string.
(15 In this case the term§,+f,_,, and f,—f,,, do not

The factor of 2 in Eq(15b) comes from the fact that there have the frequency df, but form a bunch of peaks around
are two equal seriem=k-+n andn=Kk+m, since both sat- fy. The peaks at the frequenciég—f,_, lie somewhat

isfy [m—n|=k. higher compared td,,_ | and the frequenciek,+ f,.,, are
lower thanf,, .. This means that these peaks depart from
C. Excitation frequencies the transverse partials in a rate determined by the inharmo-

E litati derstandi  the lonaitudinal nicity coefficient B and the longitudinal mode numbér
or qualitative understanding ot the longitudinal Compo- ., yayer, it is still true that odd longitudinal modes are ex-

”ef?ts it is useful to look at _the spectra of the e>_<C|tat|on forcecited by an oddlike partial series, while even longitudinal
seriesF_,x(t). The most important question is where the

modes are excited by an evenlike one.
frequency peaks can be found.

. L . ) The force exciting the first longitudinal modg_ | 4(t
To the first approximation, the instantaneous amplltude%;S d g g d&14(1)

. . . . . ) isplayed in Fig. @) by a solid line, computed by the
yn(t) are exponentially decaying sinusoidal functions with tor- tri Y hich is th
the frequencies,, such as in Eq(8). By observing Egs. resonator-based string modeee Sec. V & which is the

. = discrete-time implementation of the modal model described
(153 and (15b) the frequencies of the mixing terms in ; oo < |11 A and 111 B. Note that the excitation force has an
Feik(t) can be cglculated as oddlike partial series. The spectrum of the transverse bridge
Frequencies force is displayed by dots to show the transverse modal fre-
fot fon~f, guencies as a reference. The dashed line indicates the Fourier
transform of the impulse response of the first longitudinal
B (16) mode &;54(t), amplifying the frequencies around 690 Hz.
in F (t):[fn+fk+n~f2n+k’ Figure Zb) shows the excitation-force spectrum of the sec-
ok fo=fren~"f, ond longitudinal mode for the same example. It can be seen
where the formf , refers to the frequency of the transverse that here the excitation spectrgm _contains even pa_trtia_ls only
mode with mode numbea. and that the peak of the longitudinal mog#ashed lingis
. o located at a higher frequenc¢$380 Hz in this case
1. Harmonic transverse vibration The longitudinal motion is the sum of the motion of
The approximations in Eq16) become equalities if the different modes. This means that spectra similar to Fi¢m. 2
transverse frequenciek, are perfectly harmonic, i.ef, and (b) should be superimposed with slightly shifted excita-
=nfgy, which is the case for string instruments having neg-tion frequencies and very different longitudinal modal fre-
ligible inharmonicity. In this case, there is a strong peak atjuencies. The result is similar to formants on a quasi-
the frequencyf,, and a series of partials &j,,_, for oddk  harmonic spectrum but here the peaks are somewhat smeared
and atf,,,_, for evenk, with n=1,...¢c. This means that the as they are made up of many close frequencies. The most

in F "
| t—»l,k( ) [fn—fk_nmf2n—k|’
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100 ' T @ wherez is the string displacement in the direction perpen-
) ' \ dicular the already considered transveysad longitudinak
3 80 directions.
E It follows from Eq. (19) that the excitation-force distri-
5 60F bution F,_,(x,t) is the superposition of the excitation-force
= distributions computed for the two transverse planes sepa-

rately. Accordingly, if two modes vibrate in two planes per-
pendicular to each other, their sum and difference frequen-
cies do not appear in the excitation force. In reality the
vibrating planes are not perfectly perpendicular to each other
(the motion is actually not even pladat), meaning that
modem vibrating in one plane will mix with moda vibrat-
ing in a different plane.

The modal frequencief, ; andf, , of the two transverse
. polarizations are slightly different for the same mode number

Frequency [kHz] n. Accordingly, the excitation components coming from the

FIG. 2. The force spectrum exciting the fifg) and the secondb) longi- tr_ansverse modes andn consist of four different frequen-
tudinal modesF, ., 4(t) and F,_,,(t)] computed by the resonator-based Ci€s. For example, the sum-frequency components have the
string model of Sec. V Gdisplayed by solid line The transverse bridge frequencies f, 1+ 1,1, fn1+fho, frootfhe, and fo,

force (dotted ling is displayed to show the transverse modal frequencies. fn 5. The diﬁerence—frequency components can be ex-
The dashed line shows the frequency response of thédjrand the second y .
! w uency resp < pressed similarly.

(b) longitudinal modes. The relative levels of the signals are arbitrary.

S
o

100

oo
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T

Magnitude [dB]
oy
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important difference from the case of harmonic transversé- Validity of the approximation
vibration is that these smeared peaks appear between the neglecting the longitudinal to transverse coupling
transverse ones and therefore they can be easily distin-

quished. The assumption of neglecting the longitudinal to trans-

verse coupling is valid until the longitudinal vibration is
small compared to the transverse one. However, if one of the
excitation frequencies of the longitudinal molddsee Eg.
The longitudinal component of the tone is transmitted to(16)] is very close to the resonant frequerfgyof that mode,
the soundboard via the force acting on the bridge in the lonthe longitudinal motion can have extremely large amplitude.
gitudinal direction. This force equals to the tens[eee Eq. This would not happen in reality since the longitudinal mo-
(4)] at the terminatiorx=L, written as tion would diminish the amplitude of those transverse modes
from which it originates(the total energy of transverse and

D. Longitudinal force at the bridge

2
Fil(t)y=—|To+ Esﬁ_§ + 155<a_y ) ) (18) longitudinal vibrations cannot incregsdhis stabilizing ef-
IX|, | 2 x|y fect is not included in our modal model. On the other hand,

showing that the forc,(t) depends not only on the longi- these coincidences. haye a s_mall.practical significance from
tudinal motion but on the transverse vibration as well. the sound synthesis viewpoint since they produce an un-
The force component coming from the transverse moPl€asant ringing sound even when computed by a finite dif-
tion have the same sum- and difference-frequency terms 4§rence string modebee Sec. V Ahaving bidirectional cou-
the component arising from the longitudinal motion, but theirP!ing-  (This fact also implies that these annoying
amplitudes are different. It is an interesting outcome thafoincidences should also be avoided in real pianos by careful
when the transverse motion of the string contains low fre-String- and scale design. _ _
quency components only, most of these terms cancel out and 1he longitudinal to transverse coupling would also in-

only the double frequency terms remain. This produces thdfeduce some terms of third order in the amplitude of the

same longitudinal bridge force as what would occur withtransverse vibration, but their contrlbutl_on is less significant

compared to the second-order terms discussed here. To sum

up, the frequencies predicted by the model of Sec. Ill should

be in quantitative agreement with the dominant peaks found

in real piano spectrum. The amplitude behavior is described

properly for those peaks that do not coincide with the reso-
Real strings vibrate in two transverse polarizations. Theyant frequency of the excited longitudinal mod&his holds

modal frequencies for these polarizations can be different fofor most of the peaks.

the same modes, mostly because of the direction-dependent

termine'ltion' impedance. This' produces beating and two-stage Perfectly rigid termination

decay in piano sountf. Working out the equationél)—(6)

for the three-dimensional case gives

P& 9% 1 [a(aylox)?  d(dzl9x)?
M= ES—2 + = + ,
at oX 2 oX X

applying the uniform tension approximatithThe deriva-
tion of this result is included in the Appendix.

E. Extension to two transverse planes

The termination of piano strings is not perfectly rigid,
contrary to the assumptions made here. As the impedance of
the bridge is ca. 1000 times larger compared to the imped-
ance of the string, its main effect is a change in the partial

(19
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frequenciesf,, and decay timer,, which can be easily in- 60 ' ' ' ' @
corporated in Eq(8). The modal shapes also change slightly
[L is substituted by + SL in Eq. (8), see Ref. 1], meaning P |
that none of the longitudinal modal shapes are completelyz 20 i
orthogonal to the modal shapes of the excitation-force distri- 5 0

bution. However, it is still true that the dominant force com- =

e [dB]

40 ’

ponents are those computed by Ed$a and(15b). This is —20, L1 12 13 L4 s
confirmed by finite difference simulations showing only a
small change in the output when a more realistic termination 60 ' ' ' ' (b)
model is applied. 2 40

The termination of piano strings can also contribute to 3 20
the energy transfer between the transverse and longitudineg
motion!! As such a coupling is linear, it does not introduce é“ 0
new terms by itself. The transverse frequencies can appear i 5 A
the longitudinal motion, and, conversely, the longitudinal fre- 1 1.1 1.2 1.3 1.4 1.5
quencies may turn up in the transverse vibration. However, Frequency [kHz]

those transverse and Iongitudin_al components that have the; 5 Spectrum of the firsie) and the second secoriti) of a F, piano
same frequency cannot be distinguished in the sound pregme. Transverse partials are marked by crosses and the second longitudinal
sure. The coupling through the bridge in combination withmode is marked by a circle. Two prominent phantom partial groups are
the transverse to longitudinal coupling along the string couldndicated by a square and a diamoftie latter is magnified in Fig.)4
produce new terms, but they are of fourth order in the am-

plitude of the transverse vibration. Similar considerations apply for even phantoms, that is,

they are generated by parents having mode number differ-
ence of 2, 4, 6, etc., depending on the frequency of the phan-
tom partial. However, there is an important difference that
In this section the results of Sec. Il are related to thedouble frequency terms 2, also occur in the spectrum.
measurements of other auth6r4.0n the one hand, this con- These 2, components would arise even when the band-
firms the modal model presented in Sec. lll. On the othewidth of transverse components was significantly lower than
hand, it helps to understand the theoretical reasons underl§he frequency of the first longitudinal mode, i.e., when the
ing the findings of these experimental studie$. tension was approximately uniform along the strisge the
Appendi¥. In other words, these are the only components
that can be explained by the uniform tension approximation
From the theoretical point of view, phantom partials areof Refs. 7—11, while for the sum- and difference frequency
the forced motion of longitudinal vibrations. An interesting components the inertial effects of longitudinal modes have to
property of odd phantom partials discovered by Corfkitn  be included in the model.
that they originate from adjacent parents, i.e., they can be The spectrum of a recordde; piano tone(having only
found at frequencie$,,+ f,, wherem—n=1. one string is displayed in Fig. 3. Transverse partials are
By looking atF, .| (t)~ in Eq. (16) it turns out that the indicated by crosses and the free response of the second lon-
frequenciesf,+f,=f,+ f, ., are quite close to each other gitudinal mode is marked by a circle. The remaining peaks
for m+n=p (they would actually coincide in the case of a are the forced response of the longitudinal motion, i.e., phan-
perfectly harmonic transverse vibration having the frequencyom partials. Figure @& shows the first second of the tone
fonsk). The question is which ,+ f,, combination has the and Fig. 3b) displays the second, giving an insight to the
largest amplitude in the resulting sound. It follows from Eg. evolution of the spectrum. Note that the free response of the
(16) that the differentf ,+ f, components belonging to the longitudinal mode(circle) disappears fast in the noigehe
same smeared pedke., m+n=p) excite different longitu- decay time is ca. 0.15,swhile the phantom partials remain
dinal modes. Namely, the frequenéy+ f,, excites the lon- significant and their decay rate is comparable to that of the
gitudinal mode having the mode number m—n. Accord-  transverse partials. It can be said in general that the highest
ingly, that f,+f, component results in the largest nontransverse peaks in the long-term spectrum are phantom
longitudinal motion which excites the longitudinal mode partials amplified by a longitudinal mod@ne prominent
having a modal frequency, close to the frequency,, example is marked by a squareThis suggests that the
+f,. In other words, if the frequency of a phantom partial forced response of the longitudinal motion may have a larger
group is close to the frequendy, of the kth longitudinal  perceptual significance than the free response itself. Most
mode, it mainly originates from parents having mode numbeprobably the pitch of the longitudinal component is deter-
difference ofk. mined by these amplified phantom partidlike the one
The lower odd phantom partials, which were measurednarked by a square in Fig) &nd not by the fast decaying
by Conklin? most probably have frequencies to which thefree response. The interested reader may listen to the sound
first longitudinal mode is the nearest. In this case the examples demonstrating the relative significance of these
+f, terms satisfyingm—n=1 dominate, which actually component$®
originate from adjacent parentg andf, . The “single” phantom partial marked by a diamond in

IV. CONNECTIONS TO MEASUREMENTS

A. Parentage of phantom partials
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40 ' ' ‘ ‘ ' For even phantoms, the expression is quite accurate. For odd
35t 12414 ] phantomsn=p/2 is not an integer number. However, as the
inharmonicity curve is a smooth function, the frequencies of

301 odd phantom patrtials are also close to the ones predicted by
sl 13413 — Eq. (20).5
20

C. Amplitude of longitudinal vibration

10+16 Giordano and Korty found that the amplitude of the

| longitudinal vibration is a nonlinear function of the ampli-
1 tude of the transverse one. They noted that the nonlinear
1 curve is faster than a simple quadratic function.
sl | Equation(12) shows that a peak in the excitation spec-
(\ ﬂ nMﬂﬂ m\m trum of a longitudinal mode is a quadratic function of the
100 1161 62 1163 1164 1165 1166 overall amplitude of the generating transverse madeand

Frequency [Hz] n. However, the amplitude of longitudinal motion is mostly
determined by parents having sum frequencigstf,

Magnitude [dB]

FIG. 4. The spectrum of an even phantom partial group irFthpiano tone around the Iongitudinal modal frequenci‘é(s The amplitude
of Fig. 3. Sum frequencies of transverse modgs-f, are marked by

circles, and the mode numbers of the parent partials are labeled in the forrglf these parent.é\Nlth mOde' numbers around 10__20 In prac-
of m+n. The phantom group is displayed by a diamond in Fig. 3. tice) are a nonlinear function of the overall amplitude of the
transverse vibration. This is because of the nonlinear nature

. . . of the hammer—string interactiofsee, e.g., Ref. 26 The
Fig. 3 becomes a group of partials when plotted at a hlgherresence of this second kind of nonlinearity explains why

frequency resolution in Fig. 4. In this case the data length is.. i g
16 s (705600 samples at.=44.1 kHz), which was zero %c;?];dh?;o and Kort§ could not measure a second-order rela

padded to 22 samples after applying a Hanning window. The
most prominent peaks of the phantom group are marked by

circles. The label t+n” beside a circle indicate that the V- SOUND SYNTHESIS

circle is located at the sum frequency of the transverse modes Tpe original motivation of this research was to support

mandn (i.e., atf+f,). The frequencies of the transverse the development of physics-based piano models. These
modes were determined by finding peaks in the spectrumphysics-based models do not have to describe each part of
Note that the samm+n gomblnatlons can be found at SeV- the instrument precisely. They should be as simple as pos-
eral peaks: the reason is that the two different frequenciesiple while still producing agreeable sound quality. Therefore

fm1andfp,, of the two transverse polarizations of motte  {hese models are often constructed from precise physical de-

mix with the two different frequencief, ; andf,, of mode  scriptions by neglecting those effects that have small percep-
n, as predicted in Sec. lllE. tual relevance.

It can be seen in Fig. 4 that the highest peak comes from ]
the 12th and 14th transverse modes and not from the 13#\- Finite difference modeling

mode itself, although the amplitude of the latter is only 10 A straightforward approach of modeling the vibration of
dB smaller. Other even phantoms show the same phenongiano strings is implementing the simultaneous differential
enon: they principally originate from parents having mode-equationg6) and(7) by the finite difference approach. Natu-
number difference of 2, 4, etc., and not from a single modea|ly, these have to be extended by the terms realizing
by frequency doubling. This contradicts the findings offrequency-dependent losses and dispersion. In an earlier
Conklin® but confirms the analysis of Sec. . work® such a model was developed along the lines of the

transverse string model of Chaigne and Askerffetf How-

ever, the computational demand of such an approach is large
B. Inharmonicity of phantom partials because high sampling frequendi 500 kHz) is required

Nakamura and Naganurhtound that the inharmonicity due to the higher propagation speed in the longitudinal di-
of phantom partial§called “lower series” in Ref. 3is one- rection. Still, this approach can be very useful for experimen-
fourth of that of normal transverse partials. tal purposes. A commercial computer program based on a

This can be explained by knowing that phantom partiaiinite difference string model was written by Bernhatd,
are mainly produced by parents with mode numbers close tB€lPing piano tuners in scale design.
each other. This means that even phantoms have an approxi- 1he inclusion of longitudinal components in the piano
mate frequency off,=2f,, where p=2n is the “mode model greatly improves the_quallt_y of syntheS|z_ed piano
number” of the phantom partia(See Fig. 4 as an example, sounds. However, complete finite difference modeling of the
where f 1+ f14~2 f15.) Writing f,=2 f, according to Eq. stripg is too demandi.ng for r(_aal-time sound synthesis appli-
(17) and expressing the frequencies by the phantom modgations. In the following sections two models are presented

numberp=2n gived that overcome this limitation. The composite model of Sec.
V B replaces the finite difference model implementing Eq.
fp~=2f,=2 fonyV1+Bn?=fop\1+ iBp (200  (6) with the modal description for the longitudinal polariza-
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FIG. 5. The composite string model applying finite difference modeling and ) )
second-order resonator ..., R¢. FIG. 6. The sound pressure spectrum of the first second of a synth&jzed

piano toné® computed by the composite string model of Sec. &Band by
. ) ) . . . the resonator-based string model of Sec. b Crosses indicate the trans-
tion, while the transverse vibration is computed by a varia-verse partials and the second longitudinal mode is marked by a circle in both

tion of Eq.(7). The resonator-based string model of Sec. V Cfigures. To be compared with Fig(z.
applies the modal model for both polarizations instead of

directly realizing Eqs(6) and (7). acceptable from a perceptual point of view because the spec-

tra of the excitation forceB, ., (t) are quite similar. It fol-
lows from Eq.(16) that odd phantoms arise from the vibra-
In an earlier work® a composite string model was intro- tion of odd longitudinal modes and even phantoms from the
duced, which computes the longitudinal vibration in a modalvibration of even ones. Therefore it is satisfactory to com-
form according to the theory presented in Sec. Ill. The modepute the excitation force of one odd and one even longitudi-
structure is depicted in Fig. 5. The transverse deflectiomal mode, e.g., the input of the resonat®;s...,Rx can be
y(x,t) is computed by a finite difference string model run- Fe=F; ., 5(t)+F;_ ¢(t). This way a multiple(or smearejl
ning at audio sampling ratée.g., fs=44.1 kHz), which peak of a phantom partial is substituted by a single, expo-
implements the following differential equation: nentially decaying sinusoid. In order to avoid an unpleasant

B. The composite string model

P2 P2 P g P ringing sound(see Sec. llIF} the frequencies, of the
,U~_)2/ =T, )2/ E Sk2 Z 2b1u—y + szﬂTy_ resonatory,,...,Rx are set in a way that they do not coin-
at X 28 Jt 28 5221) cide with the peaks of their excitation sigrigls. It has been

found that using a common excitation force fgg,...,Rx
Equation(21) is a variation of Eq(7) where the nonlinear does not impair sound quality, but contributes to large com-
forcing term[the rightmost term of Eq.7)] is missing, as the putational savings.
longitudinal to transverse coupling is neglected, while it is ~ The force signal$-; andF, in Fig. 5 coming from the
extended by terms realizing dispersion and losses. This igansverse and longitudinal polarizations are sent to the
basically the string model proposed by Chaigne andsoundboard model, which computes the sound presBure
Askenfelt?’?8 except for the last term, which substitutes The soundboard is modeled by a muilti-rate filtering algo-
temporal derivatives with spatial ones. This modification isrithm approximating the measured impulse response of a
suggested by Bensat al.*° leading to a stable system for transversely excited piano soundbo&t@he soundboard re-
arbitraryb,. The k parameter in the dispersion term refers to sponds differently to a longitudinal force than to a transverse
the radius of gyration of the string, and the constdmtand  one. This difference is modeled by a simple high-pass filter
b, determine the decay rates of the partials. A finite differ-H,(z) in the longitudinal force path.
ence hammer mod€l?®is also attached to the string. The The sound pressure spectrum of the first second of a
initial velocity of the hammer is denoted hy in Fig. 5. synthesizeds, note” is displayed in Fig. ). The phantom
The excitation-force distribution of the longitudinal mo- partials are clearly visible between the transverse modes,
tion F_,(x,t) is computed according to E¢10) from this  which are emphasized around the longitudinal free mode at
transverse displacement. Then the excitation fétge, (t) 1450 Hz. The circle indicates the component coming from
of each longitudinal modk is computed by a scalar product the longitudinal free response, while the crosses show the
with the longitudinal modal shapeee Eq.(14b)]. The in-  transverse modal frequencies. It can be seen that the spec-
stantaneous amplitudeg(t) of the longitudinal modes are trum is similar to that of a real piano tone displayed in Fig. 3.
calculated according to Eq14a), which is implemented by The composite string model produces the same sound quality
second-order resonatorRy,...,Rx in Fig. 5). as the full finite difference method of Sec. VA, while its
In order to reduce the computational cost, the same excomputational requirements are reduced by an order of a
citation force is used for all the longitudinal mod€sThisis ~ magnitude(to around 10%—-15%
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C. The resonator-based string model lieve that the reason for this is that the distance of the phan-

The resonator-based string model is the discretization oo partials reinf_o rees the pifcch information originating from
the equations presented in Sec. Ill. The string displacemer“1e traﬂnsverse V|brat|on_, while the d.|stance of the ‘fo”‘.‘am
is represented by its modal forfsee Eqs(9) and (13)] for peaks” leads to the pitch percepuon. qf the longitudinal
both the transverse and longitudinal polarizations and th ode. The perceptual effect can be similar to the sound of

instantaneous amplitudag,(t) and &(t) are computed by ouvinign throat- or overtong singétsvho can produce two
second-order resonators. tone; smgltanepusly. Listening tests should be conducted to
The string is excited by a hammer in the transverse pogonﬂrm this conjecture.
larization. The hammer is modeled in the same way as in the
case of finite difference string modéis?® The string re- gl' CONCLUSIONS
sponse to the hammer force is calculated by a set of second-
order resonators, which have input and output coefficients = The generation of longitudinal components can be sum-
depending on the hammer position. The outputs of thesenarized as follows: the longitudinal motion is continuously
resonators correspond to the instantaneous amplitygés  excited by the transverse vibration along the strfagd not
of the transverse vibration, which can be directly used toonly during the hammer—string contacfThe forced re-
compute the excitation force Fy ,(t)=F (t)" sponse to this excitation gives a rise to phantom partials,
+F.1x(t) " of the longitudinal modes by using Eqd589  while the free response produces the components corre-
and(15b). From this point, the approach is the same as takesponding to the longitudinal modal frequencies. Both of
in Sec. VB: the excitation force of one even and one oddhese components develop under the assumption of rigid
longitudinal mode is calculated and summegelg., Fos  string terminations, i.e., the piano bridge has a less signifi-
=F.5(t)+F . ¢(t)]. This signal is then fed to the resona- cant effect on the phenomenon.
tors calculating the instantaneous amplitudgét) of the According to the modal model presented in Sec. I,
longitudinal modes. The efficiency can be further increaseaach longitudinal mode can be viewed as a second-order
if those components of the excitation sigiglsare not com-  resonator, whose input is a quasi-harmonic spectrum, con-
puted where the gain of the longitudinal resonator bank igaining terms with sum and difference frequencies of some
small. specific transverse modes. As each longitudinal mode em-
This model is capable of producing the same soundhasizes the peaks around its modal frequency, the sum of
guality as the model of Sec. VB when the number of resotheir outputs is similar to having formants on a quasi-
nators implementing the transverse modes equals to the nurharmonic spectrum.
ber of string elements in the finite difference model. Figure  In Sec. IV the experimental results of earlier papers have
6(b) displays the sound pressure spectrum of the first secontgeen explained by the results of the modal model, such as
of a G4 piano tone synthesized by the resonator-based stringghy phantom partials originate from adjacent parents and
model? It can be seen in Fig. 6 that the resonator-basedvhat the inharmonicity coefficient of the phantom partial
model produces a similar output compared to the compositeeries is. Some measurements of the present authors have
model of Sec. VB when the string and hammer parameteralso been outlined, confirming the results of the theoretical
are set to be the same. The only difference is that the conmodel.
posite string model generates noiselike peaks between the Based on the further simplification of the model, two
dominant partials due to computational inaccuracies. Howsound synthesis algorithms have been presented in Sec. V.
ever, this is not considered as an advantage because the difhe first one computes the transverse vibration by a finite
ference between the output of the two models is almostlifference string model and then calculates the inputs of the
inaudible? resonators, which represent the longitudinal modes. The sec-
An advantage of this approach is that the computationabnd approach computes both the transverse and longitudinal
complexity is reduced to less than the half. Moreover, thisvibrations in the modal domain, implemented by second-
method is particularly advantageous when the goal is to reerder resonators. Both models produce convincing piano
produce a tone which is similar to that of a particular pianosounds’
since the measured partial frequendiggnd decay times, The present work has examined the main effects arising
can be directly implemented in the model. On the other handrom the longitudinal vibration of piano strings. Secondary
the resonator-based model is less physical in the sense theffects coming from the coupling of longitudinal to trans-
the physical parameters of the strifgyich as string mass and verse polarizations and originating from the characteristics of
tension have only indirect connection to the model. the string termination could be a subject of future research.
For these studies the admittance matrix measurement of the
piano bridge would be of great significance. Moreover, the
radiation properties of the soundboard as a function of lon-
The informal listening tests made during the develop-gitudinal string force could also be an interesting field of
ment of sound synthesis algorithms raised some questions aasearch. As for sound synthesis models, the computational
the perceptual aspects of longitudinal vibrations. It is an im-complexity might be lowered by further simplifications
portant property of the piano sound that the longitudinalbased on psychoacoustic criteria. Accordingly, studies on
component sounds as an inherent part of the tone, while it isow the longitudinal components are perceived would also
still possible to perceive its pitch. The present authors be- be of great importance.

D. Implications to psychoacoustic research
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The findings of the paper can be useful not only in the 1
field of piano acoustics but for researchers interested in the Ty(X,t)= ESE
analysis or synthesis of other stringed instruments, such as
the guitar. Understanding the generation mechanism of lon- 2
gitudinal componentée.g., which transverse partials excite a = ESW E
specific longitudinal modecan help piano or guitar builders m=1
to achieve a better control over the nature of the tone. For the m+n
sound synthesis of other string instruments, the tension com- X COS( 3 X
puted by the modal model might be used to improve the
performance of synthesis models that presently apply the The Laplace transform of the time domain impulse re-
uniform tension approximation. sponset s (t) in Eq. (140 of a longitudinal modek is

o 2
>, Ya(tn cos( ?) }

T
L=

oo

nzl Ym(Dyn(mn

m—n
+co X
L

. (A4)

1
s?+(2/m) s+ Unl+ 4w’

2
L{Es ()= Cu (A5)
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APPENDIX: UNIFORM TENSION AS A SPECIAL CASE . . .
which was obtained by writindg, =kVES u/(2L) and as-
The assumption of spatially uniform tension is often ap-suming 1f;<f; . The shape of the dashed lines in Fig&)2
plied in the literaturgsee the work of Legge and Fletcher and (b) confirms that the longitudinal modes have constant
or Refs. 7—10 since in that case the tension can be com-gain at low frequencies. Note that this point of the derivation

puted from the relative elongation of the string by relates to neglecting the inertial effects, i.e., assuming
w(d%él9x?)=0 in Eq. (6). (See also Refs. 8 and)9.

— 1 (L [ay\? In this case, the component that comes from the longi-
T(t):T0+ESZ w0\ X dx, (A1) tydinal motion is expressed as
. . = .. T - krx
where the string tensiom(x,t)=T(t) is independent of po- TiX,)=ES— >, &(tk cos( _)
sition x. This assumption is based on the fact that when the L1 L
speed of the longitudinal waves is much larger than that of 27 1
the transverse ones, the longitudinal inertial effects can be === J[F"
= k t—1,k
neglected =]
In this case the tension contains terms which have
. ) karx
double the frequencies of the corresponding transverse +Fy k(t)]cos( _> (A7)
modest! If the transverse displacement is written in a modal ' L
form as in Eq.(9), the tensionT(t) is obtained as Calculating the excitation forceF . (t)=F . (t)"
, +F_ix(t)~ with the help of Eqs(158 and(15b) and elimi-
T()=To+ ESW S y2(t)nt. (A2) natingk by substitutingm+n=k and|m—n|=k gives
n=1

oo

T t——ESWZEwI > Ym(Dyn(t men
It is of some interest to see how the results of this for- 0= 4124 & Ym(t)yn(tymnco L X

mula can be developed as a special case of the modal model

presented in this paper. This both confirms the modal model T & m—n
described in Sec. Il and helps in finding the limits where the ~ESy2 mz:l n; Ym(t)yn(tymncog ——mx |,
assumption of uniform tension can be applied. n#m

It can be seen in Eq4) that the expression of the ten- (A8)

sion T(x,t) is made up of three terms. By definifig as the .

tension at resf,(x,t) as the tension component proportional wheren?&m in the second term comes from the fact that the
to the longitudinal slope, and@,(x,t) as the tension compo- Iong|tud|na! mode numbek=|m—n| canno_t be zero. Note
nent proportional to the square of the transverse slope, thté‘at there is no such constraint for the first termkasm

. ) +n in that case.
total tension can be written as . .
If Egs. (A4) and (A8) are substituted into EA3), all

T(X,0)=To+ T (X, 1)+ T(X,1). (A3) the terms cancel out, except some withn giving
2 o]
It the transverse displacement is expressed in the modal form _ 7" 2/102,2 5( n—n )
: . T(x,t)=To+ES t)“n<co X1,
of Eqg. (9), the tension component coming from the trans- (x0=To 412 nzl yalt) L
verse slope becomes (A9)
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