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Longitudinal vibration of piano strings greatly contributes to the distinctive character of low piano
notes. In this paper a simplified modal model is developed, which describes the generation of
phantom partials and longitudinal free modes jointly. The model is based on the simplification that
the coupling from the transverse vibration to the longitudinal polarization is unidirectional. The
modal formulation makes it possible to predict the prominent components of longitudinal vibration
as a function of transverse modal frequencies. This provides a qualitative insight into the generation
of longitudinal vibration, while the model is still capable of explaining the empirical results of
earlier works. The semi-quantitative agreement with measurement results implies that the main
source of phantom partials is the transverse to longitudinal coupling, while the string termination
and the longitudinal to transverse coupling have only small influence. The results suggest that the
longitudinal component of the tone can be treated as a quasi-harmonic spectrum with formantlike
peaks at the longitudinal modal frequencies. The model is further simplified and applied for the
real-time synthesis of piano sound with convincing sonic results. ©2005 Acoustical Society of
America. @DOI: 10.1121/1.1868212#
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I. INTRODUCTION

In this paper the generation mechanism of longitudi
vibration in piano strings is investigated. The purpose of t
paper is twofold: to explain the experimental results of e
lier papers and to provide a guideline for physics-ba
sound synthesis.

The importance of longitudinal vibration of piano string
was recognized long ago by piano builders. Conklin1 dem-
onstrated that the pitch relation of the transverse and lo
tudinal component strongly influences the quality of the to
and described a method to tune these components. Gior
and Korty2 found that the amplitude of the longitudinal v
bration is a nonlinear function of the amplitude of transve
vibration, confirming the assumption that the longitudin
component is generated by the nonlinearity of the string
not by the ‘‘misalignment’’ of the hammer.

Nakamura and Naganuma3 found a second series of pa
tials in piano sound spectra having one-fourth of inharm
nicity compared to the main partial series. They attribu
these to the horizontal polarization of the string, but th
have actually found the series that later was named ‘‘ph
tom partials’’ by Conklin. Conklin4 pointed out that the phan
tom partials are generated by nonlinear mixing and their
quencies are the sum or difference of transverse mo
frequencies. He named ‘‘even phantoms’’ those hav
double the frequency (2f n) , of a transverse mode and ‘‘od

a!Portions of this work have been presented in ‘‘Modeling the longitudi
vibration of piano strings,’’ Proceedings of the Stockholm Music Acoust
Conference, Stockholm, Sweden, August 2003, and ‘‘A piano model
cluding longitudinal string vibrations,’’ Proceedings of the 7th Internatio
Digital Audio Effects Conference, Naples, Italy, October 2004.

b!Electronic mail: bank@mit.bme.hu
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phantoms’’ those which appear at the sumf m1 f n or differ-
encef m2 f n frequencies of two transverse modes. Conklin
measurements have shown that odd phantoms gene
originate from adjacent parents, i.e., can be found atf 51 f 6

rather than atf 41 f 7 . Phantom partials have also been fou
in the spectrum of guitar tones.4 In a recent paper abou
guitar transients, Woodhouse states that the amplitude o
phantom partials seems to be modulated according to
longitudinal modal frequencies.5 The present paper gives
theoretical explanation for these experimental results.

In an earlier work6 some of the properties of phantom
partials and longitudinal modes have been investigated
was pointed out and it is emphasized here again that lo
tudinal modes and phantom partials are two different ma
festations of the same phenomenon: they are the free
forced response of the same system, respectively. There
in the theoretical treatment of the present paper they are
ered jointly. This paper outlines some of the findings of R
6 and provides a more refined theoretical background.

Theoretical works on nonlinear string vibrations th
consider longitudinal motion include the papers
Narasimha,7 Anand,8 Watzky,9 and O’Reilly and Holmes.10

As these papers discuss the nonlinear coupling of the
modes of the two transverse polarizations, the inertial effe
of the longitudinal vibration are neglected. This leads to
uniformity of the tension and equals to computing the te
sion from the relative elongation of the string.8 ~This is also
studied in the Appendix.! The uniform tension approximation
~thoroughly discussed by Legge and Fletcher11! often forms
the basis for the sound synthesis of nonlinear strings. Pa
include tension-modulated string models12,13based on digital
waveguides14 and energy-conserving finite differenc
schemes.15 The inertial effects of longitudinal modes hav
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been considered in the case of rubberlike strings by Lea
and Gottlieb16 and by Kurmyshev.17

However, the results of these earlier papers7–11,16,17can-
not be directly applied for the present purposes. This is
cause the present problem is more complex in the sense
not only the first few but 50 to 100 transverse modes hav
be taken into account in the case of a struck piano string.
the other hand, it is simpler in the way that the longitudin
to transverse coupling and the coupling of different tra
verse modes are not investigated, as the primary intere
on the longitudinal vibration itself. Therefore, in this pape
modal model is developed that computes the spectrum o
longitudinal vibration in the case of arbitrary transver
model frequencies. It turns out that the most important pr
erties of the longitudinal vibration can be explained by t
simplified modal approach. The Appendix shows that
uniform tension approximation of earlier papers7–11 is the
special case of the tension computed from the modal mo
presented here.

The synthesis of the longitudinal components in pia
tone is quite a recent topic. In an earlier work6 the digital
waveguide string model14 has been extended by an auxilia
digital waveguide for computing the response of the ph
tom partials and by second-order resonators for modeling
longitudinal free modes. A very efficient method for mode
ing the phantom partials was proposed by Bensa.18 The
model had a loose connection to physical reality, since in
work spatially uniform tension was assumed. In a rec
work19 a physics-based solution is presented for mode
the longitudinal components jointly~i.e., phantom partials
and free modes together!, which is able to produce high qua
ity piano sounds. In this model second-order resonators
nonlinearly excited according to the transverse string sh
computed by a finite difference model. This paper outlin
the above approach and presents an alternative techn
having lower computational cost.

The paper is organized as follows: first the different
equations are derived from basic principles in Sec. II. In S
III a modal model is presented, which analytically compu
the longitudinal vibration under certain assumptions. In S
IV the measurements of other authors2–4 are explained by the
results of the proposed model, and some measurement re
of the present authors are also given. Section V descr
efficient algorithms for the synthesis of piano sound inclu
ing the longitudinal vibrations. The Appendix relates the u
form tension approximation to the modal model presente
this paper.

II. EQUATIONS FOR ONE PLANE OF VIBRATION

A real piano string is vibrating in two transverse plane
and in the longitudinal direction as well. Principally, pian
hammers excite one transverse polarization of the str
while the other two polarizations are gaining energy throu
coupling. For simplicity, it is assumed in this section that t
string is vibrating in one plane, i.e., one transverse and
longitudinal polarization are present. Losses and disper
are neglected for the time being and they are included late
Sec. III. The differences arising from the incorporation
two transverse polarizations are outlined in Sec. III E. N
J. Acoust. Soc. Am., Vol. 117, No. 4, Pt. 1, April 2005
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that similar derivations in a different formulation can b
found in earlier works, e.g., in the textbook of Morse an
Ingard.20 The equations are developed here to make the
per self-explanatory.

When a transverse displacement occurs on the string,
string elongates. This results in a force exciting a longitu
nal wave in the string. The longitudinal wave modulates t
tension of the string, which influences the transverse vib
tion.

The element of lengthdx at equilibrium will have the
length ds, as depicted in Fig. 1, which is calculated as fo
lows:

ds2~x,t !'@j~x1dx,t !2j~x,t !1dx#2

1@y~x1dx,t !2y~x,t !#2. ~1!

As dx is infinitesimally small, the differences are subs
tuted by differentials

ds5AS ]j

]x
11D 2

dx21S ]y

]xD 2

dx2, ~2!

wherey5y(x,t) andj5j(x,t) are the transverse and long
tudinal displacements of the string with respect to timet and
spacex. The tensionT5T(x,t) of the string~which equals to
T0 at rest! is calculated according to Hooke’s law,

T5T01ESS ds

dx
21D , ~3!

whereE is the Young’s modulus andS is the cross-section
area of the string. By substituting Eq.~2! into Eq. ~3! and
neglecting the higher order terms the tension can be appr
mated as

T'T01ESF]j

]x
1

1

2 S ]y

]xD 2G . ~4!

As the segmentds is nearly parallel to thex axis, the longi-
tudinal force on the segmentds can be approximated as th
difference of the tension at the sides of the segment

Fx'
]T

]x
dx'ESF]2j

]x2 1
1

2

]~]y/]x!2

]x Gdx. ~5!

Note that the resolution of the force would only introduce
negligible correction term for metal strings~where T0

!ES). The forceFx acts on a massmdx wherem is the mass

FIG. 1. The string element.
2269B. Bank and L. Sujbert: Longitudinal vibrations in piano strings
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per unit length. Accordingly, the longitudinal vibration is a
proximately described by

m
]2j

]t2 5ES
]2j

]x2 1
1

2
ES

]~]y/]x!2

]x
, ~6!

which is the standard one-dimensional wave equation w
an additional force term depending on the transverse vi
tion. According to Eq.~6!, the transverse string motion ca
only excite the longitudinal vibration if the square of th
string slope is significant, i.e., the transverse displaceme
relatively large. Note that neglecting the termm(]2j/]t2)
leads to the uniform tension approximation~see the Appen-
dix!.

After similar derivations the wave equation for the tran
verse motion can be written as

m
]2y

]t2 5T0

]2y

]x2 1ES
]$~]y/]x!@]j/]x1 1

2 ~]y/]x!2#%

]x
,

~7!

which is again a one-dimensional wave equation with
additional force term depending on the product of the tra
verse slope and the tension variation. Consequently, the
gitudinal vibration influences the transverse one if both
transverse and longitudinal displacements are relativ
large.

To sum up, both Eqs.~6! and ~7! can be considered a
standard linear wave equations with additional forcing ter
on their right-hand sides. From Eq.~6! it can be concluded
that the level of transverse to longitudinal coupling depe
on the magnitude of transverse vibration according to
square law. From Eq.~7! it turns out that the amount o
longitudinal to transverse coupling is a third-order functi
of the amplitude of transverse vibration, sincej is in the
order ofy2 @see Eq.~6!#.

III. TRANSVERSE TO LONGITUDINAL COUPLING

As the main interest of this paper is to clarify the ge
eration of longitudinal string vibration, a further simplifica
tion is made: the longitudinal to transverse coupling is
glected. Moreover, the string termination is assumed to
infinitely rigid. The effects of these assumptions are cove
in Sec. III F.

These limitations lead to a model that cannot be in co
plete quantitative agreement with measurements. On
other hand, its simplicity helps to gain a better understand
of the phenomenon. This simple model is already enough
the qualitative explanation of the measurements of ea
papers,2–4 as discussed in Sec. IV later. Furthermore, sou
synthesis models~see Sec. V! based on these principles pro
duce realistic piano sounds.

A. Excitation force

For the freely vibrating, dispersive, lossy, and rigid
terminated string the transverse displacement for a given
sition 0<x<L and timet>0 can be written in the following
form:21

y~x,t !5 (
n51

`

An cos~2p f nt1wn!e2t/tn sinS npx

L D , ~8!
2270 J. Acoust. Soc. Am., Vol. 117, No. 4, Pt. 1, April 2005
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where f n is the frequency,tn is the decay time,An is the
initial amplitude, andwn is the initial phase of the transvers
moden, andL refers to the length of string. This form is o
particular interest since the motion of the piano string b
haves similarly after the hammer-string contact~typically af-
ter 1–2 ms!.

As a general case, the transverse displacement of a
idly terminated string can be described by a similar formu

y~x,t !5 (
n51

`

yn~ t !sinS npx

L D , ~9!

where the time-dependent terms of Eq.~8! are substituted by
the series of functionsyn(t), which can be considered as th
instantaneous amplitudes of the modesn51,...,̀ . This no-
tation is used to obtain simpler formulas in the followin
derivations.

According to Eq. ~6!, the transverse to longitudina
excitation-force distributionF t→ l(x,t) is computed as

F t→ l~x,t !5
1

2
ES

]@]y~x,t !/]x#2

]x
. ~10!

Substitution of Eq.~9! into Eq. ~10! yields

F t→ l~x,t !5
1

2
ES

]@(n51
` yn~ t !~np/L !cos~npx/L !#2

]x
,

~11!

which, after some derivations, takes the following form:

F t→1~x,t !52ES
p3

4L3 (
m51

`

(
n51

`

ym~ t !yn~ t !mn

3F ~m1n!sinS m1n

L
pxD

1~m2n!sinS m2n

L
pxD G . ~12!

Note that the indicesm and n belong to variables of trans
verse modes throughout the paper. The variables of long
dinal modes are indexed byk.

B. Longitudinal motion

The longitudinal displacement can be written in t
same form as Eq.~9!, resulting in

j~x,t !5 (
k51

`

jk~ t !sinS npx

L D . ~13!

By applying the derivations of Morse22 ~which were origi-
nally developed for transverse vibrations!, the instantaneous
amplitudejk(t) of the longitudinal modek is obtained as

jk~ t !5F t→ l,k~ t !* jd,k~ t !, ~14a!

F t→ l,k~ t !5E
0

L

F t→1~x,t !sinS kpx

L Ddx, ~14b!

jd,k~ t !5
1

pLm

e2t/tk8

f k8
sin~2p f k8t !, ~14c!
B. Bank and L. Sujbert: Longitudinal vibrations in piano strings
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where the * sign denotes time-domain convolution an
Ft→1,k(t) is the excitation force acting on the longitudin
modek. The time-domain impulse response of longitudin
modek is denoted byjd,k(t), wheref k8 andtk8 stand for the
frequency and decay time of the longitudinal modek. Note
that the single quote inf k8 and tk8 is used to distinguish the
longitudinal variables from the transverse ones.

The first step in calculating the longitudinal motion
the computation of the excitation forceF t→ l,k(t) by Eq.
~14b!, which is the scalar product of the excitation-force d
tribution F t→ l(x,t) and the longitudinal modal shape. Fro
Eqs. ~12! and ~14b! it follows that F t→ l,k(t) is nonzero for
m1n5k and um2nu5k only, since in all other cases th
spatial distribution of the excitationF t→ l(x,t) is orthogonal
to the modal shape of modek.

The two cases can be computed separately by defi
F t→ l,k(t) as a sum of two components, i.e.,F t→ l,k(t)
5F t→ l,k(t)

11F t→ l,k(t)
2. The component originating from

the transverse modes that satisfym1n5k is

F t→1,k~ t !152ES
p3

8L2 (
n51

k21

yk2n~ t !yn~ t !k~k2n!n.

~15a!

The component coming fromum2nu5k becomes

F t→1,k~ t !2522ES
p3

8L2 (
n51

`

yk1n~ t !yn~ t !k~k1n!n.

~15b!

The factor of 2 in Eq.~15b! comes from the fact that ther
are two equal seriesm5k1n andn5k1m, since both sat-
isfy um2nu5k.

C. Excitation frequencies

For qualitative understanding of the longitudinal comp
nents it is useful to look at the spectra of the excitation fo
seriesF t→ l,k(t). The most important question is where th
frequency peaks can be found.

To the first approximation, the instantaneous amplitu
yn(t) are exponentially decaying sinusoidal functions w
the frequenciesf n , such as in Eq.~8!. By observing Eqs.
~15a! and ~15b! the frequencies of the mixing terms i
Ft→ l,k(t) can be calculated as

Frequencies

in F t→ l,k~ t !1: H f n1 f k2n' f k ,
f n2 f k2n' f u2n2ku ,

~16!

in F t→ l,k~ t !2: H f n1 f k1n' f 2n1k ,
f n2 f k1n' f k ,

where the formf a refers to the frequency of the transver
mode with mode numbera.

1. Harmonic transverse vibration

The approximations in Eq.~16! become equalities if the
transverse frequenciesf n are perfectly harmonic, i.e.,f n

5n f0 , which is the case for string instruments having ne
ligible inharmonicity. In this case, there is a strong peak
the frequencyf k , and a series of partials atf 2n21 for odd k
and atf 2n22 for evenk, with n51,...,̀ . This means that the
J. Acoust. Soc. Am., Vol. 117, No. 4, Pt. 1, April 2005
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odd longitudinal modes are excited by components hav
the same frequencies as the odd transverse modes. Simi
the even longitudinal modes are excited at the even tra
verse modal frequencies.

These frequencies form the inputs of the time-dom
impulse responsesjd,k(t), which can be considered a
second-order resonators@see Eq.~14c!#. The output of a
resonator has two types of components: one componen
the free response, which is a decaying sinusoid at the
quencyf k8 . The other component is the forced response c
sisting of the frequency seriesf 2n21 or f 2n22 with n
51,...,̀ . The amplitudes of these spectral lines are amplifi
around the peak of the resonatorf k8 . As the responses of al
the longitudinal modes are summed together, the output
comes similar to having formants on a rich harmonic sp
trum. In any case, the forced components are indistingu
able from the transverse ones since they are exactly at
same frequencies.

2. Inharmonic transverse vibration

In the case of the piano, due to the stiffness of the stri
the transverse partial frequencies do not form a perfect
monic series but rather obey the equation23

f n5 f 0nA11Bn2, ~17!

where B is the inharmonicity coefficient andf 0' f 1 is the
fundamental frequency of the string.

In this case the termsf n1 f k2n and f n2 f k1n do not
have the frequency off k but form a bunch of peaks aroun
f k . The peaks at the frequenciesf n2 f k2n lie somewhat
higher compared tof u2n2ku and the frequenciesf n1 f k1n are
lower thanf 2n1k . This means that these peaks depart fro
the transverse partials in a rate determined by the inhar
nicity coefficient B and the longitudinal mode numberk.
However, it is still true that odd longitudinal modes are e
cited by an oddlike partial series, while even longitudin
modes are excited by an evenlike one.

The force exciting the first longitudinal modeF t→ l,1(t)
is displayed in Fig. 2~a! by a solid line, computed by the
resonator-based string model~see Sec. V C!, which is the
discrete-time implementation of the modal model describ
in Secs. III A and III B. Note that the excitation force has
oddlike partial series. The spectrum of the transverse bri
force is displayed by dots to show the transverse modal
quencies as a reference. The dashed line indicates the Fo
transform of the impulse response of the first longitudin
mode jd,1(t), amplifying the frequencies around 690 H
Figure 2~b! shows the excitation-force spectrum of the se
ond longitudinal mode for the same example. It can be s
that here the excitation spectrum contains even partials o
and that the peak of the longitudinal mode~dashed line! is
located at a higher frequency~1380 Hz in this case!.

The longitudinal motion is the sum of the motion o
different modes. This means that spectra similar to Figs. 2~a!
and ~b! should be superimposed with slightly shifted excit
tion frequencies and very different longitudinal modal fr
quencies. The result is similar to formants on a qua
harmonic spectrum but here the peaks are somewhat sme
as they are made up of many close frequencies. The m
2271B. Bank and L. Sujbert: Longitudinal vibrations in piano strings
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important difference from the case of harmonic transve
vibration is that these smeared peaks appear between
transverse ones and therefore they can be easily di
guished.

D. Longitudinal force at the bridge

The longitudinal component of the tone is transmitted
the soundboard via the force acting on the bridge in the l
gitudinal direction. This force equals to the tension@see Eq.
~4!# at the terminationx5L, written as

Fl~ t !52FT01ES
]j

]xU
x5L

1
1

2
ESS ]y

]xU
x5L

D 2G , ~18!

showing that the forceFl(t) depends not only on the long
tudinal motion but on the transverse vibration as well.

The force component coming from the transverse m
tion have the same sum- and difference-frequency term
the component arising from the longitudinal motion, but th
amplitudes are different. It is an interesting outcome t
when the transverse motion of the string contains low f
quency components only, most of these terms cancel out
only the double frequency terms remain. This produces
same longitudinal bridge force as what would occur w
applying the uniform tension approximation.11 The deriva-
tion of this result is included in the Appendix.

E. Extension to two transverse planes

Real strings vibrate in two transverse polarizations. T
modal frequencies for these polarizations can be different
the same modes, mostly because of the direction-depen
termination impedance. This produces beating and two-s
decay in piano sound.24 Working out the equations~1!–~6!
for the three-dimensional case gives

m
]2j

]t2 5ES
]2j

]x2 1
1

2
ESF]~]y/]x!2

]x
1

]~]z/]x!2

]x G , ~19!

FIG. 2. The force spectrum exciting the first~a! and the second~b! longi-
tudinal modes@F t→ l,1(t) and F t→ l,2(t)] computed by the resonator-base
string model of Sec. V C~displayed by solid line!. The transverse bridge
force ~dotted line! is displayed to show the transverse modal frequenc
The dashed line shows the frequency response of the first~a! and the second
~b! longitudinal modes. The relative levels of the signals are arbitrary.
2272 J. Acoust. Soc. Am., Vol. 117, No. 4, Pt. 1, April 2005
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wherez is the string displacement in the direction perpe
dicular the already considered transversey and longitudinalx
directions.

It follows from Eq. ~19! that the excitation-force distri-
bution F t→ l(x,t) is the superposition of the excitation-forc
distributions computed for the two transverse planes se
rately. Accordingly, if two modes vibrate in two planes pe
pendicular to each other, their sum and difference frequ
cies do not appear in the excitation force. In reality t
vibrating planes are not perfectly perpendicular to each o
~the motion is actually not even planar7–10!, meaning that
modem vibrating in one plane will mix with moden vibrat-
ing in a different plane.

The modal frequenciesf n,1 and f n,2 of the two transverse
polarizations are slightly different for the same mode num
n. Accordingly, the excitation components coming from t
transverse modesm andn consist of four different frequen
cies. For example, the sum-frequency components have
frequencies f m,11 f n,1 , f m,11 f n,2 , f m,21 f n,1 , and f m,2

1 f n,2 . The difference-frequency components can be
pressed similarly.

F. Validity of the approximation

1. Neglecting the longitudinal to transverse coupling

The assumption of neglecting the longitudinal to tran
verse coupling is valid until the longitudinal vibration
small compared to the transverse one. However, if one of
excitation frequencies of the longitudinal modek @see Eq.
~16!# is very close to the resonant frequencyf k8 of that mode,
the longitudinal motion can have extremely large amplitu
This would not happen in reality since the longitudinal m
tion would diminish the amplitude of those transverse mo
from which it originates~the total energy of transverse an
longitudinal vibrations cannot increase!. This stabilizing ef-
fect is not included in our modal model. On the other ha
these coincidences have a small practical significance f
the sound synthesis viewpoint since they produce an
pleasant ringing sound even when computed by a finite
ference string model~see Sec. V A! having bidirectional cou-
pling. ~This fact also implies that these annoyin
coincidences should also be avoided in real pianos by car
string- and scale design.!

The longitudinal to transverse coupling would also i
troduce some terms of third order in the amplitude of t
transverse vibration, but their contribution is less significa
compared to the second-order terms discussed here. To
up, the frequencies predicted by the model of Sec. III sho
be in quantitative agreement with the dominant peaks fo
in real piano spectrum. The amplitude behavior is descri
properly for those peaks that do not coincide with the re
nant frequency of the excited longitudinal mode.~This holds
for most of the peaks.!

2. Perfectly rigid termination

The termination of piano strings is not perfectly rigi
contrary to the assumptions made here. As the impedanc
the bridge is ca. 1000 times larger compared to the imp
ance of the string, its main effect is a change in the par

.

B. Bank and L. Sujbert: Longitudinal vibrations in piano strings
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frequenciesf n and decay timetn , which can be easily in-
corporated in Eq.~8!. The modal shapes also change sligh
@L is substituted byL1dL in Eq. ~8!, see Ref. 11#, meaning
that none of the longitudinal modal shapes are comple
orthogonal to the modal shapes of the excitation-force dis
bution. However, it is still true that the dominant force com
ponents are those computed by Eqs.~15a! and~15b!. This is
confirmed by finite difference simulations showing only
small change in the output when a more realistic termina
model is applied.

The termination of piano strings can also contribute
the energy transfer between the transverse and longitud
motion.11 As such a coupling is linear, it does not introdu
new terms by itself. The transverse frequencies can appe
the longitudinal motion, and, conversely, the longitudinal f
quencies may turn up in the transverse vibration. Howe
those transverse and longitudinal components that have
same frequency cannot be distinguished in the sound p
sure. The coupling through the bridge in combination w
the transverse to longitudinal coupling along the string co
produce new terms, but they are of fourth order in the a
plitude of the transverse vibration.

IV. CONNECTIONS TO MEASUREMENTS

In this section the results of Sec. III are related to t
measurements of other authors.2–4 On the one hand, this con
firms the modal model presented in Sec. III. On the ot
hand, it helps to understand the theoretical reasons und
ing the findings of these experimental studies.2–4

A. Parentage of phantom partials

From the theoretical point of view, phantom partials a
the forced motion of longitudinal vibrations. An interestin
property of odd phantom partials discovered by Conklin4 is
that they originate from adjacent parents, i.e., they can
found at frequenciesf m1 f n wherem2n51.

By looking atF t→ l,k(t)
2 in Eq. ~16! it turns out that the

frequenciesf n1 f m5 f n1 f k1n are quite close to each othe
for m1n5p ~they would actually coincide in the case of
perfectly harmonic transverse vibration having the freque
f 2n1k). The question is whichf m1 f n combination has the
largest amplitude in the resulting sound. It follows from E
~16! that the differentf m1 f n components belonging to th
same smeared peak~i.e., m1n5p) excite different longitu-
dinal modes. Namely, the frequencyf m1 f n excites the lon-
gitudinal mode having the mode numberk5m2n. Accord-
ingly, that f m1 f n component results in the large
longitudinal motion which excites the longitudinal mod
having a modal frequencyf k8 close to the frequencyf m

1 f n . In other words, if the frequency of a phantom part
group is close to the frequencyf k8 of the kth longitudinal
mode, it mainly originates from parents having mode num
difference ofk.

The lower odd phantom partials, which were measu
by Conklin,4 most probably have frequencies to which t
first longitudinal mode is the nearest. In this case thef m

1 f n terms satisfyingm2n51 dominate, which actually
originate from adjacent parentsf n and f n11 .
J. Acoust. Soc. Am., Vol. 117, No. 4, Pt. 1, April 2005
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Similar considerations apply for even phantoms, that
they are generated by parents having mode number di
ence of 2, 4, 6, etc., depending on the frequency of the ph
tom partial. However, there is an important difference th
double frequency terms 2f n also occur in the spectrum
These 2f n components would arise even when the ban
width of transverse components was significantly lower th
the frequency of the first longitudinal mode, i.e., when t
tension was approximately uniform along the string~see the
Appendix!. In other words, these are the only compone
that can be explained by the uniform tension approximat
of Refs. 7–11, while for the sum- and difference frequen
components the inertial effects of longitudinal modes have
be included in the model.

The spectrum of a recordedF1 piano tone~having only
one string! is displayed in Fig. 3. Transverse partials a
indicated by crosses and the free response of the second
gitudinal mode is marked by a circle. The remaining pea
are the forced response of the longitudinal motion, i.e., ph
tom partials. Figure 3~a! shows the first second of the ton
and Fig. 3~b! displays the second, giving an insight to th
evolution of the spectrum. Note that the free response of
longitudinal mode~circle! disappears fast in the noise~the
decay time is ca. 0.15 s!, while the phantom partials remai
significant and their decay rate is comparable to that of
transverse partials. It can be said in general that the hig
nontransverse peaks in the long-term spectrum are phan
partials amplified by a longitudinal mode~one prominent
example is marked by a square!. This suggests that the
forced response of the longitudinal motion may have a lar
perceptual significance than the free response itself. M
probably the pitch of the longitudinal component is det
mined by these amplified phantom partials~like the one
marked by a square in Fig. 3! and not by the fast decayin
free response. The interested reader may listen to the so
examples demonstrating the relative significance of th
components.25

The ‘‘single’’ phantom partial marked by a diamond

FIG. 3. Spectrum of the first~a! and the second second~b! of a F1 piano
tone. Transverse partials are marked by crosses and the second longit
mode is marked by a circle. Two prominent phantom partial groups
indicated by a square and a diamond~the latter is magnified in Fig. 4!.
2273B. Bank and L. Sujbert: Longitudinal vibrations in piano strings
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Fig. 3 becomes a group of partials when plotted at a hig
frequency resolution in Fig. 4. In this case the data lengt
16 s ~705 600 samples atf s544.1 kHz), which was zero
padded to 222 samples after applying a Hanning window. Th
most prominent peaks of the phantom group are marked
circles. The label ‘‘m1n’’ beside a circle indicate that the
circle is located at the sum frequency of the transverse mo
m and n ~i.e., at f m1 f n). The frequencies of the transvers
modes were determined by finding peaks in the spectr
Note that the samem1n combinations can be found at se
eral peaks: the reason is that the two different frequen
f m,1 and f m,2 of the two transverse polarizations of modem
mix with the two different frequenciesf n,1 and f n,2 of mode
n, as predicted in Sec. III E.

It can be seen in Fig. 4 that the highest peak comes f
the 12th and 14th transverse modes and not from the
mode itself, although the amplitude of the latter is only
dB smaller. Other even phantoms show the same phen
enon: they principally originate from parents having mod
number difference of 2, 4, etc., and not from a single mo
by frequency doubling. This contradicts the findings
Conklin4 but confirms the analysis of Sec. III.

B. Inharmonicity of phantom partials

Nakamura and Naganuma3 found that the inharmonicity
of phantom partials~called ‘‘lower series’’ in Ref. 3! is one-
fourth of that of normal transverse partials.

This can be explained by knowing that phantom parti
are mainly produced by parents with mode numbers clos
each other. This means that even phantoms have an app
mate frequency off p52 f n , where p52n is the ‘‘mode
number’’ of the phantom partial.~See Fig. 4 as an example
where f 121 f 14'2 f 13.) Writing f p52 f n according to Eq.
~17! and expressing the frequencies by the phantom m
numberp52n gives6

f p'2 f n52 f 0nA11Bn25 f 0pA11 1
4Bp2. ~20!

FIG. 4. The spectrum of an even phantom partial group in theF1 piano tone
of Fig. 3. Sum frequencies of transverse modesf m1 f n are marked by
circles, and the mode numbers of the parent partials are labeled in the
of m1n. The phantom group is displayed by a diamond in Fig. 3.
2274 J. Acoust. Soc. Am., Vol. 117, No. 4, Pt. 1, April 2005
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For even phantoms, the expression is quite accurate. For
phantoms,n5p/2 is not an integer number. However, as t
inharmonicity curve is a smooth function, the frequencies
odd phantom partials are also close to the ones predicte
Eq. ~20!.6

C. Amplitude of longitudinal vibration

Giordano and Korty2 found that the amplitude of the
longitudinal vibration is a nonlinear function of the amp
tude of the transverse one. They noted that the nonlin
curve is faster than a simple quadratic function.

Equation~12! shows that a peak in the excitation spe
trum of a longitudinal mode is a quadratic function of th
overall amplitude of the generating transverse modesm and
n. However, the amplitude of longitudinal motion is most
determined by parents having sum frequenciesf m1 f n

around the longitudinal modal frequenciesf k8 . The amplitude
of these parents~with mode numbers around 10–20 in pra
tice! are a nonlinear function of the overall amplitude of t
transverse vibration. This is because of the nonlinear na
of the hammer–string interaction~see, e.g., Ref. 26!. The
presence of this second kind of nonlinearity explains w
Giordano and Korty2 could not measure a second-order re
tionship.

V. SOUND SYNTHESIS

The original motivation of this research was to supp
the development of physics-based piano models. Th
physics-based models do not have to describe each pa
the instrument precisely. They should be as simple as p
sible while still producing agreeable sound quality. Therefo
these models are often constructed from precise physica
scriptions by neglecting those effects that have small perc
tual relevance.

A. Finite difference modeling

A straightforward approach of modeling the vibration
piano strings is implementing the simultaneous differen
equations~6! and~7! by the finite difference approach. Natu
rally, these have to be extended by the terms realiz
frequency-dependent losses and dispersion. In an ea
work6 such a model was developed along the lines of
transverse string model of Chaigne and Askenfelt.27,28 How-
ever, the computational demand of such an approach is l
because high sampling frequency (f s'500 kHz) is required
due to the higher propagation speed in the longitudinal
rection. Still, this approach can be very useful for experim
tal purposes. A commercial computer program based o
finite difference string model was written by Bernhard29

helping piano tuners in scale design.
The inclusion of longitudinal components in the pian

model greatly improves the quality of synthesized pia
sounds. However, complete finite difference modeling of
string is too demanding for real-time sound synthesis ap
cations. In the following sections two models are presen
that overcome this limitation. The composite model of S
V B replaces the finite difference model implementing E
~6! with the modal description for the longitudinal polariz

rm
B. Bank and L. Sujbert: Longitudinal vibrations in piano strings
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tion, while the transverse vibration is computed by a var

tion of Eq.~7!. The resonator-based string model of Sec. V
applies the modal model for both polarizations instead
directly realizing Eqs.~6! and ~7!.

B. The composite string model

In an earlier work19 a composite string model was intro
duced, which computes the longitudinal vibration in a mo
form according to the theory presented in Sec. III. The mo
structure is depicted in Fig. 5. The transverse deflec
y(x,t) is computed by a finite difference string model ru
ning at audio sampling rate~e.g., f s544.1 kHz), which
implements the following differential equation:

m
]2y

]t2 5T0

]2y

]x2 2ESk2
]4y

]x4 22b1m
]y

]t
12b2m

]3y

]x2]t
.

~21!

Equation~21! is a variation of Eq.~7! where the nonlinear
forcing term@the rightmost term of Eq.~7!# is missing, as the
longitudinal to transverse coupling is neglected, while it
extended by terms realizing dispersion and losses. Thi
basically the string model proposed by Chaigne a
Askenfelt,27,28 except for the last term, which substitute
temporal derivatives with spatial ones. This modification
suggested by Bensaet al.,30 leading to a stable system fo
arbitraryb2 . Thek parameter in the dispersion term refers
the radius of gyration of the string, and the constantsb1 and
b2 determine the decay rates of the partials. A finite diff
ence hammer model27,28 is also attached to the string. Th
initial velocity of the hammer is denoted byv0 in Fig. 5.

The excitation-force distribution of the longitudinal mo
tion F t→ l(x,t) is computed according to Eq.~10! from this
transverse displacement. Then the excitation forceF t→ l,k(t)
of each longitudinal modek is computed by a scalar produ
with the longitudinal modal shape@see Eq.~14b!#. The in-
stantaneous amplitudesjk(t) of the longitudinal modes are
calculated according to Eq.~14a!, which is implemented by
second-order resonators (R1 ,...,RK in Fig. 5!.

In order to reduce the computational cost, the same
citation force is used for all the longitudinal modes.19 This is

FIG. 5. The composite string model applying finite difference modeling
second-order resonatorsR1 ,...,RK .
J. Acoust. Soc. Am., Vol. 117, No. 4, Pt. 1, April 2005
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acceptable from a perceptual point of view because the s
tra of the excitation forcesF t→ l,k(t) are quite similar. It fol-
lows from Eq.~16! that odd phantoms arise from the vibr
tion of odd longitudinal modes and even phantoms from
vibration of even ones. Therefore it is satisfactory to co
pute the excitation force of one odd and one even longitu
nal mode, e.g., the input of the resonatorsR1 ,...,RK can be
F res5F t→ l,5(t)1F t→ l,6(t). This way a multiple~or smeared!
peak of a phantom partial is substituted by a single, ex
nentially decaying sinusoid. In order to avoid an unpleas
ringing sound~see Sec. III F 1!, the frequenciesf k8 of the
resonatorsR1 ,...,RK are set in a way that they do not coin
cide with the peaks of their excitation signalF res. It has been
found that using a common excitation force forR1 ,...,RK

does not impair sound quality, but contributes to large co
putational savings.

The force signalsF t and Fl in Fig. 5 coming from the
transverse and longitudinal polarizations are sent to
soundboard model, which computes the sound pressurP.
The soundboard is modeled by a multi-rate filtering alg
rithm approximating the measured impulse response o
transversely excited piano soundboard.19 The soundboard re
sponds differently to a longitudinal force than to a transve
one. This difference is modeled by a simple high-pass fi
Hl(z) in the longitudinal force path.

The sound pressure spectrum of the first second o
synthesizedG1 note25 is displayed in Fig. 6~a!. The phantom
partials are clearly visible between the transverse mod
which are emphasized around the longitudinal free mode
1450 Hz. The circle indicates the component coming fro
the longitudinal free response, while the crosses show
transverse modal frequencies. It can be seen that the s
trum is similar to that of a real piano tone displayed in Fig.
The composite string model produces the same sound qu
as the full finite difference method of Sec. V A, while i
computational requirements are reduced by an order o
magnitude~to around 10%–15%!.

d
FIG. 6. The sound pressure spectrum of the first second of a synthesizeG1

piano tone25 computed by the composite string model of Sec. V B~a! and by
the resonator-based string model of Sec. V C~b!. Crosses indicate the trans
verse partials and the second longitudinal mode is marked by a circle in
figures. To be compared with Fig. 3~a!.
2275B. Bank and L. Sujbert: Longitudinal vibrations in piano strings
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C. The resonator-based string model

The resonator-based string model is the discretizatio
the equations presented in Sec. III. The string displacem
is represented by its modal form@see Eqs.~9! and ~13!# for
both the transverse and longitudinal polarizations and
instantaneous amplitudesyn(t) and jk(t) are computed by
second-order resonators.

The string is excited by a hammer in the transverse
larization. The hammer is modeled in the same way as in
case of finite difference string models.27,28 The string re-
sponse to the hammer force is calculated by a set of sec
order resonators, which have input and output coefficie
depending on the hammer position. The outputs of th
resonators correspond to the instantaneous amplitudesyn(t)
of the transverse vibration, which can be directly used
compute the excitation force F t→ l,k(t)5F t→ l,k(t)

1

1F t→1,k(t)
2 of the longitudinal modes by using Eqs.~15a!

and~15b!. From this point, the approach is the same as ta
in Sec. V B: the excitation force of one even and one o
longitudinal mode is calculated and summed@e.g., F res

5F t→ l,5(t)1F t→ l,6(t)]. This signal is then fed to the resona
tors calculating the instantaneous amplitudesjk(t) of the
longitudinal modes. The efficiency can be further increa
if those components of the excitation signalF resare not com-
puted where the gain of the longitudinal resonator bank
small.

This model is capable of producing the same sou
quality as the model of Sec. V B when the number of re
nators implementing the transverse modes equals to the n
ber of string elements in the finite difference model. Figu
6~b! displays the sound pressure spectrum of the first sec
of a G1 piano tone synthesized by the resonator-based st
model.25 It can be seen in Fig. 6 that the resonator-ba
model produces a similar output compared to the compo
model of Sec. V B when the string and hammer parame
are set to be the same. The only difference is that the c
posite string model generates noiselike peaks between
dominant partials due to computational inaccuracies. Ho
ever, this is not considered as an advantage because th
ference between the output of the two models is alm
inaudible.25

An advantage of this approach is that the computatio
complexity is reduced to less than the half. Moreover, t
method is particularly advantageous when the goal is to
produce a tone which is similar to that of a particular pia
since the measured partial frequenciesf n and decay timestn

can be directly implemented in the model. On the other ha
the resonator-based model is less physical in the sense
the physical parameters of the string~such as string mass an
tension! have only indirect connection to the model.

D. Implications to psychoacoustic research

The informal listening tests made during the develo
ment of sound synthesis algorithms raised some question
the perceptual aspects of longitudinal vibrations. It is an
portant property of the piano sound that the longitudi
component sounds as an inherent part of the tone, while
still possible to perceive its pitch.25 The present authors be
2276 J. Acoust. Soc. Am., Vol. 117, No. 4, Pt. 1, April 2005
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lieve that the reason for this is that the distance of the ph
tom partials reinforces the pitch information originating fro
the transverse vibration, while the distance of the ‘‘forma
peaks’’ leads to the pitch perception of the longitudin
mode. The perceptual effect can be similar to the sound
Touvinian throat- or overtone singers31 who can produce two
tones simultaneously. Listening tests should be conducte
confirm this conjecture.

VI. CONCLUSIONS

The generation of longitudinal components can be su
marized as follows: the longitudinal motion is continuous
excited by the transverse vibration along the string~and not
only during the hammer–string contact!. The forced re-
sponse to this excitation gives a rise to phantom parti
while the free response produces the components co
sponding to the longitudinal modal frequencies. Both
these components develop under the assumption of r
string terminations, i.e., the piano bridge has a less sign
cant effect on the phenomenon.

According to the modal model presented in Sec.
each longitudinal mode can be viewed as a second-o
resonator, whose input is a quasi-harmonic spectrum, c
taining terms with sum and difference frequencies of so
specific transverse modes. As each longitudinal mode
phasizes the peaks around its modal frequency, the sum
their outputs is similar to having formants on a qua
harmonic spectrum.

In Sec. IV the experimental results of earlier papers ha
been explained by the results of the modal model, such
why phantom partials originate from adjacent parents a
what the inharmonicity coefficient of the phantom part
series is. Some measurements of the present authors
also been outlined, confirming the results of the theoret
model.

Based on the further simplification of the model, tw
sound synthesis algorithms have been presented in Se
The first one computes the transverse vibration by a fin
difference string model and then calculates the inputs of
resonators, which represent the longitudinal modes. The
ond approach computes both the transverse and longitud
vibrations in the modal domain, implemented by secon
order resonators. Both models produce convincing pia
sounds.25

The present work has examined the main effects aris
from the longitudinal vibration of piano strings. Seconda
effects coming from the coupling of longitudinal to tran
verse polarizations and originating from the characteristics
the string termination could be a subject of future resear
For these studies the admittance matrix measurement o
piano bridge would be of great significance. Moreover,
radiation properties of the soundboard as a function of l
gitudinal string force could also be an interesting field
research. As for sound synthesis models, the computati
complexity might be lowered by further simplification
based on psychoacoustic criteria. Accordingly, studies
how the longitudinal components are perceived would a
be of great importance.
B. Bank and L. Sujbert: Longitudinal vibrations in piano strings
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The findings of the paper can be useful not only in t
field of piano acoustics but for researchers interested in
analysis or synthesis of other stringed instruments, suc
the guitar. Understanding the generation mechanism of
gitudinal components~e.g., which transverse partials excite
specific longitudinal mode! can help piano or guitar builder
to achieve a better control over the nature of the tone. For
sound synthesis of other string instruments, the tension c
puted by the modal model might be used to improve
performance of synthesis models that presently apply
uniform tension approximation.
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APPENDIX: UNIFORM TENSION AS A SPECIAL CASE

The assumption of spatially uniform tension is often a
plied in the literature~see the work of Legge and Fletcher11

or Refs. 7–10!, since in that case the tension can be co
puted from the relative elongation of the string by

T̄~ t !5T01ES
1

2L E
x50

L S ]y

]xD 2

dx, ~A1!

where the string tensionT(x,t)5T̄(t) is independent of po-
sition x. This assumption is based on the fact that when
speed of the longitudinal waves is much larger than tha
the transverse ones, the longitudinal inertial effects can
neglected.8

In this case the tension contains terms which ha
double the frequencies of the corresponding transve
modes.11 If the transverse displacement is written in a mod
form as in Eq.~9!, the tensionT̄(t) is obtained as

T̄~ t !5T01ES
p2

4L2 (
n51

`

yn
2~ t !n2. ~A2!

It is of some interest to see how the results of this f
mula can be developed as a special case of the modal m
presented in this paper. This both confirms the modal mo
described in Sec. III and helps in finding the limits where t
assumption of uniform tension can be applied.

It can be seen in Eq.~4! that the expression of the ten
sionT(x,t) is made up of three terms. By definingT0 as the
tension at rest,Tl(x,t) as the tension component proportion
to the longitudinal slope, andTt(x,t) as the tension compo
nent proportional to the square of the transverse slope,
total tension can be written as

T~x,t !5T01Tl~x,t !1Tt~x,t !. ~A3!

It the transverse displacement is expressed in the modal
of Eq. ~9!, the tension component coming from the tran
verse slope becomes
J. Acoust. Soc. Am., Vol. 117, No. 4, Pt. 1, April 2005
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Tt~x,t !5ES
1

2 Fp

L (
n51

`

yn~ t !n cosS npx

L D G2

5ES
p2

4L2 (
m51

`

(
n51

`

ym~ t !yn~ t !mn

3FcosS m1n

L
pxD1cosS m2n

L
pxD G . ~A4!

The Laplace transform of the time domain impulse
sponsejd,k(t) in Eq. ~14c! of a longitudinal modek is

L$jd,k~ t !%5
2

Lm

1

s21~2/tk8!s11/tk8
214p2f k8

2 , ~A5!

from which the low frequency response (s→0 for f ! f k8) of
the resonator can be approximated as

jk~ t !'
2L

ESk2p2 F t→ l,k~ t !, ~A6!

which was obtained by writingf k85kAES/m/(2L) and as-
suming 1/tk8! f k8 . The shape of the dashed lines in Figs. 2~a!
and ~b! confirms that the longitudinal modes have const
gain at low frequencies. Note that this point of the derivati
relates to neglecting the inertial effects, i.e., assum
m(]2j/]x2)50 in Eq. ~6!. ~See also Refs. 8 and 9.!

In this case, the component that comes from the lon
tudinal motion is expressed as

T1~x,t !5ES
p

L (
k51

`

jk~ t !k cosS kpx

L D
52

2

p (
k51

`
1

k
@F t→ l ,k~ t !1

1F t→ l,k~ t !2#cosS kpx

L D . ~A7!

Calculating the excitation forceF t→ l,k(t)5F t→ l,k(t)
1

1F t→ l,k(t)
2 with the help of Eqs.~15a! and~15b! and elimi-

natingk by substitutingm1n5k and um2nu5k gives

T1~x,t !52ES
p2

4L2 (
m51

`

(
n51

`

ym~ t !yn~ t !mncosS m1n

L
pxD

2ES
p2

4L2 (
m51

`

(
n51
nÞm

`

ym~ t !yn~ t !mncosS m2n

L
pxD ,

~A8!

wherenÞm in the second term comes from the fact that t
longitudinal mode numberk5um2nu cannot be zero. Note
that there is no such constraint for the first term ask5m
1n in that case.

If Eqs. ~A4! and ~A8! are substituted into Eq.~A3!, all
the terms cancel out, except some withm5n giving

T~x,t !5T01ES
p2

4L2 (
n51

`

yn
2~ t !2n2 cosS n2n

L
pxD ,

~A9!
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which is the same as Eq.~A2! obtained by assuming uniform
tension along the string. Note that the uniform tension
proximation does not lead to zero longitudinal displaceme
On the contrary, the string elements move in the longitudi
direction in a way that the tension remains uniform along
string. Actually, the tension could not be uniform witho
longitudinal motion.

The assumption leading to Eq.~A9! is that all the lon-
gitudinal modes are excited by frequencies that are con
erably smaller than the corresponding longitudinal mo
frequencyf k8 . Thus, the validity of the uniform tension ap
proximation should be evaluated by comparingf k8 with the
excitation frequencies calculated by Eq.~16! for eachk. Hav-
ing small order transverse vibrations in comparison to
ratio of longitudinal and transverse propagation speeds~see,
e.g., Ref. 8! is a sufficient, but not a necessary, condition
the applicability of the uniform tension approximation.

As a special case, if the transverse vibration conta
only one mode, the uniform tension approximation can
applied. This is because the transverse moden excites longi-
tudinal modek52n, for which Eq.~A6! holds. Note that this
is true for all the transverse modes, and not only for the fi
few. However, when all the transverse partials are presen
to a mode numberN the assumption of the uniform tensio
can be applied only if the transverse vibration does not c
tain significant components around and abovef 08/2 ~where
f 085 f 18 is the fundamental frequency of the longitudin
modal series!. This is because the excitation forceF t→1,k(t)
has approximately double the bandwidth compared to
bandwidth of the transverse vibration.

It is important to note that the behavior of the longit
dinal vibration changes qualitatively as a function of t
transverse modes present on the string. It is an interes
field of future research to evaluate the coupling of transve
modes and the properties of nonplanar string vibrations
the case of realistic transverse components, i.e., when
uniform tension approximation cannot be applied. T
would answer the question whether the theoretical and
perimental results presented for the first few modes of tra
verse vibrations7–11 can be applied for the qualitative de
scription of the phenomenon in the case of string
instruments where dozens of transverse partials are ge
ated.
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