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Abstract

In this paper a novel modeling method is presented
for beating and two-stage decay. Here, one digital waveg-
uide is used for each note and some resonators are run in
parallel to simulate the beating and two-stage decay of
those partials, where these phenomena are most promi-
nent. The resonator bank is implemented by using the
multi-rate approach, resulting in a decrease of computa-
tional cost by a factor of 10. By taking the advantage
of the characteristics of the resonators, relatively simple
upsampling and downsampling filters are used. Two dif-
ferent filtering approaches are presented and compared
with respect to computational complexity. Examples are
shown with the application to piano sound synthesis.

1 Introduction

Physics based synthesis of string instruments has been
an active field in the recent years. The digital waveguide
[1] has proven to be the most efficient tool for this pur-
pose. The method originates from the discretization of
the traveling-wave solution of the one-dimensional wave
equation. The losses and the dispersion of the string
are lumped to one termination of the string. Hence, the
model reduces to a delay line and a filter in a feedback
loop.

In struck or plucked string instruments, beating and
two-stage decay appear in the sound [2]. The two-stage
decay means that in the early part of the tone the decay
rate is higher than in the latter. Beating refers to an am-
plitude modulation, which is superimposed on the expo-
nential decay. Already the interaction of the vertical and
horizontal polarizations of the string vibration produces
such an effect. This is even more important in the case
of the piano, where two or three strings may belong to
one key. Informal listening tests show that the accurate
modeling of beating and two-stage decay increases the
quality of synthesized piano sounds significantly.

The present paper first describes the properties of the
earlier techniques proposed for the simulation of beat-
ing and two-stage decay. Then the idea of the resonator
bank is outlined. In the next sections, two alternative
methods are presented for increasing the efficiency of the
resonator bank by the multi-rate approach. Comparison

of these methods conclude the paper.

2 Parallel waveguides

The digital waveguide is capable to generate a set of
quasi-harmonic exponentially decaying sinusoids. There-
fore, the basic structure of the digital waveguide has to
be extended to be able to model beating and two-stage
decay. For that, several methods have been proposed
in the literature, based on running two coupled digital
waveguides in parallel.

The simplest way is the use of constant coupling co-
efficients [3], or a simple coupling filter [4]. Unfortu-
nately, these methods are unable to accurately capture
the evolution of the partials. No algorithm exists for
designing high-order coupling filters, which could en-
able precise modeling in the time domain. Maintain-
ing the stability of such systems is not an easy issue
either. When the coupled digital waveguides are im-
plemented in the frequency domain [5], the partial en-
velopes are rendered precisely, but the algorithm is not
suitable for real-time implementation. In general, the
existing physics-based sound synthesis methods are not
able to accurately model beating and two-stage decay at
a low computational cost.

3 Resonator bank

In the resonator bank method [6] the beating and
two-stage decay is modeled by using one digital waveg-
uide as a basic string model and connecting some res-
onators in parallel, instead of using a second digital wave-
guide. The excitation signal is common for the digital
waveguide and the resonators.

The idea comes from the fact that when two slightly
mistuned strings with one polarization are coupled, their
behavior can be described by a set of mode-pairs [2].
This means that every partial corresponds to two expo-
nentially damping sinusoids with slightly different fre-
quencies, different decay times, initial phases and ampli-
tudes. One sinusoid of the mode-pair is now simulated
by one partial of the digital waveguide and the other si-
nusoid by a second-order resonator. The transfer func-
tionsRk(z) of the second-order resonators are computed



as follows:

Rk(z) =
Re{ak} −Re{akpk}z−1

1− 2Re{pk}z−1 + |pk|2z−2

ak = Akejϕk pk = e
j

2πfk
fs

− 1
fsτk (1)

whereAk, ϕk, fk, andτk refer to the initial amplitude,
initial phase, frequency and decay time parameters of the
kth resonator, respectively. The overline stands for com-
plex conjugation, theRe sign for taking the real part of
a complex variable, andfs is the sampling frequency.

The efficiency of this structure comes from the fact
that only those partials for which the beating and two-
stage decay are prominent, are simulated precisely. For
the rest of the partials, no resonators are used, they will
have simple exponential decay determined by the dig-
ital waveguide. By using about five or ten resonators,
perceptually adequate results can be achieved. In this
case, the digital waveguide is responsible for the gen-
eration of the rich harmonic content, and the resonator
bank accounts for the precise modeling of specific par-
tial envelopes. The parameter estimation compared to
the coupled waveguides gets simpler, since there is no
need for coupling filter design. The stability problems of
a coupled system are also avoided. Moreover, here the
accuracy of the simulation can be varied by changing the
number of the resonators. This way, the synthesis engine
is able to use all of its resources under all conditions dur-
ing playing.

4 The multi-rate approach

Although the resonator bank method presented in [6]
was successfully applied for the synthesis of piano sound
and provided an alternative to the methods based on a
parallel waveguide, it was not superior to the earlier meth-
ods with respect to computational cost. As an example,
10 resonators corresponded to 50 multiplications and ad-
ditions.

Here a multi-rate approach is presented to reduce the
computational complexity of the resonator bank. It has
turned out that using parallel resonators for the lowest
partials gives good sonic results. In most of the cases the
resonators could run at the 1/4, 1/8, 1/16, or 1/32 of the
Nyquist rate. This enables modeling beating and two-
stage decay at a negligible amount of extra computation
compared to a basic string model with one digital waveg-
uide. In this section, two slightly different approaches
are presented for the implementation of the multi-rate
system, both taking advantage of the specific character-
istics of the problem.

4.1 The regular way (MR1)

Here, first the force signal coming from the hammer
model is downsampled, filtered by the second-order res-
onators, and then upsampled to the original sampling
rate. Since for one note resonators with different sam-
pling rates are used, it is beneficial to implement the

Figure 1: The multi-rate parallel resonator bank.

multi-rate system by cascading half band downsampling
and upsampling filters. This also simplifies the filter de-
sign. This structure is shown in Figure 1. The sign
↓2 refers to the downsampling operation with prior fil-
tering, and the sign↑2 stands for upsampling operation
with an interpolation filter. For simplicity, Fig. 1 shows
only one resonator at every downsampled sampling rate,
but in practice, many resonators are connected in parallel
within the same branch.

In the filter design, we can take the advantage that
the downsampled signal is imposed to filtering by a sec-
ond order resonator, which has a very narrow amplitude
response. This means that a small aliasing after down-
sampling is acceptable, since that leads only to a change
in the initial amplitude and phase of the resonators. Hav-
ing 20 dB stopband attenuation has to be found enough
in practice. The upsampling filters cannot be simplified
this way, there 60 dB stopband attenuation is needed to
avoid audible aliasing. On the other hand, the signals
of lower sampling rate of all the notes can be summed
before upsampling, therefore the same interpolation fil-
ters can be used for all the notes. The filter design can be
further simplified by having less tight specification in the
passband. This can be done because the amplitude and
phase errors of the downsampling and upsampling filters
can be corrected by changing the initial amplitudes and
phases of the resonators (See Section 5).

Figure 2 (a) shows an example of a resonator output
for a C4 piano note, first partial (262 Hz). The dashed
line refers to the signal of a single-rate resonator as a
reference (fs = 44.1 kHz) and the solid line shows the
output of the multi-rate system. The downsampling fac-
tor was 64 (f ′s = fs/64), the downsampling and up-
sampling filters had a passband of 0≤ ϑ ≤ 0.45π, a
stopband of 0.55π ≤ ϑ ≤ π, and an order of 9 and 26,
respectively. Their passband ripple was about 5 dB. For
simplicity, linear-phase FIR filters were used and they
were designed by using theremez algorithm of MAT-
LAB [7]. It can be seen that the signals match quite well.
The latency with the multi-rate approach is about 25 ms,
which can be considered inaudible. Note that by using
minimum-phase downsampling and upsampling filters
this delay could be shortened by a significant amount.
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Figure 2: (a) Output of a multi-rate resonator computed
by using downsampling and upsampling filters (MR1),
and (b) by using upsampling filters only (MR2). The
desired output is plotted with dashed line in both cases.

4.2 Skipping the dowsampling filters (MR2)

With the approach presented in the previous subsec-
tion, the complexity in terms of computations are consid-
erably decreased compared to the single-rate approach
(See Table 1). On the contrary, having separate down-
sampling filters for every note increases the overall com-
plexity of the system. This can be avoided by using no
downsampling filters at all. The system is the same of
Fig. 1, but the↓2 signs refer to downsampling operation
without a prior filtering.

The idea is motivated by the fact that the force signal
of the hammer-string interaction is of a lowpass char-
acter [8]. This is also true for the excitation signal of
other string instruments. After downsampling, the alias-
ing is significant only in the higher frequency region of
the downsampled signal. If the resonators are present
only in the lower half of the downsampled frequency
band, aliasing can be avoided. The upsampling filters
will have a passband of 0≤ ϑ ≤ 0.25π and a stop-
band of 0.75π ≤ ϑ ≤ π with 60 dB stopband rejection.
This specification can be met by already a 6th order FIR
filter. However, for extremely low sampling rates, using
the half of the band could still lead to aliasing. As a rule
of thumb, in the case offs = 44.1 kHz, not going un-
der a downsampling factor of 16 (f ′s = fs/16) always
avoided this problem.

Figure 2 (b) shows the output of the multi-rate res-
onators by using the second method (MR2), with the
same resonator parameters as for Fig. 2 (a). The down-
sampling factor was 16 (f ′s = fs/16) in this case. It can
be seen that the amplitude of the sinusoid is almost as
desired, and the long delay of Fig. 2 (a) is also avoided.

The first five partial envelopes of a synthesizedC4

(262 Hz) piano note are depicted in Fig. 3. The exam-
ple was generated by using the multi-rate resonator bank
without downsampling filters (MR2).
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Figure 3: Partial envelopes of synthesizedC4 piano note,
generated by using the method MR2.

5 Parameter estimation

The parameters of the resonators are determined by
first removing the general exponential decay of the par-
tial envelopes and then fitting an exponentially decaying
or growing sinusoid on this deviation. See [9] for de-
tails. As an alternative, a technique based on standard
filter design tools could be also used [5].

After having the resonator parameters computed, their
initial phase and amplitude parameters have to be changed
in order to correct the errors of the downsampling and
upsampling filters. The total transfer function errorEk

of the filters for the kth resonator is computed as follows:

Ek =
N∏

i=1

Hdn

(
2πfr2i−1

fs

)
Hup

(
2πfr2i−1

fs

)
(2)

whereHdn(ϑ) andHup(ϑ) are the transfer functions of
the downsampling and upsampling filters, and they are
computed by substitutingz = ejϑ. The downsampling
factor is 2N , i.e.,f ′s = fs/2N . In the case of the method
of Subsection 4.2, where no downsampling filters are
used, the formula is computed by settingHdn(ϑ) = 1.
The amplitudeAk and phaseϕk parameters of the res-
onators are then modified to correct the error ofEk, and
their transfer function is calculated by Eq. (1).

Note that when using linear-phase downsampling and
upsampling filters, their phase delay differences could
be compensated by inserting delay lines into the differ-
ent branches of Fig. 1. However, this solution would not
lead to better sound quality, meanwhile it would increase
the complexity of the system.

5.1 Comparison

The two approaches for implementing the multi-rate
resonator bank of Section 4 are compared together with
the single resonator bank with respect to computational
complexity. As a rough measure, Table 1 shows the num-
ber of multiplications needed for each method for com-
puting one sample for three different notes. The number



of additions are of the same order. The resonators corre-
spond to the lowest 10, 5, or 3 partials of every note. The
upsampling filters are not taken into account, since they
are common for all the notes. The numbers are com-
puted assuming normal filtering operations. Polyphase
implementation of the downsampling filters would lead
to slightly different results.

Table 1: Number of multiplications for the single-rate
model (SR), and for the multi-rate approach with (MR1)
and without (MR2) downsampling filters.

SR MR1 MR2
NoteC2 (65 Hz), 10 reson. 50.0 3.6 3.4
NoteC4 (262 Hz), 5 reson. 25.0 6.1 3.1
NoteC6 (1050 Hz) 3 reson. 15.0 8.7 4.3

As it can be seen in Table 1, the approach MR2 of
Subsection 4.2 without downsampling needs somewhat
less multiplication than the method MR1 of Subsection
4.1. The resonators of MR2 use only the half of the
downsampled frequency band, thus they run at a double
sampling rate compared to the corresponding resonators
of MR1. This increases the number of computations,
but the saving by removing the downsampling filters is
larger. Moreover, removing the downsampling filters
help to keep the implementation simple. Mostly because
of the latter reason, the author suggests the use of the
method MR2 of Subsection 4.2. By doing so, the only
difference from the single-rate model is that the code of
the resonators run only in every 2nd, 4th, 8th, or 16th

cycle.

6 Conclusion

Previously, methods based on two parallel waveg-
uides were used for beating and two-stage decay sim-
ulation. Their advantage is that they convey a physical
meaning. On the other hand, they suffer from parameter
estimation problems, since the design of the coupling fil-
ter is not trivial. Moreover, special care has to be taken
to assure the stability of such systems.

In the resonator bank approach the physical proper-
ties of the coupling remain hidden, since the amplitude
envelopes of the different partials are controlled sepa-
rately. Its advantage is that the accuracy of the simula-
tion can be controlled in a flexible way. The parameter
estimation of such a system is robust and simple.

Two alternative methods were presented for increas-
ing the efficiency of the resonator bank by the multi-rate
approach. For the downsampling and upsampling, low-
order decimation and interpolation filters are used and
their passband errors are corrected by changing the pa-
rameters of the resonators. By comparing the two meth-
ods, it has been shown that using only the half of the fre-
quency band and removing the downsampling filters can
lead to smaller number of computations. By taking this
approach, the general complexity of the system (code)

compared to the single-rate resonator bank is increased
by a negligible amount, while the number of computa-
tions are reduced by about a factor of 10. This enables
the precise modeling of beating and two-stage decay of
string tones at low computational cost.

As for future work, perceptual studies would be of
great help in determining how many resonators should be
used and whether the sound quality could be improved
by implementing more complex models, e.g., by using
more then one resonator per partial.
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