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Abstract

Real-time sound synthesis by physical modeling re-
quires accurate design of each model block, together with
special care on efficiency, computability, complexity is-
sues. This paper review the case of the piano: implemen-
tation of the complete model is discussed, from the sound
generation mechanism to radiation issues and coupling-
pedal effects. Several design techniques are discussed and
compared with focus on accuracy and efficiency issues.

1 Introduction

Sounds produced by acoustic musical instruments are
ultimately caused by the physical vibrations of mechani-
cal resonators or air volumes. These can be described at a
signallevel, where only the time-evolution of the acoustic
pressure is considered and no assumptions on the gener-
ation mechanism are made; alternatively,sourcemodels
can be developed, that are based on a physical descrip-
tions of the sound production processes [1, 2]. Such an
approach can be useful both for gaining a better insight
in the functioning of the instruments and for designing
sound synthesis algorithms; however, while complicated
and accurate models have to be used for understanding
physical phenomena, efficient sound synthesis calls for
fast algorithms. Therefore a trade-off between accuracy
and simplicity of the description has always to be found.

Physics-based synthesis algorithms providesemantic
sound representations, since the control parameters have a
straightforward physical interpretation in terms of masses,
springs, dimensions and so on. Thus, modification of the
parameters leads in general to meaningful results, and can
help the user in interacting with the virtual instrument. In-
deed, source models of sounding objects (not necessarily
musical instruments) are nowadays gaining popularity in
the multimedia community, due to their potential applica-
tions in human-computer interaction and the easiness in
synchronizing audio and visual synthesis [3].

In this paper we review some of the strategies and al-
gorithms of physical modeling, with special reference to
piano simulation. This is a particularly interesting instru-
ment, both for its prominence in western music and for
the complexity of its functioning [4]. The models de-
scribed here are all based on digital waveguides, since

these have been found to be the most appropriate for real-
time applications [5, 6]. As early as 1987, Garnett [7]
presented a physical waveguide piano model. There a
semi-physical lumped hammer model is connected to the
waveguide string, which incorporates allpass filters for
simulating dispersion and first order FIR filters for mod-
eling losses. The bridge is treated as a common termina-
tion, where all the strings are connected. The soundboard
is modeled by a set of waveguides, all connected to the
same termination. The only imperfection here lies in the
hammer model, since hammer velocity cannot be mapped
to sound in a physical way. However, as we shall see in
the next sections, the main ideas on string and soundboard
modeling remained almost the same up to present days.

In 1995, Van Duyne and Smith presented a model based
on commuted synthesis [8]; in this approach, a waveguide
string model is fed using an excitation table; moreover,
the radiation properties of the soundboard iscommuted,
i.e. its response is included in the excitation table. Al-
though extremely efficient, commuted synthesis has some
drawbacks, namely dynamic behavior in response to the
player’s action is difficult to tune: for instance, repeated
strikes on a vibrating string are not easily modeled.

In order to account for more realistic behavior, a fully
physical description of the excitation mechanism has to
be developed. Early results in hammer modeling were
obtained in 1990 by Borinet al. [9]. As part of a collab-
oration between the University of Padova and General-
music, Borinet al. [10] presented a complete real-time
model already in 1997; the hammer is treated as a lumped
model, where a mass is connected in parallel with a non-
linear spring that accounts for the felt compression char-
acteristics; the string is simulated with a waveguide struc-
ture, and coupling between strings and with the sound-
board are treated by connecting all the strings to a sin-
gle lumped load. This research produced a number of
byproducts, such as physically-based piano effects (pedal
and damper), as well as electro-mechanical piano models
implemented in commercial keyboards.

In 2000, Bank [11] introduced a similar physical model,
with the same functional blocks but with a somewhat dif-
ferent implementation. An alternative approach was used
for the solution of the hammer differential equation. in-
dependent string models were used without any coupling,
and the influence of the soundboard on decay times was
taken into account by high-order loss filters. Beating and



two-stage decay of the piano sound was modeled by using
a resonator bank in parallel with the basic string model.
The use of feedback delay networks was suggested for
simulating the effects of soundboard radiation.

The remaining of this paper addresses the design of
each element of a piano model (i.e. hammer, string and
soundboard). Discussion is carried on with particular em-
phasis to real-time applications, where the time complex-
ity of algorithms plays a key role. Perceptual issues are
also addressed, since a precise knowledge of what is sig-
nificant to the human ear can drive the degree of accuracy
of the design. Section 2 deals with general aspects of pi-
ano acoustics, and points out the most relevant features of
piano tones spectra. In Sec. 3 the hammer is discussed,
and efficient numerical techniques are presented that al-
low to overcome non-computability problem in the non-
linear discretized system. Section 4 is devoted to string
modeling and simulation of losses, dispersion and frac-
tional delays; dispersion is the most demanding problem
in terms of computation, and is discussed from both the
filter design and the perceptual viewpoints. Finally, Sec.
5 deals with the soundboard, which is to a large extent still
an open problem; diverse techniques for its simulation are
described and future directions in research are outlined.

2 General considerations

2.1 Spectral complexity

Piano sounds are the final product of a complex syn-
thesis process, involving all the instrument body. As a re-
sult of this complexity, each piano note exhibits its unique
sound features and nuances, especially in high quality in-
struments. Moreover, just varying the impact force on a
single key allows the player to explore a rich dynamic
space. For these reasons, many cheap solutions which
were adopted in the earlier electronic pianos inevitably
resulted in poor sound quality, due to low hardware ca-
pabilities (e.g. groups through resampling of one single
prototype note or dynamics through changes in loudness).

This uniqueness is highlighted even looking at steady-
state spectral analysis of different piano sounds [12]. As
an example, Fig. 1 shows steady-state spectra of two
notes,C2 and C6 respectively, recorded in an anechoic
chamber from a Steinway C Grand piano. Each plot
presents spectra generated from (above) afortissimo(ff )
note and (below) apianissimo(pp) note. The spectra of
theppnotes have been lowered of 30 dB to avoid superpo-
sition with theff plots. In the case of theC2 note it can be
seen that, apart from the different loudness, theff has an
audible spectral content up to6 kHz, whereas the compo-
nents of theppnote become negligible over3 kHz. In any
case, substantial differences in the spectra start from800
Hz, suggesting the presence of important non-linear ef-
fects happening when a piano note varies in its dynamic.
The case of theC6 note is even more interesting. The
presence of the above-mentioned effects originates four
new steady-state spectral components in theff.

10
1

10
2

10
3

10
4

−80

−60

−40

−20

0

20

40

60
C2

Frequency (Hz)

G
ai

n 
(d

B
)

(a)

10
1

10
2

10
3

10
4

−80

−60

−40

−20

0

20

40

60
C6

Frequency (Hz)

G
ai

n 
(d

B
)

(b)

Figure 1: Spectra generated from (above) afortissimo(ff )
note and (below) apianissimo(pp) note; (a)C2 string and
(b) C6 string.

These examples are far from describing the whole com-
plexity of variations occurring during a change in the note
or in the dynamic. For instance, the initial transients are
not accounted by a steady-state spectral analysis. Nev-
ertheless, they give an idea of the complex results of the
sound synthesis process in the piano, and how difficult
is understanding which sound feature is caused by what.
Accounting for such dynamic variations in a wavetable
electronic piano is not trivial: dynamic post-processing
filters can be designed, that shape the spectrum accord-
ing to key velocity, but finding a satisfactory mapping
from velocity to filter response in far from being an easy
task. Alternatively, a physical model can be developed,
that mimics as closely as possible the acoustics of the in-
strument; this is the topic of the next sections.

2.2 Acoustics and model structure

The general structure of the piano is the following: an
iron frame is attached to the upper part of the wooden
case and the strings are extended upon this in a direc-
tion nearly perpendicular to the keyboard. That end of
the string which is closer to the keyboard is connected to
the tuning pins on the bin block, and the other end, after
crossing the bridge, is attached to the hitch-pin rail of the
frame. The bridge is a thin wooden bar transmitting the



(a)

(b)

Figure 2: General structures; (a) schematic representation
of the instrument; (b) model structure.

vibration of the string to the soundboard, which can be
found under the frame. This is displayed in Fig. 2(a).

According to the above-mentioned parts, the sound-
production mechanism of the piano can be divided into
three steps. The first is the excitation, the hammer strike.
The kinetic energy taken in by the player is transformed
to kinetic energy of the hammer, which hits the string and
transforms it to vibrational energy. This is stored by the
string in its normal modes; some is dissipated due to inter-
nal losses, the remaining gets to the soundboard through
the bridge. The soundboard converts the vibrational en-
ergy to acoustical energy, the audible sound. The complex
spectra depicted in Fig. 1 are the result of this process.

Since the physical modeling approach tries to simulate
the structure of the instrument and not the sound itself,
the blocks in the piano model resemble the parts of a real
piano. The structure is displayed in Fig. 2(b). The first
model block is the excitation, the hammer strike. Its out-
put propagates to the string, which determines the funda-
mental frequency of the tone. The quasi-periodic output
signal is filtered through a post-processing block, cover-
ing the radiation effects of the soundboard. Figure 2(b)
shows that the hammer-string interaction is bidirectional,
since the hammer force depends on the string displace-
ment [4]. On the other hand, there is no feedback from
the radiator to the string. Feedback and coupling effects
of the bridge and the soundboard are taken into account
in the string block. Thus, at this point the model differs
from the real piano: the two functions of the soundboard,
namely the determination of decay times and the spec-
trum shaping, are put to separate parts of the model. This
allows to treat radiation as a linear filtering operation.

3 The hammer

We first discuss physical aspects of hammer-string
interaction, then concentrate on various modeling ap-
proaches and focus on accuracy and efficiency issues.

3.1 Hammer-string interaction

It is well known that the force-compression characteris-
tics of a hammer felt is not described by the linear Hooke’s

law, i.e. the restoring forcef(x) is not simply propor-
tional to the compressionx. As a first approximation, a
power law can be assumed:

y(x(t)) = f(x(t)) = kx(t)p. (1)

It has been shown (see e.g. [13]) that Eq. (1) provides
a qualitative description for real hammers withp-values
ranging from∼ 2 to ∼ 4. Due to this non-linearity, the
tone spectrum varies dynamically with hammer velocity.

However, Eq. (1) is not fully satisfactory in that real pi-
ano hammers exhibit hysteretic behavior, i.e. a one-to-one
law between compression and force does not adequately
describe reality. Boutillon [14] proposed a model where
non-constant values of the exponentp account for differ-
ent paths during loading and unloading of the felt; how-
ever this non-analytical model has no strong physical ba-
sis. A more general description of hysterisis was provided
by Stulov [15]; the idea, coming from the general theory
of mechanics of solids, is that the spring stiffnessk in Eq.
(1) has to be replaced by a time-dependent operator. Thus
the contact force for positive compressions takes the form

y(x(t)) = f(x(t)) = k[1− hr(t)] ∗ [x(t)p], (2)

wherehr(t) = ε
τ e−t/τ is a relaxation functionthat con-

trols the “memory” of the material. The Stulov model
is successful in fitting experimental data where a ham-
mer strikes a massive surface, and force, acceleration,
displacement signal are recorded. However, recent re-
search by Giordano and Mills [16] has investigated differ-
ent experimental settings, where a hammer hits a vibrating
string, and showed that the Stulov model is not able to fit
the data collected from such an experiment. These results
suggest the need for further investigations on alternative
hammer models; one example is given by the collision
model developed by Marhefka and Orin in [17].

3.2 Modeling approaches

As already mentioned in the Introduction, one way to
account for hammer excitation is commuted synthesis [8]:
in this approach the hammer is a linear filter and an exci-
tation signal is simply provided to the string.

Alternatively, the models described in the previous sec-
tion can be discretized and coupled to the string model,
in order to provide a full physical description. It is easily
seen that whichever method we use in order to translate
the hammer equations (1) or (2) in discrete-time form, we
obtain the structure depicted in Fig. 3(a), whereL is a lin-
ear block,u collects inputs to the hammer model andyE

stands for the outputs. This results in an implicit system
relating thenth sample of the force and thenth sample of
the felt compression [18]. This implicit relationship can
be made explicit by assuming thaty(n) ≈ y(n− 1), thus
inserting a fictitious delay element in a delay-free path.
Although this trick has been extensively used in the liter-
ature, it is a potential source of instability, as proved by
Anderson and Spong [19]. Figure 3(b) shows that the in-
sertion of a fictitious delay has severe consequences on the
simulation of high-pitched notes at audio sampling rates.



A more rigorous approach to the problem is provided
by the wave digital filter (WDF) theory; this can be gen-
eralized in order to provide a systematic methodology for
modeling circuits (and mechanical systems) in which a
non-linear element is present [20]. This approach was
taken by Pedersiniet al. [21], where a mechanical model
of the hammer was connected to a WDF string model in-
corporating stiffness and distributed losses. Van Duyne
and Smith [22] presented a distributed hammer model,
connected to the waveguide by a scattering junction.

A rather general strategy for solving non-computable
loops, named K method, has been recently proposed by
Borin et al. [23]. We do not discuss details; suffice it to
say that, whichever the discretization method, the hammer
statex(n) := [x(n), ẋ(n)]T can be written as

x(n) = p(n) + Ky(n), (3)

wherep(n) is a computable vector (i.e. it is a linear com-
bination of past values ofu, y and x) and K is the K
matrix of the method. Substituting equation (3) in the
non-linear contact force and applying the implicit func-
tion theorem we can findf as a function ofp:

y = f (p + Ky) Kmeth.7−→ y = h(p). (4)

Thus, instantaneous dependencies across the non-linearity
are dropped. The functionh can be precomputed and
stored in a look-up table for efficient implementation. The
K method avoids artificial instabilities and allows to re-
produce a reliable force signal (see dashed line in Fig.
3(b)), and more natural sounds. In fact, the bumps in the
dashed line of Fig. 3(b) come from reflections from the
string ends, while spikes in the solid line are not physical
and are responsible for “buzzy” sounds. The K method
was recently used by Avanzini and Rocchesso [24] for
implementing the hysteretic hammer model by Marhe-
fka and Orin [17]; high accuracy in the simulations was
achieved at low computational costs.

Bank [25] presented a simpler, but less general method
for avoiding artifacts caused by the fictitious delay. The
idea is that instability can be avoided by increasing the
sampling rateFs. The discretized hammer model with
inserted delay is stable when the variables change only
a little in every temporal sampling interval, thus stability
can be always maintained by choosing a sufficiently large
Fs (if the corresponding continuous-time system was sta-
ble). WhenFs → ∞, the discrete system will behave as
the original differential equation. Increasing the sampling
rate of the whole string model by a factor of two would
double the computation time as well. Nevertheless, if only
the hammer model operates at a double rate, the com-
putational complexity is raised by a negligible amount.
Therefore, in the proposed solution the string operates at
normal, but the hammer runs at doubleFs. For the down-
sampling, simple averaging, and for the upsampling, lin-
ear interpolation is used. The multi-rate hammer has been
found to give well behaving force signals at a low compu-
tational cost.
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Figure 3: (a) Block scheme for a non-linear discrete-time
hammer model. (b) Time evolution off with Fs = 44.1
[kHz], v = 6 : 8 [m/s] (fortissimo). Dashed line: K
method solution. Solid line: insertion of fictitious delay
element.

4 The string

Many different approaches have been presented in the
literature for string modeling. Since we are consider-
ing techniques suitable for real-time applications, only
the digital waveguide [6] is considered here in detail.
This method is based on the time-domain solution of the
one-dimensional wave equation: the velocity distribution
v(x, t) can be seen as the sum of two traveling waves:

v(x, t) = v+(x− ct) + v−(x + ct) (5)

where in this casex denotes the spatial coordinate,t is
time, c is the propagation speed, andv+ andv− are the
traveling wave components.

Spatial and time-domain sampling of Eq. (5) results in
a simple delay-line representation. If the linearity and
time-invariance of the string is assumed, all the distributed
losses and dispersion can be consolidated to one end of the
digital waveguide [6]. In the case of one polarization of
a piano string, the system takes the form shown in Fig. 4,
whereM is the length of the string in spatial sampling
intervals, Min denotes the position of the force input,
andHrv

(z) refers to the reflection filter. This structure
is capable of generating a set of quasi-harmonic exponen-
tially decaying sinusoids. The phase response ofHrv (z),
together with the total delay line length are responsible
for controlling the frequencies of the partials. The decay
times of the partials are determined by the magnitude re-
sponse ofHrv

(z) and the total length of the delay line.



Figure 4: Digital waveguide model of a string with one
polarization.

For creating realistic sounds, accurate design of the re-
flection filter plays a key role. To simplify the design, it
is usually factored into three parts:Hrv

= −HlHdHfd,
whereHl accounts for the losses,Hd for the dispersion,
andHfd for fine-tuning the fundamental frequency. Using
allpass filtersHd for simulating dispersion ensures that
the decay times of the partials are controlled by the loss
filter Hl only. The slight phase difference caused by the
loss filter is negligible compared to the phase response
of the dispersion filter. This way, the loss filter and dis-
persion filter can be treated as orthogonal with respect to
design, as we do in the next two sections. Fine tuning of
the string is needed because only an integer phase delay
can be implemented with delay lines and this provides a
too rough discretization of the allowed fundamental fre-
quencies. Fractional delay can be incorporated in the dis-
persion filter design, of alternatively a separate fractional
delay filterHfd can be used in series with the delay line.
Jaffe and Smith [26, 5] suggested to use a first-order all-
pass filter for this purpose. V̈alimäki et al. [27] proposed
an implementation based on low-order Lagrange interpo-
lation filters. V̈alimäki [28] and Laaksoet al. [29] pro-
vided exhaustive overviews on this topic.

4.1 Loss filter design

First, the partial envelopes of the measured note has to
be calculated. This can be done by the Short Time Fourier
Transform [27] or by heterodyne filtering [30]. A robust
way of calculating decay times is fitting a line by linear
regression on the logarithm of the amplitude envelopes
[27]. The magnitude specificationgk for the loss filter
can be computed as follows:

gk =
∣∣∣Hl

(
ej

2πfk
Fs

)∣∣∣ = e
− k

fkτk (6)

wherefk andτk are the frequency and the decay time of
the kth partial, andFs is the sampling rate. Fitting a filter
to thegk coefficients is not trivial, since the error in the
decay times is a non-linear function of the filter magni-
tude error. If the magnitude response oversteps unity, the
digital waveguide loop becomes unstable. To overcome
this problem, V̈alimäki et al. [27, 30] suggested the use
of the one-pole loop filter, whose transfer function is:

H1p(z) = g
1 + a1

1 + a1z−1
(7)

The advantage of this filter is that stability constraints for
the waveguide loop are relatively simple, namelya1 < 0
and0 < g < 1. As for the design, V̈alimäki et al. [27, 30]
used a simple algorithm for minimizing the magnitude er-
ror in the mean squares sense. However, the overall decay
time of the synthesized tone did not always coincide with
the original one. Erkutet al. [31] suggested an iterative
optimization algorithm to overcome this problem.

As a general solution for loss filter design, Bank [11]
suggested to minimize the approximation error in the de-
cay time domain. This assures that the overall decay time
of the note is ensured together with the stability of the
feedback loop. Moreover, optimization with respect to
decay times is perceptually more meaningful than min-
imizing the error of the filter magnitude response. The
methods described hereafter are all based on this idea.

The approximate analytical formulas for the decay
timesτk of a digital waveguide with a one-pole filter (7)
were given by Bank [11]:

τk ≈
1

c1 + c3ϑ2
k

(8)

which is the same as for a string with the simplest fre-
quency dependent losses;c1 andc3 correspond to the first
and third order time derivatives of the wave equation:

c1 = f0(1− g)

c3 = −f0
a1

2(a1 + 1)2
(9)

wheref0 is the fundamental frequency andϑk is the dig-
ital frequency of the kth partial. Equation (8) shows that
the decay rateσk = 1/τk is a second order polynomial
of frequencyϑk with even order terms. This simplifies
the filter design, sincec1 andc3 are easily determined by
polynomial regression. A weighting function has to be
used to minimize the error with respecτk, and not to de-
cay rates. From thec1, c3 coefficients the parameters of
the one-pole loop filter are easily computed via Eq. (8).

For the precise rendering of the partial envelopes,
higher-order filters have to be used. However, comput-
ing analytical formulas for the decay times with high-
order filters is a difficult task. A two-step procedure was
suggested by Erkut [32]; in this case, a high-order poly-
nomial is fit to the decay rates, which contains even or-
der terms only. Then, a magnitude specification is calcu-
lated from the decay rate curve defined by the polynomial
and this magnitude response is used as a specification for
minimum-phase filter design. Another approach was pro-
posed by Bank [11], who suggested the transformation of
the specification. As the goal is to match the decay times,
the magnitude specificationgk is transformed in a form
gtr which approximatesτk, and a transformed filterHtr

is designed for the new specification by minimizingeLS :

eLS =
K∑

k=1

wk

(
Htr(ejϑk)− gk,tr

)2
, gk,tr =

1
1− gk

(10)
The loss filterHl(z) is then computed by the inverse
transformHl = 1 − 1/Htr. Both of these techniques



for high-order loss filter design have found to be robust in
practice. Comparing them is left for future work.

Borin et al. [10] have used a different approach for
modeling the decay time variations of the partials. In their
implementation, second order FIR filters are used as loss
filters. These are responsible for the general decay of the
note. The small variations of the decay times are modeled
by connecting all the notes to a same termination, which
is a complex filter with a high number of resonances. This
also enables the simulation of the pedal effect, since now
all the strings are coupled to each other (see Sec. 4.3). An
advantage of this method compared to high-order loop fil-
ters is the smaller computational complexity. On the other
hand, the partial envelopes of the different notes cannot be
controlled independently.

Although optimizing the loss filter with respect to de-
cay times has been found to give perceptually adequate
results, we remark that the loss filter design can be helped
via perceptual studies. The audibility of the decay-time
variations for the one-pole loss filter was studied by Tolo-
nen and J̈arvel̈ainen [33]. The study states that relatively
large deviations (between−25% and+40%) in the over-
all decay time of the note are not perceived by listeners.
Unfortunately, the results of the paper are not directly ap-
plicable for the design of high-order loss filters.

4.2 Dispersion simulation

Dispersion is due to stiffness, that cause piano strings to
behave differently from an ideal string obeying the wave
equation. If the dispersive correction term is small, its
first order effect is to increase the wave propagation speed
c(f) with frequency. This phenomenon cause the string
partials to become inharmonic: if the string parameters
are known, then the frequency of the kth stretched partial
can be computed as

fk = kf0

√
1 + Bk2, (11)

where the value of the inharmonicity coefficientB de-
pends on string parameters.

The problem of simulating dispersion in a waveguide
structure is equivalent to designing a filterHd(f) with flat
magnitude response and a non-linear phase response ac-
counting for the frequency dependent wave velocityc(f)
[6]. Van Duyne and Smith [34] proposed a very efficient
method for simulating dispersion by cascading equal first-
order allpass filters in the waveguide loop; however, the
constraint of using equal first order sections is too severe,
and does not allow accurate tuning of inharmonicity.

Rocchesso and Scalcon [35] proposed a design method
based on [36]. Starting from the desired phase response,
l points{fk}k=1...l are chosen on the frequency axis, cor-
responding to the points where the string partials should
lie; the filter order is chosen to ben < l. For each partial
k the method computes the quantities

βk = −1
2

(φpre(fk) + 2nπfk) , (12)
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Figure 5: Synthesis of dispersive filters for theC2 string
with three sixth-order filters; (a) percentage dispersion vs.
partial numbers and (b) deviation of partials.

whereφpre(f) is the prescribed allpass response. Then it
find the filter coefficientsaj by solving the system

n∑
j=1

aj sin(βk + 2jπfk) = − sin(βk), k = 1 . . . l

(13)
A Least-Squared Equation Error (LSEE) is used to solve
the overdetermined system (13). It was showed in [35]
that several tens of partials can be correctly positioned for
any piano key, with the allpass filter order not exceeding
20. Moreover, fine tuning of the string is automatically
taken into account in the design. Figure 5 plots results ob-
tained with three sixth-order filters. A vertical line shows
where the approximation in the LSEE method ends, while
the two bounds in Fig. 5(b) indicate the frequency JND
(Just Noticeable Difference). The steep dashed line is the
partial distribution in a non-dispersive string.

Since the computational load ofHd is heavy, it is im-
portant to find criteria that allows to optimize accuracy
and order of the filters with respect to human perception.
Rocchesso and Scalcon [37] studied the dependence of
the bandwith of perceived inharmonicity on the funda-
mental frequency, by performing listening tests with de-
caying piano tones; such a bandwidth is seen to increase
almost linearly on a logarithmic pitch scale. Järvel̈ainen
et al. [38] also found that inharmonicity is more easily
perceived at low frequencies, even when theB coefficient



for bass tones is lower than for treble tones. This is proba-
bly due to the fact that beats are used by listeners as a cue
for inharmonicity, and even lowB’s produce enough mis-
tuning in higher partials of low tones. This findings can
help in the allpass filter design procedures, though there
is still a number of issues that need further investigations.

As high-order dispersion filters are needed for model-
ing low notes, they increase the computational complexity
significantly. Bank [11] proposed a multi-rate approach to
overcome this problem. Since the lowest tones do not con-
tain significant energy in the high frequency region any-
way, it is worthwhile to run the lowest two or three oc-
taves of the piano at the half of the sampling rate of the
model. This will reduce the required computation in two
ways: one is that the whole digital waveguide loop has
to be computed for every second time instant only. The
other is the dispersion filter gets simpler, since the total
length of the digital waveguide diminishes by a factor of
two in terms of delay elements. The outputs of the low
notes are summed before upsampling, therefore only one
interpolation filter is required.

4.3 Coupled piano strings

Coupling between strings occurs at two different lev-
els: first of all, two or three slightly mistuned strings are
sounding together when a single piano key is depressed
(except for the lowest octave) and a complicated modu-
lation of the amplitudes is brought about. This results in
beating and two-stage decay, the first referring to an am-
plitude modulation overlaid on the overall tone decay, and
the latter meaning that tone decay is not exponential and
is faster in the beginning. These phenomena were studied
by Weinreich already in 1977 [39]. At a second level, the
presence of the bridge and the action of the soundboard
is known to originate important coupling effects even be-
tween different tones. In fact, the bridge–soundboard sys-
tem connects the strings together and acts as a distributed
driving-point impedance for string terminations.

The simplest way for modeling beating and two-stage
decay is to use two digital waveguides in parallel for a sin-
gle note. When their pitches are different, beating, when
their decay times are different, two-stage decay will ap-
pear in the sound. Karjalainenet al. [40] suggested the
use of real coupling coefficients. Nevertheless, the en-
velopes of specific partials cannot be controlled individu-
ally by this model, they will have similar behavior.

Another approach, taken by Smith [41], couples two
strings to the same termination and lumps all the losses to
the bridge impedance. This comes from the assumption
that all the losses come from the bridge, which is a rough
approximation. One advantage is that only one loss fil-
ter is needed, whose transfer function can be determined
from the decay times of the partials. The drawback is that
decay times and mode coupling are not independent.

Aramaki et al. [42] presented a model of coupled
waveguides with four filters. Two of them accounted for
the losses and dispersion of the strings and two for the
coupling. By this increased degree of freedom, the model

was able to accurately simulate the sound of two coupled
piano strings with one-polarization. However, the model
was implemented in the frequency domain, which makes
it unrealizable for real-time applications. For time do-
main implementation, high-order coupling filters should
be designed, and no such filter design methods exist which
guarantee the stability of such a coupled system.

In these proceedings, Bank [43] presents a different
model beating and two stage decay, based on a multi-rate
resonator bank. In this approach, second order resonators
are connected to the basic string model in parallel, in-
stead of using a second waveguide. The resonator bank
is implemented by the multi-rate approach, resulting in
significantly lower computational costs, compared to the
methods mentioned earlier. The parameter estimation gets
simpler, since there is no need for coupling filter design.
Stability problems of a coupled system are also avoided.

Modeling the coupling between strings of different
tones is essential when the sustain pedal effect has to be
simulated. Garnett [7] and Borinet al. [10] suggested
to connect the strings to the same lumped terminating
impedance. The impedance is modeled by a filter with
a high number of peaks, for that, the use of feedback de-
lay networks [44] is a good alternative. Although in real
pianos the bridge connects the string as a distributed ter-
mination, thus coupling different strings in different ways,
the simple model of Borinet al. was able to produce real-
istic sustain pedal effect [45].

5 The radiation problem

The soundboard radiates and filters the velocity waves
that reach the bridge, and radiation patterns are essential
for describing the “presence” of a piano in a musical con-
text. Modeling the soundboard as a linear post-processing
stage is intrinsically a weak approach, since in a real piano
it also accounts for coupling between strings, and affects
the decay times of the partials. However, as already stated
in Sec. 2, our modeling strategy keeps theradiationprop-
erties of the soundboard as separated from itsimpedance
properties. The latter are incorporated in the string model,
and have already been addressed in Sec. 4.1 and 4.3; here
we concentrate on radiation.

The most efficient approach for modeling the radiation
effect of the soundboard is the commuted piano model
of Van Duyne and Smith [8]. There, the soundboard is
commuted with the string and the hammer models. In
order to do this, the whole system must be assumed to
be linear, including the hammer. The advantage of the
method is that the soundboard is not implemented as a
high-order filter, but as a wavetable, whose content is fed
to the string. Since this approach cannot be used with
non-linear hammers, we do not consider it in detail.

Giordano [46] presented a finite difference piano
soundboard model. A similar model was developed by
Bazzi and Rocchesso [47]. This approach is physically
meaningful and allows simulation of many features of the
soundboard, e.g. the effect of ribs. On the other hand,
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Figure 6: Soundboard magnitude response obtained with
the CAP method.

solving the difference equations takes too much computa-
tions, and is not suitable for real-time applications.

Multidimensional Digital Waveguide Networks (N-D
DWN), first proposed in a particular case known as
Waveguide Mesh [48], can describe a wide variety of
propagation phenomena, and have straightforward trans-
lation to parallel algorithms. These structures were re-
cently adopted for modeling stringed instrument bodies
[49]. However, while they are successful in simulating vi-
brations in elastic media, they do not naturally fit in mod-
els of stiff bodies (as a piano soundboard). At the mo-
ment, we are not aware of a successful description of the
soundboard by means of a DWN.

Fontana [50] obtained accurate radiation spectral re-
sponses by extracting common spectral features from pre-
recorded piano samples in which the contribution of the
soundboard is present. The Common Acoustical Poles
(CAP) method by Hanedaet al. [51] allows to calculate
the coefficients of a FIR filter with a desired order, that
matches these common spectral features. The algorithm
must be fed using properly pre-processed data in order
to avoid any possible detection of common zeros or sin-
gularities by the algorithm that would translate into huge
peaks or dips. Figure 6 shows the magnitude response of
such a model, consisting of a126th-order FIR filter com-
puted with the CAP method. The algorithm was fed using
a collection of high-quality, anechoic piano samples, and
the response was limited to5 kHz. Although the impulse
response of this filter is not comparable with that (much
longer, and position-dependent) of a real soundboard, its
performance suggests that carefully designed linear post-
processors may be used in connection with proper rever-
beration stages and loudspeakers.

A simple and efficient radiation model was presented
by Garnett [7]. The waveguide strings were connected
to the same termination and the soundboard was simu-
lated by connecting six additional waveguides to the com-
mon termination. Each of these waveguides incorporated
a lowpass filter with a large damping factor. This can
be seen as a predecessor of using feedback delay net-

works for soundboard simulation. Feedback delay net-
works have been proven to be efficient in simulating room
reverberation, since they are able to produce high modal
density at a low computational cost. For an overview, see
the work of Rocchesso and Smith [44]. Bank [11] applied
feedback delay networks with shaping filters for the simu-
lation of piano soundboards. The shaping filters were set
in such a way that the system matched the overall mag-
nitude response of a real piano soundboard. A drawback
of the method is that the modal density and the quality
factors of the modes are not fully under control. Tun-
ing the parameters of the feedback delay network by hand
requires a significant amount of work and not always re-
sults in a satisfactory sound. The method has proven to be
rather applicable for high piano notes, where simulating
the attack noise (the knock) of the tone is the most impor-
tant issue. However, no satisfactory results are obtained
for the treble and bass registers.

6 Conclusions

We have reviewed the main stages in the development
of a physical model for the piano, addressing computa-
tional aspects in detail. We have showed that computa-
tional loads are due to both the presence of non-linearities
and the need of high-order filtering elements.

Various approaches have been discussed for dealing
with non-linear equations in the excitation block; we have
pointed out that inaccuracies at this stage can lead to se-
vere instability problems. Investigation of alternative non-
linear hammer models is an appealing topic for future re-
search. However, we emphasize that in our opinion us-
ing more accurate models would probably not increase the
overall sound quality substantially.

Several filter design techniques have been reviewed for
the accurate tuning of the resonating waveguide block.
Especially the dispersion filter has been shown to require
high orders for accurate simulation of inharmonicity. This
is why perceptual studies can be helpful in optimizing the
design and reducing computational loads.

We do believe that radiation modeling is at present the
most urgent topic to be addressed in order to step toward
high sound quality. None of the approaches presented in
Sec. 5 has so far provided satisfactory results; on the other
hand, when experimenting with large (e.g. 2000 tap) FIR
filters good results can be achieved. This suggests that
there is still room for improvements, even when radiation
is modeled as a linear filtering operation. The develop-
ment of parameter estimation for feedback delay networks
could be of significant help in deriving a satisfactory radi-
ation model at low computational costs.
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