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Abstract

In this paper signal-based and physics-based sound synthesis meth-
ods are described, with a particular emphasis on our own results
achieved in the recent years. The applications of these methods are
given in the case of organ, piano, and violin synthesis. The two tech-
niques are compared based on these case studies, showing that in some
cases the physics-based, in other cases the signal-based realization is
more advantageous. As a theoretical result, we show that the two
methods can be equivalent under special circumstances.
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1 Introduction

Musicians and music students – especially those playing organ, piano or other
large instruments – would require of having small size, economic and light
musical instruments for portable, stage or home applications. Composers
would like to try all kind of instruments they otherwise do not play for
searching new expressions. Thus, traditional instrument models are required
to satisfy these requirements. Naturally, the sound quality of these artificial
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instruments needs to be comparable to that of the original ones. By model-
ing traditional instruments (like guitar, piano, organ, strings, winds, brass,
etc.) and modifying the model parameters, novel, never-heard sounds can
be generated. In addition, with more insight and better description of the
physical operation of these instruments, new and efficient algorithms can be
developed from which other fields of digital signal processing can benefit.

Sound synthesis methods can be classified in many ways. Here we divide
them into three groups, by unifying two groups of the classifications found
in [1, 2].

The first group is the family of abstract methods. These are different al-
gorithms which can easily generate synthetic sounds. Methods like frequency
modulation [3] and waveshaping [4, 5] belong to this category. Modeling real
instruments with these methods is fairly complicated as the relationship be-
tween the parameters of the technique and those of the real instruments
cannot be easily formulated. Thus, these methods are beyond the scope of
this paper.

The second group (signal modeling) is the one which models the sound
of the musical instruments. In this case, the input to the model is only the
waveform or a set of waveforms generated by the instrument and the physics
of the sound generation mechanism is not examined in details. Synthesis
methods like PCM (Pulse Code Modulation) [6] and SMS (Spectral Mod-
eling Synthesis) [7] belong to this category. The corresponding groups in
the taxonomy of [1, 2] are processing of pre-recorded samples and spectral
models.

The third group (physical modeling) is the one which instead of reproduc-
ing a specific sound of an instrument, tries to model the instrument physical
behavior itself. Usually, the physical system (such as a string on an in-
strument or the skin of a drum) can be described with a set of difference
equations and transfer functions. Given the excitation of the instrument
(such as bowing the string or hit the drum), the difference equations can be
solved (or the general solution can be applied for the given input), and the
output of the model is expected to be close to the output of the real instru-
ment. One well-known method in this category is the waveguide synthesis
[8] which efficiently models the vibration of a one-dimensional string, based
on the solution of the wave-equation.

In this paper, the signal- and physical-model based synthesis methods
are examined, based on our own results achieved in the last years. In Sec. 2
an efficient signal model based synthesis method is introduced and applied
for modeling the sound of organ pipes. Then Sec. 3 describes an extended
digital-waveguide based physical model with the application to modeling the
sound of the piano and the violin. Finally, in Sec. 4, the equivalence of
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the two methods for a given excitation is proven, and detailed comparison
is given from the viewpoint of efficiency and applicability. The results are
summarized in Sec. 5.

2 Signal Modeling

Nowadays, the most commonly used signal model-based synthesis method is
the Pulse Code Modulation (PCM). The method simply samples the sound of
the instrument to be modeled and stores the samples in a digital memory. To
reduce the required memory for a waveform, usually the quasy-steady state
of the sound (after the transient) is stored as one period, and this period is
repeated continuously at playback. To be even more effective, usually not all
possible sound is sampled (e.g. all the 88 keys of a piano), but only a few,
and the missing waveforms are generated by resampling the stored ones.

It can be readily deducted from the above discussion that the PCM syn-
thesis technique has some limitations. One limitation is the lack of control-
lability. As the method simply plays back the wavetables, the musician does
not have the right tool to modify the characteristics of the sound. Other lim-
itation is the absence of random effects. Most instrument (especially bowed
string instruments and wind instruments) produce different transients at the
start of the sound and random effects exist also in the stationary state (typ-
ical the windnoise for wind instruments).

Thus, a signal model has to take into account all these effects. In the
following, first the organ and its characteristics from a signal modeling view-
point is described. Then a conceptual signal model and its application to the
sound synthesis of the organ pipe is introduced which is flexible enough to
model all the required parameters.

2.1 The Sound Characteristic of the Organ

The pipe-organ is one of the largest musical instruments. A small, efficient
and high fidelity instrument substituting the church organ is long awaited by
the organ players and students. Accordingly the organ is among the most
intensively studied instruments.

The sound generators of the organ are the flue and the reed pipes. As in
a real organ flue pipes are dominant (small organ does not even have reed
pipes), only the most important properties of the sound generated by the
flue pipes are examined in the following.

It is well known that a significant and also easy to measure part of a mu-
sical instrument’s sound is the stationary spectrum. Accordingly, the organ
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stops have also different characters, and the spectrum is strongly depending
on the pipes’ physical parameters [9].

However, only the synthesis of the main components of the spectrum is
not enough for a good-quality reproduction. The attack and decay transients
and the modulations on the harmonics, or other quasi-steady processes are
important part of a musical sound, too. Some examinations prove that with-
out the attack and decay transients some instrument cannot be identified
[10], and in some cases only the specific modulations of an instrument on a
sine wave are enough to recognize the instrument itself [11]. Hence, a good
synthesis has to implement both the transient and the quasi-steady processes.

Another important property of some musical instrument is the effect of
the ambience of the sound-source. The organ normally sounds in a church
or in a hall, far away from the listeners. Closer to the pipes (or without this
effect) the organpipe-sound sound unfamiliar without this reverberation [12].
Another external effect is the sometimes observable coupling mechanism of
two pipes [13]. The localization of the sound-sources (which originates from
the different positions of the pipes) falls also under this category [14].

2.2 Model Structure

The main concept of the proposed synthesis method is the periodic signal
model that has been already applied in several other technical applications
[15]. This model – a conceptual signal generator – is based on the Fourier-
expansion of the periodic signals. According to the sampling-theorem, such
a generator can generate a band-limited periodic signal, consisting of N com-
plex components. In sound synthesis it realizes directly the discrete spectrum
components of the instrument according to the previous discussion, and it is
usually referred to as additive synthesis [6].

In this concept the attack and decay transients have effect mainly on the
partials. During the transients, the adjustable parameters of each partial can
be the magnitude, the frequency and the relative phase. In this paper only
the amplitude-variation is examined, as this is the most relevant.

The organ pipes, as the most of the other wind instruments have a special
characteristic, the so-called wind-noise. In some stops, this is the component
which characterize the pipe, thus it needs to be modeled. The noise is a
wideband component of the sound, with a typical spectral shape (see in
Fig. 3). To integrate it into the signal model, the periodic generator has to
be completed with a special noise-generator. Naturally, during the transients
the envelope of the noise has to be changed as well.

The applied periodic signal model for sound synthesis is displayed in
Fig. 1. The periodic signal generator has two main parameters – the fun-
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Figure 1: The integrated signal model

damental frequency and the volume – and each harmonic component has
further parameters, the relative magnitude and the phase. The noise gener-
ator produces filtered white noise which is added to the magnitude-modified
outputs of the periodic generator. At the end the summarized output is
modified by the external effects discussed above.

2.3 Parameter Estimation

In order to determine the correct parameters of the signal model, original
pipe-sounds were recorded at a sampling rate of 44,100 Hz, with a resolution
of 16 bit. The records were processed off-line with MatLab, using a developed
analysis process that can be seen in Fig. 2.

First, by defining magnitude-limits the stationary and the transient parts
(the attack and the decay) were separated in the time-domain. From the sta-
tionary part the fundamental frequency and the magnitudes of the harmonic
components were calculated via the discrete Fourier transform (DFT).

A novelty of the introduced method (first proposed in [16]) is that for data
and computation-time reduction the attack and decay envelopes of the har-
monics are implemented as step-responses of IIR-filters. Using this method,
the ith harmonics at time step k can be computed as

yi,k = hi,kAi cos(2π(if0/fs)k + ϕi), (i = 1..N) (1)

where yi,k is the harmonic component, Ai and ϕi are the relative magnitude
and phase of the component, f0 and fs are the fundamental and the sampling
frequency, respectively, and hi,k represents the samples of the step-response
of the designed envelope-filter.
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Figure 2: The analysis process

The parameters of these envelope-filters were determined in the time-
domain. First, each harmonic component was filtered by a narrowband FIR
filter designed by means of the windowing design method [17]. The trade-off
between selectivity and filter length had to be balanced well in order not to
suppress the transient of the harmonics by the transient of the filter.

Then the envelopes of the harmonics were determined as the absolute
value of their analytical signal which is a complex signal originated from the
original signals and their Hilbert-transform. To get the best time-domain
result, the obtained envelopes were averaged, and a step-response of a 2nd
or 3rd order IIR filter was fitted on each of them. The algorithm used the
Prony’s IIR-filter design method as initial step, then for better curve-fitting
the Steiglitz-McBride iteration was used [18].

As mentioned previously, the spectrum of the organ pipe has also noise
component. The noise-filter was designed as follows: subtracting the discrete
components from the spectrum, 2nd order resonant filters were fitted to the
specific peaks in the averaged noise spectrum. They can be designed easily
having the center frequency, the gain level and the damping factor of the
separated peaks. The resulted analog filter consists of 6-10 2nd order res-
onators, and the filter was converted to digital one by means of the bilinear
transform [18].

The examined external effects were only the reverberation of the hall and
the location of the pipes. This latter one can be modeled by intensity and
time-delay stereo soundfield, while the reverberation can be simulated using
hall-simulators.
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2.4 Synthesis Results

The spectrum of two organ pipes and their models can be seen in Fig. 3. The
first one is a c4-pipe of a Bourdon register (closed, wood pipe), the second
is a Diapason e4-pipe, which is an opened organ-metal pipe. It can be seen
clearly that both the original and model Bourdon pipe have more noise, and
their odd harmonics have smaller magnitude, than those of the Diapason
pipes. Furthermore, the metal pipe and its model have much more relevant
components than the wood ones’. The modeling of the discrete spectrum is
very good, and the synthesis of the main characteristic of the noise spectrum
is also acceptable.

An example of the averaged original attack transients and the estimated
3rd order IIR filter step-responses can be seen in Fig. 4. The estimation
is good for the lower harmonics with good signal to noise ratio (SNR) (see
Fig. 3, Diapason pipe). The higher the order of the component, the smaller its
SNR, this is why the modeling worse for higher order components. Note that
their precise synthesis is not required accordingly to their small magnitude.

To examine the efficiency of the introduced synthesis method, it had been
implemented off-line using MatLab, and real-time on a 16 bit fixed-point
digital signal processor (DSP). Using these programs, some demonstrations
have been recorded. For comparison, original records are also available using
the measured organs. These original and synthesized samples are available
through the Internet, at [19].

3 Physical Modeling

3.1 Model Structure

Since the physical modeling approach simulates the structure of the instru-
ment, the parts of the model correspond to the parts of real instruments.
In every string instrument, the heart of the sound production mechanism is
the string itself. The string is excited by the excitation mechanism, which
corresponds to the hammer strike in the case of the piano, or to the bow in
the case of the violin. The string is responsible for the generation of the peri-
odic sound by storing this vibration energy in its normal modes. One part of
this energy dissipates and an other part is radiated to the air by the instru-
ment body. The body can be seen as an impedance transformer between the
string and the air, which increases the effectiveness of radiation significantly.
The body provides a terminating impedance to the string, therefore it also
influences the modal parameters of string vibration, i.e., partial frequencies,
amplitudes, and decay times.
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Figure 3: The stationary spectrum of two original pipes and their models
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lines), and the fitted step-responses (solid lines)
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Figure 5: Model structure.

The model structure is displayed in Fig. 5. It can be seen that the in-
teraction of the string and the excitation is bi-directional. This is because
the interaction force depends on the previous state of the string too, and not
only on the parameters of the excitation. This is taken into account by in-
troducing a feedback from the string to the excitation model. As mentioned
above, the body also influences the string vibration, so the interaction should
be bi-directional also in this case. However, in our model the effect of the
instrument body is split into two parts. The effect of providing a terminating
impedance to the string is taken into account in the string model itself. The
body model is responsible for the modeling of radiation properties. This way,
the body can be modeled as a straightforward structure without feedback.

3.2 String Modeling

The wave equation of the ideal string is based on several simplifications: the
length of the string is assumed to be infinite, its mass density µ and tension T
is supposed to be homogenous and its displacement to be small with respect
to string length, which means that its slope is very small (dy/dx � 1).
Furthermore, only one transversal polarization of the string is taken into
account. The result is the one-dimensional wave equation Eq. (2), which is
similar to that of transmission lines or the longitudinal motion of bars, see,
e.g., [20, 9].

∂2y

∂x2
=

1

c2

∂2y

∂t2
, c =

√
T

µ
, (2)

where x is the position along the string, y is the transversal displacement,
t stands for time, T for the tension, µ for linear mass density and c for the
wave velocity. The equation shows that the acceleration of a small section
of the string is proportional to the curvature of the string at that section.
This equation can be directly discretized with respect to time and space,
forming the algorithm called “finite differences” [21, 22]. The method has
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the advantage of being a purely physical approach, thus completely flexible
(e.g., the mass density µ can vary along the string), but this complexity is
not required for musical instrument modeling. For our purposes, a simpler,
thus computationally less demanding method should be used.

3.2.1 The Digital Waveguide

A very efficient technique has been presented for string modeling in [23, 8].
The digital waveguide modeling is based on the discretisation of the solution
of the wave equation, rather than the wave equation itself.

Every traveling wave which retains its shape is a solution of Eq. (2).
Coming from the linearity of the string, the general solution is a superposition
of two traveling waves; one of them going to the right, the other to the left
direction [20, 9]:

y(x, t) = f+(ct − x) + f−(ct + x) (3)

This equation holds for other wave variables (velocity, force, curvature) too.
The digital waveguide model of the ideal string is obtained by sampling
Eq. (3) temporally and spatially in a way that the two traveling waves move
one spatial sampling interval during one time-instant [8]:

y(tn, xm) = y+(n − m) + y−(n + m) (4)

This is implemented by two parallel delay lines, where the transversal dis-
placement of the string is calculated by adding up the output of the samples
of the two delay lines at the same spatial coordinate. This is illustrated in
Fig. 6.

The termination of the string can be modeled by connecting the two
delay lines at their endpoints. An ideally rigid termination corresponds to a
multiplication of −1, meaning that the traveling waves are reflected with a
sign change. In practice, the string is terminated by a frequency dependent
impedance, introducing losses to the string vibration. This is taken into
account by a digital filter Hr(z) at the end of the delay line. Moreover, the
distributed losses and dispersion of the string can also be approximated by
the lumped reflection filter Hr(z) [8]. Fig. 7 displays the digital waveguide
model in its physical form, where M represents the length of the string in
spatial sampling intervals, Min denotes the position of the force input, and
Hr(z) refers to the reflection filter.

In practice, the four delay line structure of Fig. 7 can be implemented
as one circular buffer, resulting in an extremely efficient realization. The
computational complexity of the method depends on the order of the reflec-
tion filter Hr(z), i.e., on the accuracy of the approximation of losses and
dispersion, rather than on the number of simulated partials.
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Figure 6: The principle of digital waveguide [23, 8].

Figure 7: The digital waveguide with consolidated losses and dispersion
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The impulse response of the digital waveguide is a quasi-periodic set of
exponentially decaying sinusoids, whose frequencies and decay times can be
controlled by the careful design of the reflection filter Hr(z).

3.2.2 Reflection Filter Design

In practice, the model parameters are estimated from recorded tones, since
that requires the measurement of one signal only. The partial frequencies pro-
duced by the digital waveguide of Fig. 7 are determined by the phase response
of the reflection filter Hr(z), together with the total length of the delay lines.
On the other hand, the decay times of the partials are influenced by the mag-
nitude response of the loss filter. Therefore, it is straightforward to split the
design process into three independent parts: Hr(z) = −Hl(z)Hd(z)Hfd(z),
where Hl(z) is the loss filter, Hd(z) is the dispersion filter, and the fractional
delay filter Hfd(z) is required for fine-tuning the fundamental frequency of
the string. Using allpass filters Hd(z) for simulating dispersion ensures that
the decay times of the partials are controlled by the loss filter Hl(z) only.
The phase response of the loss filter is negligible compared to that of the
dispersion filter. This way, the loss filter and the dispersion filter can be
designed separately. Obviously, the dispersion filter Hd(z) is implemented
for those instruments only, where the inharmonicity is audible. In practice,
this means that Hd(z) is required for piano modeling only.

The string needs to be fine tuned because delay lines can implement only
an integer delay and this provides too low a resolution for the fundamental
frequencies. Fine tuning can be incorporated in the dispersion filter design
or, alternatively, a separate fractional delay filter Hfd(z) can be used in series
with the delay line. In this study, we have used a first-order allpass filter for
this purpose. Other type of fractional delay filters could be also used, [24]
provides an exhaustive overview on their design.

Loss Filter Design

The role of the loss filter Hl(z) is to set the decay times of the paretials.
Therefore, the decay times of the recorded tone should be estimated, based
on the amplitude envelopes of the partials [25]. The partial envelopes can be
calculated as it is described in Sec. 2 about signal modeling. Alternatively,
heterodyne filtering [26] or sinusoidal peak tracking utilizing Short Time
Fourier Transform [25] could also be used. If the amplitude envelope of a
partial is plotted in a logarithmic amplitude scale, the nearly exponential
decay of the partial becomes approximately linear. Accordingly, the decay
time and initial amplitude parameters can be estimated by linear regression
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[25, 26].
The specification for the loss filter can be computed as follows:

gk =
∣∣Hl

(
ejϑk

)∣∣ = e
− k

fkτk , (5)

where τk is the decay time of partial k, fk is the frequency of partial k and
gk is the desired amplitude value of the loss filter at the angular frequency
ϑk. Fitting a filter to gk coefficients is not trivial, even if the phase part of
the transfer function is not considered. This is because of the special nature
of the loss filter: the error in the decay time is a nonlinear function of the
amplitude error. When the magnitude reponse of the loss filter exceeds unity,
the stability of the feedback loop is at risk.

Designing the loss filter with respect to magnitude error has been ex-
tensively used in the literature, although it cannot overcome the problems
mentioned above. The idea of optimizing the loss filter with respect to decay
times was suggested in [23]. We have also developed filter design algorithms
based on the decay-time error [27]. Decay-time based optimization assures
that the overall decay time of the note is preserved and the stability of the
feedback loop is maintained. This is because an unstable digital waveguide
corresponds to negative decay times. Moreover, optimization with respect to
decay times is perceptually more meaningful.

In [25, 26] a one-pole loss filter has been used for the syntheis of plucked
instrument tones. The transfer function of such a filter is:

H1p(z) = g
1 + a1

1 + a1z−1
(6)

where −a1 is the pole of the filter and g refers to the DC gain. In [25, 26]
such a filter was found to be adequate for simulating the acoustic guitar
and other plucked string instruments. A great advantage of using a one-pole
filter is that the stability of the waveguide loop can always be maintained
by setting a1 < 0 and g < 1. As for the design, [25, 26] used a simple
algorithm for minimizing the weighted magnitude error in the mean squares
sense. However, the overall decay time of the synthesized tone did not always
coincide with the original one.

We have developed a more robust method for one-pole loss filter design
[27]. The decay times of the partials produced by a digital waveguide with a
one-pole loss filter can be calculated from the g and a1 parameters of Eq. (6)
as follows:

τ =
1

σ
≈ 1

c1 + c3ϑ2
(7)

c1 = f0(1 − g)

c3 = −f0
a1

2(a1 + 1)2
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where ϑ is the angular frequency in radians, and f0 is the fundamental fre-
quency of the digital waveguide in Hz. It follows that from c1 and c3 coeffi-
cients g and a1 can be easily calculated via the inverse of Eq. (7).

The goal is to minimize the mean-square error of the decay times, since
that has been found to be a perceptually adequate criterion. The expression
of the error eτ is:

eτ =

K∑
k=1

(τ̂k − τk)
2 =

K∑
k=1

τ̂ 2
k τ 2

k

(
1

τ̂k
− 1

τk

)2

=

K∑
k=1

τ̂ 2
k τ 2

k (σ̂k − σk)
2 (8)

where σk = 1/τk are the prescribed, and σ̂k = 1/τ̂k are the approximated
decay rates.

It can be noted from Eq. (7) that the decay rate σ = 1/τ is a second-
order polynomial of ϑ. This means that its parameters c1 and c3 can be easily
computed by means of polynomial regression. The parameters g and a1 of
the one-pole filter are calculated by the inverse of Eq. (7).

In most of the cases, tones synthesized using a one-pole loss filter sound
realistic. However, the accuracy of the approximation can be increased by
using higher order filters for Hl(z). Computing analytical formulas for the
decay times with high-order filters is a difficult task. A two-step procedure
was suggested in [28].

We have presented a different approach [27], suggesting the transforma-
tion of the specification. Later, a simpler method was proposed for high-order
filter design based on a special weighting function [29]. The resulting decay
times of the digital waveguide are computed from the magnitude response
ĝk = |H(ejϑk)| of the loss filter by the inverse of Eq. (5):

τ̂k = d(ĝk) = −1/(f0 ln ĝk) (9)

If the function d(ĝk) is approximated by the first-order Taylor polynomial
around the specification gk, the mean-square error with respect to decay
times is obtain by:

eτ =
K∑

k=1

(τ̂k − τk)
2 =

K∑
k=1

(d(ĝk) − d(gk))
2 ≈ (10)

≈
K∑

k=1

(d′(gk)(ĝk − gk))
2 =

K∑
k=1

wk(ĝk − gk)
2 (11)

which is a simple mean-squares minimization with weights wk = (d′(gk))
2,

and can be done by any standard filter design technique.
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The first derivate of d(gk) is d′(gk) = 1/(f0gk(ln gk)
2), which can be ap-

proximated by d′(gk) ≈ 1/(f0(gk − 1)2). Since 1/f0 does not depend on k, it
can be omitted from the weighting function. Hence, the weighting function
becomes:

wk =
1

g2
k(ln gk)4

≈ 1

(gk − 1)4
(12)

The approximation of Eq. (10) is accurate only for ĝk ≈ gk, which means
that the magnitude of the designed filter is close to the specification. On the
contrary, the measured decay times τk have a great variance which cannot
be followed by loss filters of reasonable order (N < 20). Therefore, it is
worthwhile to smooth the decay time data τk, e.g., by convolving them with
a triangular window [0.25, 0.5, 0.25] before computing the specification gk by
Eq. (5). The phase specification of the loss filter is computed by the Hilbert
transform [30] from the magnitude interpolated magnitude specification, cor-
responding to a minimum-phase filter.
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Figure 8: Loss filter design for A�
4 piano note: prescribed decay times

(crosses), the decay times approximated by the one-pole loss filter (dashed-
line), and by an 8th order loss filter designed by the method based on a special
weighting function (solid line).

Fig. 8 depicts the results of loss filter design for a filter order of 8 with
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solid line. The measured decay times of the piano note A�
4 are displayed with

crosses. The resulted decay times using a one-pole loss filter designed by
polinomial regression are displayed with dashed line. It can be noted that
the decay times of the first ten partials are modeled precisely already by the
one-pole loss filter, and the general trend of decay times are followed. When
compared to having a frequency independent loss filter Hl(z) = r, which
would mean equal decay times for all the partials, the difference is dramatic.
When higher order loss filters are used, the sound quality is increased only
slightly. However, in some cases, it is still worth to use a filter with a higher
order. For example, above 8 kHz the original decay times are the double of
the ones calculated with the one-pole filter (dashed line in Fig. 8), which can
be overcome by a high-order loss filter (solid line in Fig. 8).

In practice, we have used 3rd order loss filters for piano modeling, and one-
pole loss filters for the modeling of the violin. This distinction is motivated
by the fact that the piano has a decaying tone, therefore the decay rates have
a great perceptual importance. On the contrary, the violin is a continuously
excited instrument, where the precise rendering of the decay rates are less
significant for the listeners.

Dispersion Filter Design

In the case of piano modeling, the audible effect of string dispersion cannot
be neglected. Dispersion denotes an increase in wave velocity for higher
frequencies. This can be modeled by having a “shorter” delay line for the
higher partials than for the lower ones. For that, a filter with a non-constant
phase delay is required. Since the magnitude response of the reflection filter
Hr(z) = −Hl(z)Hd(z)Hfd(z) should only be affected by the loss filter Hl(z),
it is straightforward to use an allpass filter as dispersion filter Hd(z). For the
design, we use the method presented in [31, 32].

The desired phase delay Dk at the partial frequency fk is given by

Dk =
fsk

fk
− Nwg − Dl(fk) (13)

where Nwg is the total length of the waveguide delay line and Dl(fk) is the
phase delay of the already designed loss filter. The designed method proposed
in [32] minimizes the weighted squared phase error between the desired phase
response Φk = ϑkDk and the phase response of the dispersion filter Φd. We
first compute the quantities:

βk = −1

2
(Φk + Nϑk) (14)
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and solve the equations for ai:

N∑
i=1

ai sin(βk + kϑk) = − sin βk k = 1, 2, . . .M (15)

where ai are the coefficients of the filter denominator, with a0 = 1.
Since the number of prescribed phase values M is higher than the filter

order N , the set of equations is overdetermined, thus it cannot be precisely
solved. However, when the equation error is minimized in the mean-squares
sense, the solution is easily computed. During the minimization a weighting
function has to be used which depends on the magnitude response of the
denominator of Hd(z). Accordingly, the least-squares optimization has to be
run iteratively. In practice, a filter order N = 16 is required for the lowest
piano notes to provide good results, while for the middle register a fourth
order dispersion filter has been found to be enough.

3.2.3 Modeling Beating and Two-Stage Decay

In real pianos, except for the lowest octave, the vibration of two or three
strings are coupled through the bridge, when one note is played. This pro-
duces beating and two-stage decay in the sound [33]. This effect can be
simulated by having two coupled waveguides in parallel [34], but this leads
to high computational cost and complicated parameter estimation.

Instead, we suggest to use some second-order resonators R1 . . . RK parallel
with the string model Sv(z) [27, 35]. This is depicted in Fig. 9. The transfer
function of the resonators Rk(z) are as follows:

Rk(z) =
Re{ak} − Re{akpk}z−1

1 − 2Re{pk}z−1 + |pk|2z−2

ak = Ake
jϕk pk = e

j
2πfk

fs
− 1

fsτk (16)

where Ak, ϕk, fk, and τk refer to the initial amplitude, initial phase, frequency
and decay time parameters of the kth resonator, respectively. The overline
stands for complex conjugation, the Re sign for taking the real part of a
complex variable, and fs is the sampling frequency.

The resonators are tuned close to the frequency of the distinct partials of
the digital waveguide. Thus, every partial corresponds to two slightly mis-
tuned sinusoids with different decay times and amplitudes, and their superpo-
sition produces beating and two-stage decay. The efficiency of the structure
comes from the fact that only those partials have parallel resonators, where
the beating and two-stage decay are prominent. The others have simple
exponential decay determined by the digital waveguide model Sv(z).

17



Figure 9: The multi-rate resonator bank.

The efficiency is further increased by running these resonators at a lower
sampling rate [35]. The input signal Fin is of a lowpass character, therefore,
when downsampled without prior lowpass filtering, and only the lower half of
the downsampled frequency band is used, just a small aliasing occurs. This is
acceptable, since a small aliasing at the input of the resonators only changes
the initial amplitudes and phases of the sinusoids. Therefore, no anti-aliasing
filters are required prior to the downsampling operation. The interpolation
filters cannot be neglected. However, since only the half of the frequency
bands are used, their specification can be simple (passband: 0 ≤ ϑ ≤ 0.25π,
stopband: 0.75π ≤ ϑ ≤ π), which results in a 7th order FIR filter for 60 dB
stopband rejection. The interpolation filters used after upsampling operation
can be common for all the notes played in the same time. Note that this is
not depicted in Fig. 9.

The parameter estimation of the model is done by first estimating the
partial envelopes of measured sound-pressure signals of pianos. Then, the
deviation is computed from the general exponential decay. This is followed
by fitting an exponentially decaying or growing sinusoid on the deviation,
which completely characterizes the two-mode model [27].

This method provides significant computational savings compared to hav-
ing a second waveguide in parallel (5–10 operations/cycle instead of 30–40).
Moreover, the parameter estimation simplifies to finding the parameters of
the mode-pairs. The stability problems of a coupled system are also avoided.
As an example, Fig. 10 displays the first 8 partial envelopes of a recorded
A�

4 note (466Hz). Fig. 11 shows the output of the synthesis model using the
structure of Fig. 9 with 5 resonators. It can be seen that the envelopes of
the first five partial are precisely rendered. Above the sixth partial, where
the resonators are not implemented, the amplitude envelopes have simple
exponential decay.
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Figure 10: Partial envelopes of the original A�
4 note.
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Figure 12: Simplified model of a string terminated by a finger

3.2.4 Finger Modeling

For the violin, not only the losses of the string and the termination have
to be modeled, but the effect of the player’s finger as well. On the piano,
there is (at least) one string for each note. On the violin, the player has to
use his fingers to change the length of the strings and thus to change the
fundamental frequency of the tone. These note transitions are important in
determining the character of the instrument. When playing flautato sounds,
by touching the string slightly at a node of vibration, the basic frequency is
damped leaving only higher harmonics.

Physically the finger acts like a damper attached to the string. In order
to model it, a scattering junction with variable position and coupling should
be inserted into the delay line. The frequency dependent low pass filtering
effect of the finger can be realized within the reflection filter Hr(z) as well.
The scattering junction is similar to modeling finger holes in woodwinds [36].

In our experiments we used a simplified junction combined with a simple
fractional delay for fine tuning the frequency of the sound (see Fig. 12).
With the increase of the pressure of the finger (p), the right side of the delay
lines gets less signal. Finally, when p = 1, the shortened left side string is
terminated properly with −1 (and tuned with the fractional delay, D).

The finger model described above is not capable for the accurate modeling
of the finger transitions. It models only the transitions from an open string
note to a finger-terminated one and vice versa. However, in the most cases
the player uses another finger to change from one note to the other, therefore
two finger junctions need to be included in the model. In practice, two types
of transitions have to be simulated depending on the direction of change.
Changing to a higher note requires that the first finger is already on the
string and second one is being used normally, with increasing finger pressure.
Changing to a lower note may assume that the second finger is already in its
place (behind the other) while pressure of the first finger is lowered to zero.
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With the choice of the shape and the speed of pressure change several effects
can be modeled.

Furthermore, also differences in the four strings of the violin can be con-
sidered to refine the model. Each string has its own properties (fundamental
frequency, specific impedance, stiffness, etc.), thus, each has different tone.
The player has the flexibility of choosing a string for a given note. The
decision depends on the pitch of the actual note, the notes following and
preceding the actual one and the timbre he wants to achieve. The same note
played on a lower string results a more flat and soft tone than played on a
higher one. When a new note is started on a new string, a previously excited
open string or finger-terminated string might still vibrate, or the latter might
change to open string (if the player lifts away his finger). When off-line syn-
thesis is used, these subtleties can be set individually for each tone manually,
or general transition rules can be formed to take them into account. On
the contrary, In on-line synthesis only general rules can be used for easier
controllability.

3.3 Body Modeling

The radiation of the soundboard or any instrument body is generally treated
as a linear filtering operation acting on the string signal. Thus, body mod-
eling reduces to filter design. Theoretically, this filter should be somewhat
different for all the strings. This is feasible for the four strings of the violin,
but for modeling the piano having hundreds of strings, this would lead to
unacceptably high computational load. In practice, the string signals are
summed and lead trough a single body filter to reduce the required compu-
tational complexity.

Unfortunately, instrument bodies exhibit a high modal density, therefore
high order filters are needed for their simulation. In the case of the guitar
body, the required filter order was about 500 [37]. We have found that the
piano requires even higher filter orders. In the case of FIR filters, 2000 taps
were necessary to provide high quality sound. Commuted synthesis [38] could
overstep this problem, but that would require simplifications in the excitation
model. Feedback delay networks [39] are capable of producing high modal
density at a low computational cost, but due to the difficulties in parameter
estimation, they have not been used for high-quality sound synthesis.

To resolve this problem, we have proposed a novel multi-rate approach for
instrument body modeling [40]. The string signal Fs is split into two parts:
the lower is downsampled by a factor of 8 and filtered by a high order FIR
filter Hlow(z), precisely synthesizing the instrument body response up to 2
kHz. Above 2 kHz, only the overall magnitude response of the body is mod-
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Figure 13: The multi-rate body model.

eled by a low order FIR filter Hhigh(z). This signal is delayed by N samples
to compensate for the delay of the decimation and interpolation filters of the
low frequency chain. The crossover frequency of 2 kHz was determined by
conducting informal listening tests. The body model is depicted in Fig. 13.

The decimation and interpolation filters are chosen to be the same filter
Hdi(z) and designed with a loose specification (5 dB passpand ripple, 60
dB stopband rejection) by the Matlab’s remez algorithm. This results in
an order of 96, which corresponds to 12 instructions/cycle in a polyphase
implementation.

The body filters Hlow(z) and Hhigh(z) are designed from measurements.
For the piano, the soundboard was excited by an impact hammer and the
force and pressure signals were simultaneously recorded. Then, the force-
pressure transfer function was calculated and a 2000 tap FIR target filter
Ht(z) was obtained by truncating the measured impulse response. The target
response Ht(z) is lowpass filtered and then downsampled by a factor of 8 to
produce the desired low frequency filter H̃low(z). This has to be changed
in order to correct the passband errors of the decimation and interpolations
filters:

Hlow(z) = H̃low(z)
1

H2
di(z

1
8 )

(17)

This results in a 250 tap long FIR filter, which consumes 31.25 opera-
tions/cycle.

The high frequency filters are computed by subtracting the impulse re-
sponse of the low frequency chain from the target response. This resid-
ual signal contains energy mainly above 2 kHz. The residual is then made
minimum-phase and truncated to a length of 50 taps to produce the high
frequency filter Hhigh(z).

As an example, the magnitude response of a piano soundboard model
is depicted in Fig. 15. The magnitude response of the target filter Ht(z)
is depicted in Fig. 14 for comparison. It can be seen from the figures that
the magnitude response is accurately preserved up to 2 kHz. Although not
visible, but so is the phase response. Above 2 kHz, only the overall magnitude
response is retained.
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Figure 14: The mangnitude transfer function of the 2000 tap target filter
Ht(z).
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Figure 15: The magnitude transfer function of the multi-rate body model.
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This structure is capable to produce high sound quality at around 100
instructions per cycle and provide a very similar sonic character compared
to the reference filter Ht(z). The only shortcoming of the model is that the
attack of high notes sounds somewhat sharper compared to the target fil-
ter. This is because now the energy of the soundboard response in the high
frequency range is concentrated to a very short time period, i.e., the reso-
nances are not sharp enough above 2 kHz. As a straightforward solution,
the downsampling factor of 8 in Fig. 13 can be decreased to 4, but that ap-
proximately doubles the computational load. Here again, a tradeoff has to
be found between quality and efficiency. However, when the high frequency
filter Hhigh(z) would be implemented with a simple structure which is ca-
pable of producing high modal density, this limitation could be overcome.
For that, the feedback delay network [39] could be a good candidate. Simi-
lar techniques can be applied for modeling the high modal density impulse
response of the violin.

3.4 Excitation Modeling

The string and body models are of the same structure for the different string
instruments, although they are parametrized in a different way for the piano
and for the violin. On the contrary, for modeling the excitation, differ-
ent model structures has to be developed. This is because the excitation
mechanisms of the instruments are completely different, and their precise
implementation is essential for rendering the sonic characteristics of these
instruments.

3.4.1 The Hammer Model

The piano string is excited by a hammer, whose initial velocity is controlled
by the player with the strength of the touch on the keys. The excitation
mechanism of the piano is as follows: the hammer hits the string, the hammer
felt compresses and feeds energy to the string, than the interaction force
pushes the hammer away from the string. Therefore, the excitation is not
continuous, it is present for some milliseconds only. The hardwood core of
the hammer is covered by wool felt, whose structure is not homogenous. This
is the reason why playing harder on the piano results not only in a louder
tone, but also in a spectrum with stronger high frequency content.

The piano hammer is generally modeled by a small mass connected to a
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Figure 16: The string model connected to the hammer.

nonlinear spring [41]. The equations describing the interaction are as follows:

F (t) = f(∆y) =

{
K(∆y)p if∆y > 0
0 if∆y ≤ 0

(18)

F (t) = −mh
d2yh(t)

dt2
(19)

where F (t) is the interaction force, ∆y = yh(t) − ys(t) is the compression
of the hammer felt, where yh(t) and ys(t) are the positions of the hammer
and the string, respectively. The hammer mass is referred by mh, K is the
hammer stiffness coefficient, and P is the stiffness exponent.

These equations can be easily discretized with respect to time. However,
as seen from Eqs. (18) and (19), there is a mutual dependence between F (t)
and y(t), i.e., for the calculation of one of these variables, the other should be
known. This is generally overcome by the assumption that the hammer force
changes a little during one time step, that is F (tn) ≈ F (tn−1). Although lead-
ing to numerical instabilities for high impact velocities, the straightforward
approach is used in the literature (see, e.g., [42]. The numerical instabil-
ities can be avoided by rearranging the nonlinear equations to known and
unknown terms [43].

We have suggested to use a simpler approach for avoiding the numeri-
cal instability [44]. The proposed multi-rate hammer model is depicted in
Fig. 16. The stability of the discrete system can always be assured with a
sufficiently high sampling rate fs, since for fs = ∞, the discrete-time sys-
tem will behave as the continuous-time equations. However, increasing the
sampling rate of the whole model would lead to unacceptable computational
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Figure 17: Simulated interaction forces for note C5 (522 Hz), with an im-
pact velocity of 6 m/s: straightforward approach with numerical instability
(dashed-line) and the multi-rate hammer (solid line).

overhead. When only the sampling rate of the hammer model is increased,
it leads to a small computational overhead, while still assures that F (tn)
changes a little at every time-step. Implementing the hammer at a double
sampling rate has been found to provide stable results. For downsampling
(↓ 2 in Fig. 16) simple averaging, for upsampling (↑ 2 in Fig. 16) linear
interpolation are used.

In Fig. 17 the interaction force is shown for note C5 (522 Hz). For the
simulation, an ideal digital waveguide model was used, without any dispersion
or losses. The parameters of the hammer were taken from [42], C4 hammer.
The impact velocity was vh0 = 6 m/s. The dashed line refers to the single-rate
hammer model with fs = 44.1 kHz. The solid line is the force of the multi-
rate implementation, by using fs = 44.1 kHz for the waveguide model. It can
be seen that the straightforward technique operating at normal sampling rate
goes unstable, while the output of the multi-rate hammer model produces
well behaving force signals, similar to those that can be measured for real
hammers.
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3.4.2 The Bow Model

In the case of bowed instruments the excitation is based on the sticking fric-
tion between the string and the bow hairs. The bow, moving perpendicular
to the string, grips the string (gripping phase). This friction force is highly
nonlinear. Due to the increasing displacement of the string, the elastic re-
turning force is also increasing until its level reaches the sticking friction. At
this point the bow releases the string, the string swings back (release phase)
and then vibrates freely. This vibration is damped partly by the own losses
of the string and partly by the slipping friction that develops between the
string and the bow hairs. This state lasts as long as the bow grips the string
again, which occurs only when the velocity of the bow and the string equals.
In this case, their relative velocity is zero, the frictional force is maximal.
This alteration of the stick and slip phases is the so-called Helmholtz mo-
tion. The excitation is periodical and generates a sawtooth shape vibration
(while at the piano the excitation by the hammer is impulse like).

The excitation depends on several control variables. As the primary con-
trol variable is the velocity of the bow, the traveling-wave component in the
digital waveguide is the velocity for modeling bow instruments. Other impor-
tant variables are the force of the bow exerted on the string and the position
of the bow along the string. Less important factors are the angle between
the bow and the string, the size of the contact surface of the bow, and the
grip of the bow hair (which can be increased by rosin). In order to keep
the model manageable and realizable, usually only the primary and some
other important variables (such as the bow force and position) are taken into
account.

The bow-string interaction is usually modeled by a scattering junction
[45] (Fig. 18). This junction is controlled by differential velocity (v+

∆), which
is the difference of the bow velocity and the current string velocity. The po-
sition of bowing determines the insertion point of the junction into the delay
lines. Other control variables (bowing force and angle, etc.) are changed by
modifying the parameters of the reflection function (ρ(v+

∆)). This function
also depends on the characteristic impedance of the string and on the friction
coefficient between the bow and the string.

At a given point of the string, the string velocity is obtained by adding
the right-going velocity sample to the left-going velocity sample at the same
point of the delay lines:

vs = v+
s,l + v−

s,l = v+
s,r + v−

s,r, (20)

where v− and v+ are the traveling wave components within the string going
towards a termination (resulting from the bow-string interaction) and coming
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Figure 18: The scattering junction for modeling the bow-string interaction
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Figure 19: The nonlinear function of friction versus string velocity; simulation
results with vb = 0.4 m/s; fb = 0.7 N

from (reflected by) a termination, respectively.
The bow-string interaction can be described as follows:

v−
s,r = v+

s,l + ρ(v+
∆)v+

∆

v−
s,l = v+

s,r + ρ(v+
∆)v+

∆, (21)

where ρ is the reflection function. The nonlinear function of friction versus
string velocity can be seen on Fig. 19. We note that this model was refined in
[46] by deriving the interaction from adhesion between two bodies in contact.

Besides modeling the bow-string interaction the player has to be modeled
as well. The problem of modeling the left hand was discussed in Sec. 3.2.4.
An exact model of the right (bowing) hand should provide enormous degrees
of freedom using interactive controllers. However, this would result again
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an unmanageable instrument, and/or it would require a real violin player
at the control keyboard/violin. Similarly to the proposed finger model, this
problem can also be resolved by an automatic system based on real playing
styles on bowed instruments. For each bowing style the time variations of
the primary control variables can be represented by characteristic envelopes,
so only one parameter needs to be adjusted for a given style. A MIDI based
implementation of this idea can be found in [47].

4 Comparison of the Two Synthesis Methods

Here we compare the two methods described in this paper, namely the signal
modeling based on envelope-filters and the physical modeling based on dig-
ital waveguides. When mentioning signal modeling and physical modeling
throughout this section, we are referring to these two models covered in the
paper. As our signal model describes the partial envelopes by linear filters,
even theoretical connections can be found between the two methods. The
theoretical investigations are followed by practical considerations.

4.1 Theoretical Connections

We show that the impulse response of both formulations can be expressed
as a sum of exponentially decaying sinusoids, which can be realized as a
resonator bank. Naturally, the resonator bank implementation is not an
efficient realization, its only purpose is to serve as a common base for the
comparison of the two methods. We show that for certain circumstances the
two modeling approaches produce the same output signal.

4.1.1 The Signal Model

Recalling (1), the signal model was based on the idea of switching on a sine
wave when a note is played and multiplying it with the attack and decay
envelope of the given harmonics:

yi,k = hi,kAi cos(2π(if0/fs)k + ϕi) = hi,kxi,k, (i = 1..N). (22)

Here the attack envelope hi,k is realized as step responses of 2nd or 3rd
order filters.

The step response can be further rewritten as

hi,k = wi,k ∗ εk, (23)
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Figure 20: Signal model of a given partial realized with envelope filters. (a)
step response of the envelope filter(h[k]); (b) output of the system (y[k] =
h[k]x[k]).

where wi,k is the impulse response of the filter, εk is the step function and ∗
denotes convolution.

The main effects of Eq. (22) in the time domain are depicted in Fig. 20.
Multiplying in the time domain with a sine wave is a simple modulation.

Hence, in the frequency domain it becomes convolution of the sine wave and
the step response of the signal, i.e.

Y (z) = (W (z)E(z)) ∗ X(z). (24)

Since this is a clear modulation of the sine wave with the step response
of the envelope filter, the above equation can be rewritten as follows:

Y (z) = (W (z) ∗ X(z))(E(z) ∗ X(z)) = R(z)(E(z) ∗ X(z)). (25)

Note that R(z) = W (z) ∗ X(z) in the time domain is r[k] = w[k]x[k],
i.e. a sine wave multiplied with a second order system’s impulse response.
In the frequency domain, the convolution with the sine wave shifts up the
original filter poles located at DC to the frequency of the sine wave. Thus,
this expression can be realized with the same number of resonators as the
number of poles of the original filter. The input to these resonators is the sine
wave triggered by the trigger signal ε[k]. Fig. 21 shows some time-domain
signals of this realization.

Thus, the signal model with envelope filters applied to the partials of
the sound can be realized with a set of resonators. The required number of
resonators depends on the number of partials to be generated and the order
of the filters.
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Figure 21: Signal model of a given partial realized with resonators. (a)
impulse response of the two resonators; (d) output of the system.

4.1.2 The Physical Model

The transfer function of the digital waveguide model of Fig. 7, assuming
that the reflection filter is constant for all the frequencies (i.e, Hr(z) = −r,
0 < r < 1) is:

Fout

Fin

=
1

1 − rz−N

(
1 + z−2Min

)
z−(M−Min) (26)

After the fractional expansion of the denominator of Eq. (26) we obtain the
transfer function of a set of complex exponentials:

Fout

Fin

=

{
a1

1 − z−1r1ejϑ1
+ . . . +

aN

1 − z−1rNejϑN

}

ak = j
2

N
sin(2kπ

Min

N
)e−jϑkM

r1 = . . . = rN = r
1
N (27)

where ϑk = (2kπ)/N is the frequency of the kth mode, N = 2M is the total
length of the delay line, ak are the complex amplitudes and rk are the pole
radii. The impulse response h(n) of the digital waveguide can be obtained
from Eq. (27) by the inverse Z transform:

h(n) =
N∑

k=1

ak

(
rke

jϑk
)n

=

N/2∑
k=1

ak

(
rke

jϑk
)n

+ aN−k

(
rN−ke

jϑN−k
)n

(28)

Because ϑN−k = 2π − ϑk, follows that the corresponding pole pairs will be
conjugate pairs rN−kejϑN−k = rke−jϑk, and so the amplitudes aN−k = ak,
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where the overline refers to complex conjugation. Therefore the impulse
response h(n) can be expressed as a sum of exponentially decaying sinusoids:

h(n) =

N/2∑
k=1

rN
k

(
ake

jϑkn + ake
−jϑkn

)
=

N/2∑
k=1

|ak|rN
k sin (ϑkn + ϕk) (29)

where |ak| is the magnitude, and ϕk is the phase of the complex coefficient
ak.

It can be seen from Eq. (29) that the impulse response of the digital
waveguide with Hr(z) = −r is the sum of exponentially decaying sinusoids,
whose frequencies are equally distributed on the unit circle, and their decay
rates are equal. For an arbitrary reflection filter Hr(z) the modal frequencies
and decay times cannot be derived in a closed form, however, they can be
determined by numerical iterations. In any case, the digital waveguide can
always be substituted by a set of parallel resonators. Their impulse response
are exponentially decaying sinusoids with arbitrary initial amplitudes and
phases, thus, they can be implemented as second order IIR filters in parallel.

Similar derivations with a different formulation were presented in [34], and
it was shown that if two or three waveguides are coupled, the partials can be
expressed by the sum of two or three sinusoids. Obviously, when the beating
and two-stage decay of the piano is modeled by the multi-rate resonator bank
of Sec. 3.2.3, the equivalent resonator structure can be obtained by adding
the parallel resonators R1 . . . Rk of Fig. 9 to the equivalent resonators of
the waveguide. In this case, two resonators will correspond to some of the
partials.

Note that here the digital waveguides have been treated only. However,
the impulse response of other string models (e.g., based on finite differences)
can also be expressed as a sum of exponentially decaying sinusoids, if there
are no multiple poles in the transfer function.

So far, the digital waveguide model has been substituted by a set of
resonators connected in parallel, behaving the same way as the original string
model. Now the question is in which cases the signal model of Sec. 2 can
produce an equivalent output compared to the digital waveguide. In the case
of the piano, the hammer excitation is impulse-like, thus, its main role is
to set the initial amplitudes of the partials. After the hammer has left the
string, the partial envelopes decay exponentially in the string signal (here
we neglect the transients introduced by the soundboard). Therefore, for a
specific hammer velocity, each partial can be modeled by a sine generator
connected to an envelope-filter.
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4.1.3 The link

In the case of the piano, for a given hammer velocity, the signal model pro-
duces the same output as the physical model, except the initial transients.
This is because our signal model is closer to the physical structure than the
signal models used in general. By using digital filters as envelope generators,
rather than arbitrary amplitude envelopes stored in a table, we assume that
each partial can be described by a set of exponentially decaying sinusoids,
which is indeed the physical reality for impulsively excited instruments, such
as the piano or guitar.

For the violin and for the organ the link between the physics of the in-
struments and the envelope-filter based signal model is not as clear as for
the piano. As these two instruments are continuously excited, and their ex-
citations are of nonlinear nature, the partials cannot be synthesized by a
set of exponentially decaying sinusoids. Accordingly, the partial envelopes
cannot be precisely described by linear filters. From a physical point of view,
the organ pipe can be modeled by a single digital waveguide connected to a
nonlinear exciter. In our approach this nonlinear system is modeled with a
linear system of a higher order. Third order envelope-filters have been found
to be adequate for modeling the organ sound, this is equivalent to three dig-
ital waveguides coupled to each other. In other words, three linearly excited
and coupled acoustic tubes produce similar sound to one tube connected to
a nonlinear exciter. The same holds for violin synthesis: although the excita-
tion is highly nonlinear, for a given playing style the partial envelopes could
be modeled by linear envelope-filters. Obviously, different envelope-filter pa-
rameters would be required for all the different playing styles.

4.2 Practical Considerations

In this section, the signal-based and the physics-based approach is compared,
from the point of view of their applicability. The main features of the meth-
ods are listed in Table 1. Then the most important properties of the different
instruments covered in this paper are described, serving as a base for the
choice among the synthesis methods. We note that an exhaustive evaluation
of many different sound synthesis methods can be found in [2].

4.2.1 The Methods

The signal-based approach models the sound of the instrument itself. Ac-
cordingly, it does not make any assumptions on the structure of the musical
instrument, only that the generated sound is periodic. Therefore, it can
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model a wide range of instrument sounds, since they differ only in their pa-
rameters, not in the model structure, which is always a set of sinusoids. As
it is a general representation, its parameter estimation is simple, basically
reduces to tracking partial envelopes, which can be easily automated. In
general, a large amount of data is required to describe a given tone, but this
specific tone, from which the parameters originate, is almost perfectly repro-
duced. As the structure of the instrument is not modeled, the interaction
of the musician cannot be easily taken into account, meaning that, e.g., for
different bow forces or velocities in the case of the violin different parameter
sets are required for resynthesis. In practice, this means that for a single
note the analysis procedure has to be run for all the different playing styles
that a player can produce, and a large amount of data has to be stored or
transmitted. As it treats the notes separately, the interaction of the different
notes, e.g., the coupled vibration of strings, cannot be modeled. Changing
the parameters of the synthesis program directly is not user-friendly: dozens
of parameters can be changed, which all influence the sound in a different
way compared to musicians got used to it in the case of real instruments.
The quality and the computational load of the synthesis is usually varied by
changing the number of simulated partials, which is probably not the best
way from a perceptual point of view.

The physics-based approach models the functioning of the instrument,
rather than the produced sound itself. It makes assumptions about the
instrument it models, therefore, it looses generality. A piano model, e.g.,
cannot be used for violin modeling by just changing its parameters, since
the excitation model is completely different for the two instruments. Conse-
quently, the parameter estimation cannot be completely automated, at least
the model structure has to be determined by the user. As the model structure
already describes the main features of the instrument, only small number of
parameters are needed, and modifications to these parameters produce per-
ceptually meaningful results. For example, the user now controls the bow
force, rather than the loudness of a single partial, and the instrument re-
acts in a way as a real violin would do. Therefore, only one parameter set
is required for one note, since the different playing styles according to the
interaction of the musician are automatically modeled. As it describes the
physical structure, the interaction of the different model parts are also taken
into account, e.g., the string coupling on the piano is easily modeled. A
drawback that none of the tones will be perfectly modeled: the model may
sound as a piano, but will be always different from that piano where its pa-
rameters come from. The quality and the computational load is varied by,
e.g., changing the accuracy of modeling losses and dispersion, rather than
changing the number of simulated partials, which is less noticeable for the
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Method Signal modeling Physical modeling
Assumptions on the structure Poor Yes
Generality Yes No
Parameter estimation Simple Complicated
Nature of parameters Abstract Meaningful
Modeling a specific sound Precisely Approximately
Interaction of the musician Hard to model Modeled
Interaction of instrument parts Hard to model Modeled

Table 1: Main features of the synthesis methods described in the paper.

listener.

4.2.2 The Instruments

The choice between the two approaches strongly depends on which instru-
ment should be modeled. The features which are relevant from this viewpoint
for the instruments covered in this paper are listed in Table 2. Naturally,
other factors also influence the choice of the user, e.g., if automatic parameter
estimation is required, the signal modeling approach should be chosen.

The sound of a specific organ pipe cannot be influenced by the player.
Moreover, the coupling between the different pipes is negligible, therefore the
different tones can be synthesized independently. As signal modeling models
a specific sound almost perfectly, it is the best choice for organ synthesis. Its
computational load is acceptable, since the number of partials is low in the
case of the organ flue pipes.

In the case of the piano, the player can vary only one parameter for a given
note, by changing the impact velocity of the hammer, thus, the timbre space
of one note is one-dimensional. For a signal model, this would mean storing
different parameter sets for a few hammer velocities, and interpolation could
be used between sets. Although it is also possible with the signal model, the
effect of the player is much easier modeled by the physics-based approach.
Moreover, the strings of the piano are coupled when the damper pedal is
depressed which is also controlled by the player: this can be modeled by
the physics-based approach only. As the low piano tones may contain about
hundred partials, the signal based model would be computationally more
demanding than the physical model based on digital waveguides.

For the violin, the freedom of the player is enormous: he can vary the
bow force, velocity, position, and angle, the finger position and pressure,
and decide on which string he plays the given note. Therefore, the timbre
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Instrument Organ Piano Violin
Number of partials < 20 5-100 10–50
Number of playing parameters 0 Few Many
Coupling between the instrument parts Negligible Present Significant

Table 2: Main features of the different instruments, serving a base for choos-
ing the proper synthesis approach.

space of the violin is multi-dimensional: for signal-based synthesis many
sounds along all these dimensions should be recorded and analyzed, which
is an impossible task. Since the goal is not only to render the sound of a
specific violin note, but to create a playable instrument, the only choice which
remains is physical modeling. The inputs of the physical model are the real
physical parameters (e.g., bow force and velocity), therefore the effect of the
player is automatically taken into account.

5 Conclusion

In this paper signal-model and physical-model based sound synthesis meth-
ods have been described, namely additive synthesis with envelope-filters and
digital waveguide modeling. Three case studies (applications of the methods
to the sound synthesis of the organ, the piano and the violin) have been in-
troduced, and detailed analysis of the effectiveness of the different synthesis
methods have been discussed.

The proposed additive synthesis method is capable of the accurate re-
production of a specific sound of an instrument, but primarily the sound
from which its parameters are derived from. The model can be made more
realistic by analyzing more then one waveforms and including the system-
atic variations of the parameters (e.g. parameter values as functions of the
fundamental frequency) and their random variations (such as change of the
parameters of the attack transient filter, or the random variation of the noise
spectrum of an organ flue pipe). With the analysis of these variations, the
signal model is able to behave as a real instrument. However, as the param-
eters of the model are not correlated directly with those of the instrument,
the control of the instrument is not an easy task.

As the physical model is based on the physics of real instruments, its tran-
sient and random behavior is close to those of the instrument to be modeled.
In addition, its parameters are derived directly from those of the instrument
(such as string length, bow velocity), thus, controlling a physics-based instru-
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ment is a much easier task. In this paper, computationally efficient physical
modeling based methods were presented. It was shown that the models need
to be evaluated also from a perceptual point of view and this way the trade-off
between efficiency and high fidelity can be controlled.

As a theoretical result, it was shown that the signal model and the phys-
ical model can be equivalent under specific circumstances. Finally, it was
proven that all methods can be used for realistic instrument modeling, but
their computational efficiency varies as the function of the instrument to be
modeled.
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[26] Vesa Välimäki and Tero Tolonen, “Development and calibration of a
guitar synthesizer,” J. Aud. Eng. Soc., vol. 46, no. 9, pp. 766–778,
September 1998.

[27] Balázs Bank, “Physics-based sound synthesis of the piano,” M.S. thesis,
Budapest University of Techology and Economics, Hungary, May 2000,
Published as Report 54 of HUT Laboratory of Acoustics and Audio
Signal Processing, URL: http://www.mit.bme.hu/∼bank.

[28] C. Erkut, “Loop filter design techniques for virtual string instruments,”
in Int. Symp. on Musical Acoustics (ISMA’01), Perugia, Sept. 2001, pp.
259–262.
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