
IMPROVED POLYNOMIAL TRANSITION REGIONS ALGORITHM FOR
ALIAS-SUPPRESSED SIGNAL SYNTHESIS

Dániel Ambrits and Balázs Bank
Budapest University of Technology and Economics,

Dept. of Measurement and Information Systems,
H-1521 Budapest, Hungary

ambrits.daniel@gmail.com, bank@mit.bme.hu

ABSTRACT

One of the building blocks of virtual analog synthesizers is
the oscillator algorithm producing simple geometric wave-
forms, such as saw or triangle. An important requirement
for such a digital oscillator is that its spectrum is similar to
that of the analog waveform, that is, the heavy aliasing that
would result from a trivial modulo-counter based imple-
mentation is reduced. Until now, the computationally most
efficient oscillator algorithm with reduced aliasing was the
Polynomial Transition Regions (PTR) method. This paper
shows that the efficiency can be increased even further by
eliminating the phase offset of the PTR method. The new
Efficient PTR (EPTR) algorithm produces the same out-
put as the PTR method, while requires roughly 30% less
operations, making it the most efficient alias-reduced os-
cillator algorithm up to date. In addition to presenting an
EPTR sawtooth algorithm, the paper extends the differen-
tiated parabolic wave (DPW) triangle algorithm to the case
of asymmetric triangle waves, followed by an EPTR imple-
mentation. The new algorithm provides continuous transi-
tion between triangle and sawtooth signals, while still re-
quires low computational power.

1. INTRODUCTION

Analog synthesizers produced in the 60s and 70s are still
very popular among musicians for their characteristic tim-
bre, and the sound of these classic synthesizers has become
an inherent part of many modern musical genres. However,
the original synthesizers are hard to find, expensive, and
usually do not provide sufficient control (e.g., via MIDI)
as required by today’s musicians. Therefore, some compa-
nies provide modern analog synthesizers with digital con-
trol, but an even more cost-effective solution is to simu-
late the analog signal chain via digital signal processing.
The first such synthesizer was the Clavia NordLead, which
paved the way for virtual analog synthesis. For an excel-
lent overview on related research, see [1].

In an analog synthesizer the signal flow starts with an os-
cillator generating geometric waveforms, such as square,
sawtooth, triangle, sine, and sometimes a noise generator

Copyright: c©2013 Dániel Ambrits et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

0 0.5 1 1.5 2 2.5
x 10

4

−100

−50

0

Frequency [kHz]

Le
ve

l [
dB

]

(a)

0 0.5 1 1.5 2 2.5
x 10

4

−100

−50

0

Frequency [kHz]
Le

ve
l [

dB
]

(b)

0 0.5 1 1.5 2 2.5
x 10

4

−100

−50

0

Frequency [kHz]

Le
ve

l [
dB

]

(c)

Figure 1. Spectrum of (a) the ideal, (b) the trivial and (c)
the DPW sawtooth signals. The dashed line is the envelope
of the ideal spectrum.

is also provided. Then this signal is fed to a filter that is
controlled by envelope generators, low frequency oscilla-
tors (LFO), etc., and finally its gain is adjusted by an ampli-
fier, again controlled by an envelope and LFO. This paper
concentrates on the first part, that is, the digital modeling
of the oscillator.

The trivial option for creating a digital replica of a ge-
ometric signal is to generate samples that correspond to
the sampling of the analog waveform. In the case of the
sawtooth signal, this results in a simple modulo counter,
which can be implemented very effectively. However, as
expected, this results in a heavy aliasing due to the non-
bandlimited nature of the analog signal from which it orig-
inates [2]. This is displayed in Fig. 1 (b), together with the
spectrum of the ideal (analog) sawtooth in Fig. 1 (a). A
general remedy to the problem of aliasing is oversampling,
that is, running the modulo counter at a significantly higher
sampling rate, and then decimating. However, this leads to
a considerable increase of computational complexity.

Therefore, special algorithms have been developed that
reduce the aliased components while still keep the compu-
tational requirements low. Note that it is not required to eli-
minate aliasing completely, since aliased components be-
low a certain level are inaudible due to masking effects [3].

http://creativecommons.org/licenses/by/3.0/

The approaches include waveform generation based on
a band-limited impulse train [4, 5] and band-limited step
function [2, 6, 7], and the distortion and filtering of sine
waves [8]. The simplest, yet still practically usable method
is the differentiated parabolic wave (DPW) algorithm [9],
that is based on the spectral tilt modification of the contin-
uous-time signal before sampling. Later the higher-order
extension of the method has also been presented [10], pro-
viding better alias suppression at the expense of larger com-
plexity.

By noting that the DPW algorithm modifies only the sam-
ples around the discontinuity of the analog signal, a more
efficient implementation is possible. This algorithm is called
Polynomial Transition Regions (PTR), and is based on pre-
computing correction polynomials for the samples in the
transition, while the linear regions of the signal are offset
by a constant value [11].

This paper presents an even more efficient version of the
PTR algorithm, which will be called EPTR throughout the
paper. The method is based on the fact that the offset of
DPW and PTR waveforms compared to the trivial (modulo-
counter generated) waveform is due to a phase shift of the
DPW and PTR signals. When this phase shift is removed,
the linear regions of the waveform can be taken simply as
the trivial waveform values, eliminating the need for an
extra addition. For the sawtooth signal this leads to the
reduction of the number of operations by around 30%.

By modulating the pulse width of a square wave, very
interesting sonic variations can be created. Accordingly,
many classic and virtual analog synthesizers offer this kind
of PWM signal. A similarly interesting effect can be a-
chieved by modulating the symmetry of triangle waves.
This way the triangle signal can be continuously trans-
formed into a sawtooth waveform. Two of the rare exam-
ples generating triangle waves with variable symmmetry
are the Moog Little Phatty and Sub Phatty analog synthe-
sizers [12]. This paper first extends the DPW algorithm
for the case of asymmetric triangle waves, then provides
a highly efficient implementation by the use of the new
EPTR algorithm.

The rest of this paper is organized as follows. Section 2
reviews the DPW algorithm for the case of the sawtooth
signal and provides an extension for the case of the asym-
metric triangle wave. This is followed by the basic idea
of the PTR method in Sec. 3, while Sec. 4 proposes the
new EPTR algorithm for the saw and asymmetric triangle
waves. Finally, Sec. 5 compares the computational com-
plexity of the DPW, PTR and the EPTR algorithms.

2. DIFFERENTIATED POLYNOMIAL
WAVEFORM ALGORITHM

First, let us consider the steps of generating an alias-sup-
pressed signal with the Differentiated Polynomial Wave-
form (DPW) algorithm. In the N th-order method the con-
tinuous signal is integrated N −1 times. This is equivalent
to processing the sampled signal with an N th-order poly-
nomial waveshaper [10]. As a result, the spectrum of the
sawtooth signal decreases by 6N dB per octave instead of 6
dB. This way the aliasing is significantly reduced. Then the

0 10 20 30 40 50
−1

0

1

Sample Number

(a)

0 10 20 30 40 50
−1

0

1

Sample Number

(b)

0 10 20 30 40 50
−1

0

1

Sample Number

(c)

0 10 20 30 40 50
−1

0

1

Sample Number

(d)

0 10 20 30 40 50
−1

0

1

Sample Number

(e)

Figure 2. Generation of the triangle signal with variable
symmetry. (a) The trivial signal is first processed with the
x2−1 function. (b) The result is then multiplied with (c) a
scaled rectangular wave to get (d) the parabolic waveform.
Finally differentiating and scaling produce (e) the desired
alias-suppressed waveform.

signal is differentiated N−1 times in the discrete-time do-
main to restore its spectral tilt, which means filtering with
the (1 − z−1)N−1 transfer function. Finally it is scaled to
the desired amplitude [10].

For N = 2 the integral of a piecewise linear signal is a
piecewise parabolic (x2/2) function. The trivial sawtooth
signal corresponds to a periodic counter ranging from −1
to 1. The alias-suppressed sawtooth signal can be gener-
ated by squaring the signal, then differentiating the resulted
piecewise polynomial waveform and finally scaling by a
sufficient value [9].

While only symmetrical triangle wave is considered in
the literature [10], it can be easily extended to asymmetric
case. The method is explained by using Fig. 2. The gra-
dient of the ascending region is A > 0, then the gradient
of the descending region is B = −A/(A − 1) < 0. Fol-
lowing the generation of the symmetric triangle signal for
N = 2 [10], the trivial waveform Fig. 2(a) is first pro-
cessed with the x2 − 1 function, giving Fig. 2(b). (In
the general case, when the value of the peak is not 1, the
waveshaper would be x2 − p2peak.) Then it is multiplied
with a rectangular waveform with 1/A duty cycle so that
the parabolic regions of the signal are alternately positive
and negative. This rectangular wave is generated accord-

ing to the counting direction of the trivial signal which, for
the symmetric triangle holds the value 1 when the trivial
waveform is ascending and−1 when it is descending. Note
that by using this ±1 rectangular wave the absolute values
of the peaks are 1 in both regions but the width of these
parabolic regions are not the same. Thus at the transition of
two successive regions the gradients are different and this
would cause jumps in the differentiated signal. This prob-
lem can be solved by scaling the regions with 1/|A| and
1/|B| factors so that the transition is smooth (see Fig. 2(c)
and (d)). This step is the only difference between the sym-
metric and asymmetric case. Therefore the waveshapers
are (x2 − 1)/A for the ascending region and (x2 − 1)/B
for the descending region. Then the polynomial waveform
is differentiated and multiplied by a scaling factor.

3. POLYNOMIAL TRANSITION REGIONS
ALGORITHM

The signal generated with the N th-order DPW algorithm
differs from the trivial waveform by only N−1 samples per
period. The differing samples are in the transition region,
the linear sections only have an offset. This means un-
necessary additional computation, since the integration and
differentiation is computed even for the linear regions. The
Polynomial Transition Regions algorithm was introduced
to decrease the computation cost based on this observa-
tion. In the PTR method the sample values are derived in a
closed form for each section, and the final signal is gener-
ated from the trivial signal using these general forms [11].
To show that the computational cost can be reduced even
further, the linear section is discussed for N = 2.

Two successive samples in the linear section are p[n− 1] =
p0 − 2AT and p[n] = p0, where p0 is the current value of
the trivial signal generator, A is the gradient of the section.
(A = 1, when the signal increases from−1 to 1 during one
period. If A < 0, the signal decreases.) T = f0/fs, where
f0 is the fundamental frequency of the signal and fs is the
sampling frequency. For N = 2 the waveshaper is x2 ac-
cording to the DPW algorithm, then the differentiation and
scaling leads to:

y[n] =
(p[n])2 − (p[n− 1])2

4AT
= p0 −AT. (1)

For the linear section an addition operation is required for
each sample. The value of the offset can be both positive
and negative depending on whether the signal is ascending
or descending, thus also a branch operation is needed. The
−AT offset represents a half sample delay from the trivial
generator as seen in Fig. 3(a). This delay comes from the
behavior of the discrete differentiation. We will see in the
next section that a more efficient algorithm can be derived
by eliminating this half sample delay, and so the need for
the addition operation.

-AT
p[n]

y[n]

p[n-1]

p[n+0.5]

p[n-0.5]

p[n]=y[n]p[n-0.5]

(a) (b)

Figure 3. Discrete-time differentiation using (a) the trivial
signal (dark dots) and (b) the waveform shifted with half
sample (ligth dots).

4. EFFICIENT POLYNOMIAL TRANSITION
REGION ALGORITHM

4.1 Eliminating the Half Sample Delay in the Linear
Region

The simplest way to avoid the unnecessary computation in
the linear region is using the trivial generator as the output.
This is equivalent to using the differentiation on the adja-
cent samples which are at half sample distance from the
origin as seen in Fig. 3(b). The p[n − 0.5] and p[n + 0.5]
are the values of the continuous signal halfway between
the samples.

y[n] =
(p[n+ 0.5])2 − p[n− 0.5])2)

4AT
=

=
(p0 +AT)2 − (p0 −AT)2

4AT
= p0. (2)

In other words, the PTR algorithm is applied on a trivial
signal which is with half sample in advance to the de-
sired signal. Therefore also the samples in the transition
region should be calculated from this shifted trivial wave-
form. However, this does not require that these samples
are known during the wave generation, an explicit form of
the correction can be calculated in advance.

The transition region is a one sampling time wide section.
The shifted trivial signal causes that the samples to be cor-
rected can be found before or after the break. So unlike in
the PTR algorithm where this section was the [0,1] sample
interval after the discontinuity, here it can be found in the
[-0.5,0.5] interval with the transition in the centre. When
we detect that the trivial signal generator is in this region,
the position of the sample must be inspected and the cor-
rection must be applied according to the result. In the next
section various types of transitions are derived for N = 2.

4.2 Sawtooth

4.2.1 Derivation of the sawtooth wave generation

The continuous signal with A gradient jumps from the val-
ue pmax to pmin as can be seen in Fig. 4. When the sample
of the discrete trivial waveform is p[n] = p0 before the
discontinuity, the next sample is p[n + 1] = p0 + 2AT −
(pmax − pmin). These samples are processed by the x2

waveshaper. The correction depends on whether the sam-
ple to be corrected is before or after the discontinuity of
the continuous waveform.

AT p[n]=p

p[n+1]

p

min

max

p

transition region

p[n-1]

p[n-0.5]

p[n+0.5]

0

Figure 4. Correction of the sawtooth signal. During the
derivation the half-sample delayed signal (light dots) is
used instead of the trivial signal (dark dots). p[n] is cor-
rected to the desired value (dashed dot).

1. The sample is before the discontinuity (p0 > pmax −
AT), as in Fig. 4

According to Section 4.1 the calculation must be applied
using the adjacent samples at half sample distance from the
output sample. The trivial sample has a value of p[n] = p0,
as seen in Fig. 4. The previous sample p[n − 0.5] = p0 −
AT , the next sample would be p0+AT but it is higher than
the maximum value, so p[n+ 0.5] = p0 +AT − (pmax −
pmin). Applying the DPW algorithm leads to the desired
output:

yA[n] =
(p[n+ 0.5])2 − (p[n− 0.5])2

4AT
=

=
(p0 +AT + pmin − pmax)

2 − (p0 −AT)2

4AT
.

(3)

For a sawtooth ranging from −1 to 1, we have A = 1,
pmax = 1, and pmin = −1. In this special case the calcu-
lations lead to

y[n] = p0 −
p0
T

+
1

T
− 1. (4)

2. The sample is after the discontinuity (p0 < pmin+AT)
The next sample is p[n+ 0.5] = p0 + AT . The previous

sample can be found before the discontinuity (since p0 −
AT < pmin), so it has a value of p[n− 0.5] = p0 −AT +
(pmax − pmin).

yB [n] =
(p[n+ 0.5])2 − (p[n− 0.5])2

4AT

=
(p0 +AT)2 − (p0 −AT + pmax − pmin)

2

4AT
.

(5)

For the usual sawtooth signal A = 1, pmax = 1 and
pmin = −1. In this special case the calculations lead to

y[n] = p0 −
p0
T
− 1

T
+ 1. (6)

AT
p

min

max

p

transition region

AT

p[n-1]

p[n-0.5]

p[n]

p[n+0.5]
y[n]

Figure 5. EPTR algorithm of the sawtooth signal.

4.2.2 The EPTR sawtooth wave algorithm

The PTR algorithm assumes that the trivial sawtooth signal
is given, that is, the trivial signal generation and correct-
ing the samples in the transition region are handled sepa-
rately [11]. If we were doing the same, then two branch op-
erations would be required: one for detecting the jump of
the trivial signal and one for finding the transition region.
However, a computationally simpler algorithm can be re-
alized by merging the trivial signal generation and sample
correction.

A further advantage of this choice is that since the triv-
ial signal is generated by us, we are able to run the trivial
counter even over pmax without forcing it to jump and ap-
ply the correction using that value. Indeed, substituting
p + 2 into (6) leads to (4). Therefore, there is no need
to check whether the sample to be corrected is before or
after the discontinuity and the two cases can be handled
in the same way. When the transition region is detected,
the corrected output sample is computed, and then the triv-
ial signal jumps, while the relative position of the sample
compared to the transition is irrelevant. This is shown in
Fig. 5.

The next source code shows how the algorithm can be
programmed to generate a sawtooth signal ranging from -1
to 1.

p = p + 2∗T ;
i f p > 1 − T

y = c o r r e c t (p) ;
p = p − 2 ;

e l s e
y = p ;

The function correct(p) is responsible for correcting the
sample in the transition region. For the usual ±1 sawtooth
waveform we simply use (4):

correct(p) = p− p

T
+

1

T
− 1. (7)

For the general case, see Table 1.
Note that the result would be the same if the trivial sig-

nal first jumped, then (6) was applied for correction. The
resulting waveform is equivalent to the signal generated

region A, pmax, pmin (general case) A = 1, pmax = 1, pmin = −1
linear region p p

correct(p) p+ pmin−pmax

2AT p+ pmin−pmax

2 + (pmin−pmax)
2

4AT p− p
T + 1

T − 1

Table 1. Correction functions for the EPTR sawtooth algorithm.

10 20 30 40 50
−1

0

1

Sample Number

(a)

10 20 30 40 50
−1

0

1
x 10

−11

Sample Number

(b)

0 0.5 1 1.5 2 2.5

x 10
4

−100

−50

0

Frequency [kHz]

Le
ve

l [
dB

] (c)

0 0.5 1 1.5 2 2.5

x 10
4

−100

−50

0

Frequency [kHz]

Le
ve

l [
dB

] (d)

Figure 6. The DPW and EPTR sawtooth waveforms (a)
and their difference (b), and the spectrum of the signal gen-
erated with the DPW (c) and EPTR (d) algorithms.

by the DPW and PTR algorithms as seen in Fig. 6. (The
starting phase of the counter p was offset by a half sam-
ple for the EPTR algorithm so that the two curves match
perfectly).

4.3 Triangle

4.3.1 Derivation of the asymmetric triangle wave
generation

First let us consider computing the maximum peak of the
triangle signal. Due to symmetry, the minimum peak can
be calculated similarly. Around the maximum peak the
trivial signal ascends to the value pmax with gradient A,
then it descents with gradient B. When the trivial signal
has a value of p[n] = p0 before the peak, after its value is
p[n + 1] = pmax + 2BT − (pmax − p0 + 2AT) · B/A.
The waveshapers are (x2−p2max)/A for the ascending and
(x2 − p2max)/B for the descending regions, as discussed

AT
p

min

max

p

transition region

AT

BT

BT

transition region

Figure 7. EPTR algorithm of the triangle signal.

in Section 2. Similarly to generating the sawtooth signal,
the two adjacent values of the continuous signal are used
which are at half sample distance from the output sample.

When the sample to be corrected is before the maximum
peak (p0 > pmax − AT), the two adjacent values used are
p[n − 0.5] = p0 − AT and p[n + 0.5] = pmax + BT −
(pmax − p0) ·B/A. The differentiation and scaling gives

((p[n+ 0.5])2 − p2max)/B − ((p[n− 0.5])2 − p2max)/A

4T
=

= a2p
2
0 + a1p0 + a0 (8)

which is included as the correctMax function in Table 2.
Similarly, when the sample is after the peak (p0 > pmax +
BT), the used value to the right is p[n + 0.5] = p0 + BT
and point to the left is still before the peak, so its value is
[p − 0.5] = pmax + AT − (pmax − p0 + 2BT) · A/B.
However, if we apply the same trick as in Sec. 4.2.2, that
is, we are merging the trivial signal generation and sample
correction, we are able to run the trivial counter p above
pmax, and one function (8) can handle both cases.

The derivation is similar for the minimum peak. After de-
termining the adjacent values, the differentiation and scal-
ing gives

((p[n+ 0.5])2 − p2min)/A− ((p[n− 0.5])2 − p2min)/B

4T
=

= b2p
2
0 + b1p0 + b0 (9)

which is included as the correctMin function in Table 2.
It is possible that a high gradient section fits between

two samples. The condition for this case is that |A| ≤

Linear region p
correctMax(p) a2p

2 + a1p+ a0
correctMin(p) b2p

2 + b1p+ b0

Coefficient General Special
a2

B−A
4A2T

−1
4(A−1)T

a1
AT (A+B)+pmax(A−B)

2A2T
2AT−4T+2
4(A−1)T

a0
(B−A)(AT−pmax)

2

4A2T
−(AT−1)2

4T (A−1)

b2
A−B
4B2T

−1
4(B+1)T

b1
BT (B+A)+pmin(B−A)

2B2T
2BT+4T−2
4(B+1)T

b0
(A−B)(BT−pmin)

2

4B2T
−(BT+1)2

4T (B+1)

Table 2. The polynomial correcting functions for the
EPTR asymmetric traingle algorithm. In the special case
B = −A/(A− 1), pmax = 1, pmin = −1.

10 20 30 40 50
−1

0

1

Sample Number

Figure 8. The PTR (gray) and the EPTR (black) asymmet-
ric triangle waveforms.

1/T = fs/f0. This is not equivalent to the sawtooth signal
in which the gradient is infinite, thus this case should be
handled separately. When the trivial signal has a value of
p[n] = p0 before the maximum peak, after it the value is
p[n+1] = p0 + pmin(1−A/B)− pmax(1−A/B). Since
both of the adjacent samples are on linear sections with the
same gradient, the calculation can be performed similarly
to the sawtooth waveform.

4.3.2 The EPTR asymmetric triangle wave algorithm

Figure 7 explains the algorithm for generating an asym-
metric triangle signal. Similarly to the sawtooth signal, the
trivial waveform generation and the corrections are merged,
thus checking whether the trivial generator is in the transi-
tion region is sufficient. The next code segment shows the
implementation of the algorithm for a triangle waveform
ranging from -1 to 1, with variable symmetry.

i f d i r == 1 / / c o u n t i n g up ?
p = p + 2∗A∗T ;
i f p > 1 − A∗T
/ / t r a n s i t i o n r e g i o n ?

y = c o r r e c t M a x (p) ;
p = 1 + (p − 1)∗B /A;
d i r = −1;

e l s e / / l i n e a r r e g i o n
y = p ;

e l s e / / c o u n t i n g down
p = p + 2∗B∗T ;
i f p < −1 − B∗T

/ / t r a n s i t i o n r e g i o n ?

0 0.5 1 1.5 2 2.5
x 10

4

−100

−50

0

Frequency [kHz]

Le
ve

l [
dB

] (a)

0 0.5 1 1.5 2 2.5
x 10

4

−100

−50

0

Frequency [kHz]

Le
ve

l [
dB

] (b)

0 0.5 1 1.5 2 2.5
x 10

4

−100

−50

0

Frequency [kHz]

Le
ve

l [
dB

] (c)

Figure 9. The spectrum of (a) the trivial, (b) the DPW and
(c) the EPTR asymmetric triangle signal with 25% sym-
metry.

y = c o r r e c t M i n (p) ;
p = −1 + (p + 1)∗A/ B ;
d i r = 1 ;

e l s e / / l i n e a r r e g i o n
y = p ;

The correcting functions can be found in Table 2. First
the counting direction must be determined, then the value
of p is checked. When p is in the transition region, the
corrected output sample is computed, the trivial counter is
updated, and finally the counting direction is changed. If it
is not in the transition region, the output simply equals the
trivial counter y = p. The generated signal is equivalent to
the DPW and PTR versions (see Fig. 8 and 9).

The previous code assumed that the values of |A| and |B|
are not higher than fs/f0, so there is no region that fits be-
tween two samples. Although it is also possible to imple-
ment triangle waveforms with high gradient as discussed at
the end of Sec. 4.3.1, it would result in a significantly more
complicated algorithm. The allowed highest gradient case
is close enough to the sawtooth waveform, therefore imple-
menting the extra operations is not rewarding. Figure 10
shows the spectrum of a sawtooth with an infinitely sharp
transition (a) and with a transition that lasts one sampling
instant (b). The only drawback of limiting the gradient is
a slight attenuation at high frequencies, on the other hand,
the aliasing is reduced, since now we are correcting two
samples around the transition. So the asymmetric triangle
with a one sample-time transition can be safely used in-
stead of the sawtooth signal. However, if there is still a
need for the special case, the algorithm can be developed
according to Sec. 4.3.1.

5. COMPARISON

The advantage of the EPTR method over PTR is the re-
duced computational load. For providing a fair comparison
we merged the trivial signal generation and the correction

0 0.5 1 1.5 2 2.5
x 10

4

−100

−50

0

Frequency [kHz]

Le
ve

l [
dB

] (a)

0 0.5 1 1.5 2 2.5
x 10

4

−100

−50

0

Frequency [kHz]

Le
ve

l [
dB

] (b)

Figure 10. Spectrum of (a) the triangle signal with the
highest allowed asymmetry and (b) the sawtooth signal.
The dashed line is the envelope of the ideal spectrum.

Sawtooth Add Mul Branch Total
DPW 2 2 0 4
PTR 2 T 1 3 + T

EPTR 1 + T T 1 2 + 2T
Triangle Add Mul Branch Total

DPW 3 3 0 6
PTR 2 + 2T 6T 2 4 + 8T

EPTR 1 + 2T 6T 2 3 + 8T

Table 3. Computational load of DPW, PTR and EPTR for
sawtooth and triangle signals (T = f0/fs).

also for the PTR algorithm, although [11] and the adher-
ent source codes [13] were handling them separately. Ta-
ble 3 compares the two algorithms in operations per sample
while generating sawtooth and asymmetric triangle wave-
forms.

The PTR algorithm uses an addition operation to incre-
ment the trivial counter. Then with a branch operation it
decides whether the current sample is in the linear or the
transition region. Finally, in the linear region an addition
for the offset is applied and in the transition region a mul-
tiplication and an addition is necessary. When producing
a sawtooth waveform with the EPTR algorithm, using the
shifted trivial signal eliminates the addition operation in
the linear region. Similarly, only the addition operation of
the trivial counter is needed in the linear region during the
asymmetric triangle signal generation.

The resulting waveforms generated with the two algo-
rithms have the same spectrum, as we have seen in Sec. 4.

6. CONCLUSIONS

This paper has proposed a new version of the PTR algo-
rithm. The Efficient Polynomial Transition Regions Al-
gorithm requires around 30% lower number of operations
compared to the PTR algorithm, while results in exactly
the same waveform as that of the DPW and PTR algo-
rithms. Thus, it is the most efficient alias-reduced algo-
rithm up to date, making it an ideal choice for systems with
low computational power requirements. In addition, the
paper has extended the DPW algorithm for generating tri-
angle waves with variable symmetry, and its EPTR imple-

mentation was also presented, allowing continuous tran-
sition between symmetric triangle and sawtooth signals.
Future research includes the extension of the algorithm to
higher orders, and to arbitrary waveforms composed of line
segments (e.g., trapezoidal waves).

Acknowledgments

The work of Balázs Bank has been supported by the Bolyai
Scholarship of the Hungarian Academy of Sciences.

The authors are thankful to Prof. Vesa Välimäki for his
valuable comments.

7. REFERENCES

[1] J. Pekonen and V. Välimäki, “The brief history of vir-
tual analog synthesis,” in Proc. 6th Forum Acusticum.
Aalborg, Denmark: European Acoustics Association,
June 2011, pp. 461–466.

[2] V. Välimäki and A. Huovilainen, “Antialiasing oscilla-
tors in subtractive synthesis,” IEEE Signal Processing
Magazine, vol. 24, no. 2, pp. 116–125, March 2007.

[3] H.-M. Lehtonen, J. Pekonen, and V. Välimäki, “Audi-
bility of aliasing distortion in sawtooth signals and its
implications for oscillator algorithm design,” Journal
of the Acoustical Society of America, vol. 132, no. 4,
pp. 2721–2733, October 2012.

[4] T. Stilson and J. Smith, “Alias-free digital synthesis
of classic analog waveforms,” in in Proc. Interna-
tional Computer Music Conference, Hong Kong, Au-
gust 1996, pp. 332–335.

[5] S. Tassart, “Band-limited impulse train generation us-
ing sampled infinite impulse responses of analog fil-
ters,” IEEE Transactions on Audio, Speech, and Lan-
guage Processing, vol. 21, no. 3, pp. 488–497, March
2013.

[6] E. Brandt, “Hard sync without aliasing,” in Proc. Inter-
national Computer Music Conference, Havana, Cuba,
September 2001, pp. 365–368.

[7] V. Välimäki, J. Pekonen, and J. Nam, “Perceptually in-
formed synthesis of bandlimited classical waveforms
using integrated polynomial interpolation,” Journal of
the Acoustical Society of America, vol. 131, no. 1, pp.
974–986, January 2012.

[8] J. Lane, D. Hoory, E. Martinez, and P. Wang, “Mod-
eling analog synthesis with DSPs,” Computer Music
Journal, vol. 21, no. 4, pp. 23–41, Winter 1997.

[9] V. Välimäki, “Discrete-time synthesis of the sawtooth
waveform with reduced aliasing,” IEEE Signal Pro-
cessing Letters, vol. 12, no. 3, pp. 214–217, March
2005.

[10] V. Välimäki, J. Nam, J. O. Smith, and J. S. Abel,
“Alias-suppressed oscillators based on differentiated
polynomial waveforms,” IEEE Transactions on Audio,

Speech, and Language Processing, vol. 18, no. 4, pp.
786–798, May 2010.

[11] J. Kleimola and V. Välimäki, “Reducing aliasing from
synthetic audio signals using polynomial transition re-
gions,” IEEE Signal Processing Letters, vol. 19, no. 2,
pp. 67–70, February 2012.

[12] “Moog Slim Phatty user’s manual,” Moog Music,
Inc., 2010, URL: http://www.moogmusic.com/sites/
default/files/slim phatty users manual.pdf.

[13] J. Kleimola and V. Välimäki, “Polynomial Tran-
sition Regions [Online],” November 2011, URL:
http://www.acoustics.hut.fi/go/spl-ptr.

	 1. Introduction
	 2. Differentiated Polynomial Waveform algorithm
	 3. Polynomial Transition Regions algorithm
	 4. Efficient Polynomial Transition Region Algorithm
	4.1 Eliminating the Half Sample Delay in the Linear Region
	4.2 Sawtooth
	4.2.1 Derivation of the sawtooth wave generation
	4.2.2 The EPTR sawtooth wave algorithm

	4.3 Triangle
	4.3.1 Derivation of the asymmetric triangle wave generation
	4.3.2 The EPTR asymmetric triangle wave algorithm

	 5. Comparison
	 6. Conclusions
	 7. References

