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Robust Loss Filter Design for Digital Waveguide
Synthesis of String Tones
Balázs Bank and Vesa Välimäki, Senior Member, IEEE

Abstract—A robust loss filter design method is presented for
digital waveguide string models, which can be used with high filter
orders. The method aims at minimizing the decay time error in
partials of the synthetic tone. This is achieved by a new weighting
function based on the first-order Taylor series approximation of
the decay time errors. Smoothing of decay time data and requiring
the design to be minimum-phase are also proposed to facilitate the
stability of the design. The new method is applicable to analysis-
based sound synthesis of piano and guitar tones, for example.

Index Terms—Acoustic signal processing, digital filter design,
electronic music, music synthesis, musical instruments.

I. INTRODUCTION

PHYSICAL MODELING of musical instruments using dig-
ital waveguides [1] has been an active field over the past

decade. This letter describes a robust technique for high-order
loss filter design for digital waveguide models of string instru-
ments. Previous methods have been useful in designing first-
order loss filters but have turned out to be imperfect in the
case of higher filter orders. The proposed method optimizes for
decay times, which was found to be a perceptually meaningful
criterion.

Section II of this letter describes the basic idea of digital
waveguide synthesis. The commonly used technique for loss
filter design is presented in Section III. A new design method is
proposed in Section IV based on a special weighting function,
and Section V discusses the phase specification for loss filter de-
sign. The properties of the new method are demonstrated in the
case of weighted least squares IIR filter design in Section VI.
Finally, conclusions are given in Section VII.

II. DIGITAL WAVEGUIDE STRING MODEL

The digital waveguide [1] originates from the discretization
of the traveling-wave solution of the wave equation. By as-
suming linearity, all the losses and dispersion of the string and
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the terminations can be lumped to one point of the model [1].
Thus, the model reduces to a delay line and a filter in a feedback
loop [2], [3].

Such a model has the transfer function of
where is the length of the delay line in samples, and
is the loop filter. This model is capable to generate a quasi-har-
monic tone consisting of exponentially decaying sinusoids. The
partial frequencies are determined by the delay line length
and the phase delay of the filter . The decay times of the
partials are controlled by the magnitude frequency response of
the loop filter .

In [4], two sophisticated filter design techniques presented in
[5] are discussed, which design the loop filter as a whole.
The results show that these complicated methods usually re-
sult in filter magnitudes larger than one, i.e., in unstable feed-
back loops. Stable loop filters have been obtained by neural-net-
work-based optimization [6]. However, the required order of the
filters are of a magnitude larger than we are interested in this
study. In general, designing is problematic because dif-
ferent accuracy is required with respect to the magnitude and
phase response of the filter.

To simplify the design, the filter is usually factored
to three parts: , where is
responsible for the losses and for the dispersion. The
fractional delay filter is used for fine-tuning the fun-
damental frequency of the tone. A further advantage of this ap-
proach is that the string parameters, such as the length or losses
due to the touch of the finger, can be changed separately during
playing. Here we concentrate on designing the loss filter .

III. L OSSFILTER DESIGN

In digital waveguide synthesis, the goal is usually to produce
synthetic sounds similar to real instruments. In the case of string
instruments, a robust analysis method consists in measuring the
decay times of the partials of a recorded single tone [3]. From the
decay times, the required loop gain for each partial frequency
can be calculated by where is the funda-
mental frequency of the string, andis the decay time constant
of the th partial. The loop gain values together with the par-
tial frequencies constitute the magnitude specification for the
filter , i.e., .

A simple and common technique for designing the
filter is minimizing the mean-squared error

, where refers to the number
of measured partials. Nevertheless, problems arise because the
decay times are a nonlinear function of the filter magnitude
response, namely . Therefore, as
approaches unity, the same amount of magnitude deviation
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will correspond to a larger and larger difference in the
decay time . Moreover, if the magnitude response of

exceeds unity at one of the partial frequencies, the digital
waveguide becomes unstable, since the loop gain is larger than
one.

In [3], an ad hoc weighting function for
the one-pole loop filter is proposed, which helps to lessen these
problems. A robust method designing the one-pole loss filter
was presented in [7, pp. 87–91]. Bank [7, pp. 82–87] presented
a method for high-order loss filter design based on the transfor-
mation of the specification. A two-step procedure for high-order
loss filter design applying polynomial fitting was proposed in
[8]. In the following, a simple and robust method is presented,
which can be used with any filter order and with different filter
design algorithms.

IV. NEW DESIGN METHOD

The role of the loss filter is to set the decay times. Therefore,
it is reasonable to minimize the error with respect to the time
constants, which was found to be a perceptually appropriate
criterion. For example, in the mean-squares sense, the error is

where are the prescribed and are
the approximated decay times. The decay times of the synthetic
tone can be computed from the magnitude of the designed filter

by . If the func-
tion is approximated by the first-order Taylor polynomial
around the specification , we obtain

(1)

which is a simple mean-squares minimization with weights
, where is the differential of the function

at the specified magnitude . Similar derivations can be
performed for other error criteria (e.g., minimax). Note that
now the weights depend on the magnitude specification and
not on the frequencies, which is more common in digital filter
design.

The first derivate of is . For
, which is generally the case, can

be approximated by . This comes
from the first-order Taylor series approximation of . Since

does not depend on, it can be omitted from the weighting
function. Hence, the weighting function becomes

(2)

A similar weighting function based on the time-constant error
has been derived for the norm in [5, pp. 182–183].

The approximation of (1) is accurate only for , which
means that the magnitude of the designed filter is close to the
specification. Caused by several factors, the measured decay
times have a great variance [8], which cannot be followed by fil-
ters of reasonable order ( ). Therefore, it is worthwhile
to smooth the decay time data, e.g., by convolving them with

a short window function before computing the specification.
This way, the condition can be assured.

V. PHASE

The magnitude specification and the weights can be
directly used for linear-phase finite-impulse response filter de-
sign. However, by doing so, half of the degrees of freedom are
wasted for demanding the impulse response to be symmetric. In
practice, it is not necessary to have an exactly linear-phase loss
filter, since a nonlinear phase response corresponds to a slightly
inharmonic tone, which does not corrupt the sound quality.

Designing minimum-phase filters is a pleasant choice, since
then the phase specification can be easily computed from the
logarithm of the magnitude specification by Hilbert transform
[9]. Note that the Hilbert transform needs magnitude data for the
entire digital frequency band and on a linear frequency scale.
The missing data points in the high-frequency region are pro-
posed to be calculated by designing a one-pole filter for the
specification, e.g., by one of the methods presented in [7, pp.
87–91] or in [3]. Then, the magnitude response of the one-pole
filter is used as a specification for the high frequencies. This is
reasonable, since the loss filter behavior in the high-frequency
region has no significant influence on the resulted tone, and such
a simple specification is easily fulfilled by the filter design. At
the original data points of the highest specified frequencies, a
crossfade is applied to avoid discontinuities.

VI. DESIGN EXAMPLES

Examples are presented for IIR filter design. For the ex-
amples, the weighted least squares method implemented in
MATLAB’s invfreqz function is used [10]. The decay time
data are smoothed by convolving them with a triangular window

. Here, the last five data points of the measured
specification are linearly mixed to the magnitude response
of the designed one-pole filter. The magnitude response on a
dense linear grid is calculated by using third-order polynomial
interpolation, which was found to be accurate enough. The
phase response on this dense grid is computed by the Hilbert
transform and then resampled at the frequencies of the original
specification points.

The decay time data used for this example was calculated
from a piano tone ( 92.2 Hz), near-field recording.
The decay rate of the partials up to 6.57 kHz were measured,
which yielded data for 64 partials. The sampling frequency is

22.05 kHz. The smoothed decay times are displayed with
points in Fig. 1(c). The filter magnitude specification calculated
from the smoothed decay times has been plotted with points in
Fig. 1(a) and (b).

IIR filters of order 2, 8, and 16 were designed. The magnitude
responses are depicted in Fig. 1(a), and Fig. 1(b) shows the same
curves magnified for the most relevant frequency and magnitude
region. Fig. 1(c) shows the corresponding decay times.

Fig. 1 reveals that the magnitude error is smaller where the
specification is closer to unity, which is necessary for the
equal accuracy in decay times. Similar results have been ob-
tained with several cases of piano and guitar data. The magni-
tude response of the designed filters never exceeded unity, i.e.,
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Fig. 1. IIR loss filter magnitude responses (a) for the full frequency band and
(b) at low frequencies up to 2.5 kHz, and the corresponding decay times (c) for
filter orders of two (dashed–dotted line), 8 (dashed line), and 16 (solid line). The
specification is depicted with dots in each case.

the digital waveguide loop remained always stable. Proper lis-
tening tests should be conducted to find out the sufficient filter
order that enables natural-sounding resynthesis.

VII. CONCLUSION

A new method was presented that is targeting to optimize
the decay times of the digital waveguide and that can be used
for high filter orders. The weighting is based on the first-order
Taylor series approximation of the decay time errors. Smoothing
of target decay time specification is necessary in the case of high
variance of measured decay times. Requiring the design to be
minimum-phase is also proposed. Examples of weighted least
squares IIR loss filter design were shown. The new method is
useful in analysis-based synthesis of string instrument sounds,
such as piano and guitar tones.

ACKNOWLEDGMENT

The authors would like to thank C. Erkut, I. Kollár, and L.
Sujbert for their helpful comments.

REFERENCES

[1] J. O. Smith, “Physical modeling using digital waveguides,”Comput.
Music J., vol. 16, no. 4, pp. 74–91, Winter 1992.

[2] D. A. Jaffe and J. O. Smith, “Extensions of the Karplus–Strong plucked-
string algorithm,”Comput. Music J., vol. 7, no. 2, pp. 56–69, 1983.

[3] V. Välimäki, J. Huopaniemi, M. Karjalainen, and Z. Jánosy, “Physical
modeling of plucked string instruments with application to real-time
sound synthesis,”J. Audio Eng. Soc., vol. 44, no. 5, pp. 331–353, May
1996.

[4] J. Laroche and J.-M. Jot, “Analysis/synthesis of quasiharmonic sounds
by use of the Karplus–Strong algorithm,” inProc. 2nd French Congress
Acoustics, Apr. 1992.

[5] J. O. Smith, “Techniques for digital filter design and system identifica-
tion with application to the violin,” Ph.D. dissertation, Stanford Univ.,
Stanford, CA, June 1983.

[6] A. W. Y. Su and S.-F. Liang, “A new automatic IIR analysis/synthesis
technique for plucked string instruments,”IEEE Trans. Speech Audio
Processing, vol. 9, pp. 747–754, July 2001.

[7] B. Bank, “Physics-based sound synthesis of the piano,” Master’s
thesis, Budapest Univ. Technol. and Economics, Budapest, Hungary,
May 2000. Published as Rep. 54 of Helsinki Univ. of Technol.,
Lab. of Acoustics and Audio Signal Processing. [Online] Available:
http://www.mit.bme.hu/~bank.

[8] C. Erkut, “Model order selection techniques for the loop filter design
of virtual instruments,” inProc. 5th Conf. Systemics, Cybernetics and
Informatics, vol. 10, Orlando, FL, July 2001, pp. 529–534.

[9] A. V. Oppenheim and R. W. Schafer,Digital Signal Pro-
cessing. Englewood Cliffs, NJ: Prentice-Hall, 1975.

[10] Matlab 5 Manual. Natick, MA: Mathworks, 1996.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


