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Perceptually Motivated Audio Equalization
Using Fixed-Pole Parallel Second-Order Filters

Balázs Bank

Abstract—In audio, equalizer design should take into account
the frequency resolution of the auditory system. In this paper,
this is accomplished by the fixed-pole design of parallel second-
order filters. The design process has two steps: first, the poles of
the filter are set according to the desired frequency resolution.
Then, the feedforward coefficients of the second-order filters are
determined by a linear least squares solution. The proposed
parallel filter achieves effectively the same equalizationresults
as the Kautz filter, but requires 33% fewer multiplications and
additions.

Index Terms—audio signal processing, IIR digital filters, room
response equalization.

I. I NTRODUCTION

A UDIO equalization using digital signal processors
(DSPs) has been a subject of research for more than two

decades. It generally means the correction of the magnitude
(and sometimes the phase) response of an audio chain. Typical
examples include loudspeaker equalization based on anechoic
measurements [1], [2], [3], or the correction of loudspeaker-
room response [4], [5], [6], [7]. Because the systems to
be equalized are generally of significantly higher order than
what is practical for an equalizer implementation, only the
overall response of the system can be corrected. This overall
correction should be driven by perceptual principles [5]. For
example, typically the logarithmic frequency scale is usedin
audio engineering and a fractional-octave (e.g., third-octave)
smoothed magnitude response is used to estimate perceived
timbre.

Another reason for logarithmic (or logarithmic-like) fre-
quency resolution is that an audio system often has multiple
outputs, like multiple listening positions on a sofa. Transfer
functions measured at different positions in space have more
similarity at low frequencies than at high frequencies, dueto
the different wavelengths of sound. Therefore, higher resolu-
tion is required at the lower end of the spectrum compared to
the upper one. An overly precise correction at high frequencies
for one measurement position usually worsens the response at
other points in space [5].

A straightforward choice for equalizer design is the use
of standard finite impulse response (FIR) or infinite impulse
response (IIR) design algorithms. Unfortunately, neitherof
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these can meet the goal of logarithmic frequency resolution.
Linear frequency resolution is inherent in FIR filters, and while
IIR filters could have a theoretically higher pole density atlow
frequencies, the logarithmic frequency scale is so distorted
compared to the linear scale that even weighted filter design
cannot give satisfactory results [8].

Parametric equalizers, in which the center frequency,Q
value, and gain of the sections are set manually, are com-
monly used for the magnitude equalization of audio systems.
Automatic parameterization of parametric equalizers has been
successfully demonstrated in [3] and [6], using nonlinear
parameter estimation algorithms.

The most widely used method for achieving a perceptually
motivated frequency resolution is the application of frequency
warping (see, e.g., [2], [8], [9], [10]). In warped filters, each
unit delayz−1 of the traditional FIR or IIR filters is replaced
by a first-order allpass filter. Comparison of FIR, IIR, and
warped filter equalization of loudspeakers is given in [2],
showing that lower filter orders can be used compared to
traditional structures, when frequency warping is applied.

Kautz filters can be seen as the generalization of warped
FIR filters, where the allpass filters in the chain are not
identical [11], [12]. As a result, the frequency resolution
can be allocated arbitrarily by the choice of the filter poles.
The Kautz structure is a linear-in-parameter model, where the
basis functions are the orthonormalized versions of decaying
exponentials [11], [12]. For audio applications, significantly
lower order Kautz filters are sufficient compared to traditional
IIR filter designs. However, the savings in filter order do not
directly translate to savings in computational cost, because
Kautz filters require a complicated series-parallel structure for
their implementation.

Recently, a fixed-pole design method has been introduced
for parallel second-order filters, for the application of instru-
ment body modeling [13]. It has been shown that effectively
the same results can be achieved by the parallel filters as with
Kautz filters for the same filter order, without the disadvantage
of a complicated filter structure. This letter presents the
application of the method for audio equalization and proposes
a technique for designing the parallel equalizer from the
measured system response and desired target response directly,
without inverting the system response. An illustrative example
of loudspeaker–room equalization is presented.

II. T HE PARALLEL FILTER

Implementing IIR filters in the form of parallel second-
order sections has been used traditionally because it has better
quantization noise performance and the possibility of code
parallelization. The parameters of the second-order sections
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are usually determined from direct form IIR filters by partial
fraction expansion [14].

Here the poles are set to a predetermined (e.g., logarith-
mic) frequency scale, leaving the zeros as free parameters
for optimization. In the case of modeling a desired impulse
response, the parallel filter uses the outputs of the second-
order sections (exponentially decaying sinusoidal functions) as
basis functions of a linear-in-parameter model. For equalizer
design, the measured system response is filtered by the second-
order sections, and these signals are the basis functions of
the linear-in-parameter model. Thus, the parameter estimation
can be done by a simple LS algorithm, similar to what was
suggested for Kautz filters [12].

Note that fixed-pole IIR filters are often used in adaptive
filtering (see, e.g., [15]) because of their favorable convergence
properties. Instead, in this letter the motivation for fixing the
poles is to control the frequency resolution of the design.

A. Problem formulation

Every transfer function of the formH(z−1) = B(z−1)/
A(z−1) can be rewritten in the form of partial fractions:

H(z−1) =

P∑

i=1

ci
1

1 − piz−1
+

M∑

m=0

bmz−n (1)

wherepi are the poles, either real valued or forming conjugate
pairs, if the system has a real impulse response. The second
sum in (1) is the FIR filter part of orderM . Note that in the
case of pole multiplicity, terms of higher order also appearin
(1).

The resulting filter can be implemented directly as in (1),
forming parallel first-order complex filters, and the estimation
of the parameters can be carried out as described in [13].
However, it is more practical to combine the complex pole
pairs to a common denominator. This results in second-
order sections with real valued coefficients, which can be
implemented more efficiently. Those fractions of (1) that have
real poles can be combined with other real poles to form
second-order IIR filters, yielding a canonical structure. Thus,
the transfer function becomes

H(z−1) =

K∑

k=1

dk,0 + dk,1z
−1

1 + ak,1z−1 + ak,2z−2
+

M∑

m=0

bmz−n (2)

whereK is the number of second order sections. The filter
structure is depicted in Fig. 1.

The poles of the second-order sections can be determined
by any method suggested for the case of Kautz filters [12].
Positioning the poles logarithmically is particularly useful for
audio equalizers,

ϑk =
2πfk

fs

(3)

pk = Rϑk/πe±jϑk (4)

whereϑk are the pole frequencies in radians determined by the
logarithmic frequency seriesfk and the sampling frequency
fs. The pole radii form an exponentially damped sequence
approximating constantQ resolution. The pole radius atfs/2
is set by the damping parameterR [12].
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Fig. 1. Structure of the parallel second-order filter.

In general, the pole set does not have to be strictly logarith-
mic, but can also focus on specific frequencies by increasing
the pole density in that region, which will be utilized in Section
III.

B. Filter design

First, we investigate how the parameters of the parallel filter
can be estimated to match a desired filter response. Because
the poles of the IIR filter are predefined, (2) becomes linear
in its free parametersdk,0, dk,1, and bm, which can already
be estimated in the frequency domain.

However, it is simpler to find the coefficients in the time
domain. The impulse response of the parallel filter is given by

h(n) =

K∑

k=1

dk,0uk(n)+dk,1uk(n−1)+

M∑

m=0

bmδ(n−m) (5)

whereuk(n) is the impulse response of the transfer function
1/(1+ak,1z

−1+ak,2z
−2), which is an exponentially decaying

sinusoidal function, andδ(n) is the discrete unit impulse.
Naturally, (5) is linear in parameters, similar to its z-

transform counterpart (2). Writing (5) in matrix form yields

h = Mp (6)

wherep = [d1,0, d1,1, . . . dK,0, dK,1, b0 . . . bM ]T is a column
vector composed of the free parameters. The rows of the
modeling signal matrixM contain the modeling signals, which
are uk(n) and their delayed counterpartsuk(n − 1), and for
the FIR part, the unit impulseδ(n) and its delayed versions up
to δ(n−M). Finally,h = [h(0) . . . h(N)]T is a column vector
composed of the resulting impulse response. The problem
reduces to finding the optimal parameterspopt such that
h = Mpopt is closest to the target responseht. If the error
function is evaluated in the mean squares sense, the optimum
is found by the well known LS solution

popt = (MHM)−1MHht (7)

whereMH is the conjugate transpose ofM.

C. Direct equalizer design

Equalizing a system (such as a loudspeaker) by the parallel
filter can be done by inverting the system response and
designing the parallel filter as outlined in the previous section.
This section proposes a method for designing the equalizer
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directly without inverting the system response. This simplifies
the design significantly, and avoids many problems presented
by the inversion of the measured transfer function. The basic
idea of the method described here is similar to that used for
Kautz filters [12].

Designing an equalizer requires that the resulting response
h(n), which is the convolution of the equalizer response
heq(n) and the system responsehs(n), is close to the target
responseht(n) (which can be a unit impulse, for example).
In our case, this means that the input of the parallel filter is
the system responsehs(n) and its outputh(n) should match
the target responseht(n). The output of the parallel filter is
computed as

h(n) = heq(n) ∗ hs(n) =
K∑

k=1

dk,0uk(n) ∗ hs(n) + dk,1uk(n − 1) ∗ hs(n)+

M∑

m=0

bmδ(n − m) ∗ hs(n) =

K∑

k=1

dk,0sk(n) + dk,1sk(n − 1) +

M∑

m=0

bmhs(n − m) (8)

where ∗ denotes convolution. The signalsk(n) = uk(n) ∗

hs(n) is the system responsehs(n) filtered by1/(1+ak,1z
−1+

ak,2z
−2). It can be seen that (8) has the same structure as (5).

Therefore, the parametersdk,0, dk,1, andbm can be estimated
in the same way as presented in the previous section. Similarly,
writing this in a matrix form yields

h = Meqp (9)

where the rows of the new signal modeling matrixMeq

containsk(n), sk(n− 1), and the system responsehs(n) and
its delayed versions up tohs(n − M). Then, the optimal set
of parameters is again obtained by

popt = (MH
eqMeq)

−1MH
eqht. (10)

III. D ESIGN EXAMPLE AND COMPARISON

Figure 2 (a) displays the magnitude response of a two-
way floor-standing loudspeaker measured at 2 m distance in
a normal living room. The minimum-phase version of the
measured loudspeaker–room response is used as a system
responsehs(n) and the targetht(s) is a unit impulse filtered
by a fourth-order high-pass filter with a cutoff frequency of
30 Hz.

As expected, the 50th-order IIR equalization presented in
Fig. 2 (b) corrects the high-frequency anomalies only due to
its linear frequency resolution. Fig. 2 (c) shows a warped
IIR (WIIR) filter estimated by using a warping parameter
λ = 0.75. The filter has been “dewarped” to a cascade of
second-order IIR filters for efficient implementation, as done in
[10] for WFIR filters. With the WIIR filter, the low frequencies
are still poorly equalized. By choosing higherλ values, the
accuracy could be increased at low frequencies, but high-
frequency accuracy would be reduced. A major problem of
the WIIR equalizer is that some of the otherwise inaudible

dips are compensated by sharp peaks [see Fig. 2 (e)], which
leads to poor off-axis performance and audible ringing. More-
over, dewarping to second-order sections can be numerically
unstable when such highQ resonances are present (i.e., poles
are too close to the unit circle).

Figure 3 (a) shows the equalization of the same
loudspeaker–room response by a 50th-order WFIR filter de-
signed with λ = 0.75, then dewarped [10]. This results
in a 50th-order cascade IIR filter having 50 equal poles at
p = λ = 0.75. The on-axis equalization is similar to the WIIR
case. However, the WFIR equalizer produces better off-axis
behavior compared to its WIIR counterpart due to its smoother
response displayed in Fig. 3 (d), and can be dewarped without
numerical problems.

Fig. 3 (b) shows the room response equalized by a 50th
order Kautz filter, which provides a flat room response when
third-octave smoothed. The proposed parallel equalizer using
the same pole set produces the same result as the Kautz
filter, as displayed in Fig. 3 (c). This equivalence is clearly
observed by comparing the magnitude responses of the Kautz
and parallel equalizers in Fig. 3 (e) and (f).

The logarithmically positioned poles of the Kautz and par-
allel filters (displayed by vertical lines in the bottom of Fig. 3)
were chosen to have higher density at low frequencies, to
focus on the more problematic region of the transfer function.
This demonstrates that the resolution of the equalization is
controlled by the pole density, as can be observed in Fig. 3
(e) and (f). Since the two methods inherently provide a smooth
equalizer response, the narrow dips of the system response are
not equalized, providing better off-axis performance.

In this example, the FIR part of the parallel filter is not
utilized. The FIR part has been applied to non-minumum-
phase filter design in [13], and can be used for joint magnitude
and phase equalization, producing results similar to Kautzfilter
with poles placed on the origin [12].

In summary, for the same filter order the parallel filter
achieves better results than IIR, WFIR, and WIIR filters
designed by the Steiglitz-McBride method. Furthermore, the
parallel filter yields the same equalization as the Kautz filter.
This is expected because the Kautz filter uses the orthonor-
malized version of the basis functions of the parallel filter;
thus, the basis functions of the two methods span the same
approximation space.

In contrast to the Kautz filter, the structure of the parallel
filter has to be extended in the presence of pole multiplicity.
Additionally, the non-orthonormality of the basis functions can
make the parameter estimation more sensitive numerically.
However, pole multiplicity is avoided because the poles are
set by the user, and the LS parameter estimation seems to be
robust even for higher filter orders (see [13] for examples).
On the other hand, by giving up the orthonormality of the
basis functions, the number of multiplications and additions is
reduced by 33% (see Table I). Additional benefits are expected
due to the potential of full code parallelization.

IV. CONCLUSION

This letter has presented a fixed-pole design method for
parallel second-order filters as applied to perceptually mo-
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Fig. 2. Minimum-phase room response equalization: (a) unequalized
loudspeaker-room response, (b) equalized by a 50th-order IIR filter estimated
by MATLAB’s Steiglitz–McBride method in system identification mode, and
(c) by a 50th-order WIIR filter estimated by the Steiglitz–McBride method in
the warped domain. The magnitude responses of the equalizers are presented
by (d) for the IIR filter and (e) for the WIIR filter. In (a)–(c),the dashed lines
show third-octave smoothed versions offset by 3 dB for clarity.
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Fig. 3. Minimum-phase room response equalization for the same system as
for Fig. 2. Room response (a) equalized by a 50th-order warped FIR filter
estimated by the Steiglitz–McBride method, (b) equalized by a 50th-order
Kautz filter, and (c) equalized by a 50th-order parallel filter. The magnitude
responses of the equalizers are presented by (d) for the WFIRfilter, (e) for
the Kautz filter, and (f) for the parallel filter. In (a)–(c), the dashed lines show
third-octave smoothed versions offset by 3 dB for clarity. The pole frequencies
of the Kautz and parallel filters are displayed by vertical lines in the bottom
of the figure.

tivated audio equalizer design. The design steps are similar
to those of Kautz equalizers: first, the pole set is determined
according to the desired frequency resolution, then the weights
(zeros) of the filter are found by a closed-form LS expression
from the system response and target response directly. The
parallel filter produces effectively the same results as the
Kautz filter, but requires one third fewer multiply-and-add
operations, and has a fully parallel structure. Compared to

Multiplications Additions
Kautz filter 3N + 2 3N + 1

Parallel filter 2N + 1 2N

TABLE I
NUMBER OF MULTIPLICATIONS AND ADDITIONS REQUIRED FOR FILTER

ORDERN .

IIR, warped FIR, and warped IIR filters estimated by the
Steiglitz–McBride method, better results are achieved forthe
same filter order. An in-depth comparison of parallel filter with
the Kautz filter and other filter-design techniques is left for
future research. Matlab code for the parallel filter is available
at: http://www.acoustics.hut.fi/go/spl08-parfilt.
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