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Logarithmic Frequency Scale Parallel Filter Design
with Complex and Magnitude-Only Specifications

Balázs Bank

Abstract—Recently, the fixed-pole design of second-order par-
allel filters has been introduced to accomplish arbitrary (e.g.
logarithmic) frequency resolution for transfer function m odeling
and equalization. The frequency resolution is set by the pole
frequencies, and the resulting filter response correspondsto
the smoothed (moving-average filtered) version of the target
frequency response. This letter presents the frequency-domain
version of the design algorithm for complex and real filter
coefficients. The proposed frequency-domain design, besides its
computational benefits, allows the use of frequency weighting. In
addition, a magnitude-only variation of the algorithm is proposed.
Examples of loudspeaker–room modeling and equalization are
presented.

Index Terms—IIR digital filters, logarithmic frequency res-
olution, audio signal processing, loudspeaker–room response
equalization.

I. I NTRODUCTION

T HE problem of modeling or equalizing a given transfer
function by a digital filter comes up frequently in the field

of digital signal processing. As opposed to the linear frequency
resolution of traditional FIR and IIR design algorithms, some
tasks require more flexible allocation of frequency resolution.
For example, in audio applications logarithmic frequency res-
olution is desirable, since that corresponds to the resolution of
human hearing. For this, various design approaches have been
developed, including frequency warped filter design [1], [2]
and Kautz filters [3]. Recently, the fixed-pole design of parallel
second-order filters has been introduced [4]. The parallel filter
requires 33% percent fewer arithmetic operations comparedto
Kautz filters, while it yields the same transfer function [5].

Filter design (or system identification) is relatively straight-
forward for low-order systems where the model order can be
in the same range as the order of the system. In this case,
the poles of the model should correspond to system poles if
the optimization procedure was successful. However, when the
system order is high (e.g., for a room response it is to the
order of hundred thousand), only the overall characteristics
can be modeled due to practical limitations in the model order.
Traditional system identification methods (like the Prony or
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Fig. 1. Filter design comparison. Thick solid lines show thefrequency
responses of the (a) 32nd order IIR filter, (b) 32nd order warped IIR filter
designed withλ = 0.9, (c) 32nd order parallel filter designed in the time
domain, and (d) 32nd order parallel filter designed in the frequency domain.
The thin solid lines show the filter specification (minimum-phase loudspeaker–
room response) in all cases. The vertical lines indicate thepole frequencies
of the parallel filters.

Steiglitz-McBride algorithms) lead to poor results because the
optimization algorithm will pick and model a few resonant
system poles, while most of the other poles are not taken into
account. This is illustrated in Fig. 1 (a) for a 32nd order IIR
filter designed by the Steiglitz-McBride algorithm (thick line)
for modeling a minimum-phase loudspeaker–room response
(thin line). While the allocation of frequency resolution is
improved when designing a warped IIR filter [1], [2], the
problem of modeling only a few resonances still remains, as
can be seen in Fig. 1 (b).

In the case of approximate modeling of high-order systems
better results are obtained if the filter poles are predefined
according to the desired frequency resolution, and only the
zeros are free parameters during parameter estimation. It has
been shown in [5] that the fixed-pole design of second-order
parallel filters results in a filter response that is similar to
smoothing (moving average filtering) the target frequency
response. The frequency resolution is defined by the pole-
frequency distances [5].

This is illustrated in Fig. 1 (c) where a 32nd order parallel
filter is designed using logarithmically spaced pole frequencies
from 20 Hz to 20 kHz, indicated by vertical lines in Fig. 1.
Now the filter response (thick line) follows the local average
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Fig. 2. Structure of the parallel second-order filter.

of the specification (thin line), resulting in a better overall fit
compared to IIR or warped IIR filters designed by the Steiglitz-
McBride algorithm. Further comparisons to IIR, warped FIR,
warped IIR, and Kautz filter designs are given in [4], [5], [6].

This letter presents the frequency-domain version of the
fixed-pole parallel filter design algorithm. In Sec. II the least-
squares equations are developed for the case of complex
and real filter coefficients. In Sec. III a variation of the
algorithm is presented, which can be used for magnitude-only
specifications. Section IV introduces the use of frequency-
dependent weighting and Sec. V presents the frequency-
domain direct equalizer design method based on a system-
identification approach. Finally, Sec. VI concludes the letter.

II. BASIC DESIGN ALGORITHM

The general form of the parallel filter consists of a parallel
set of second-order sections and an optional FIR filter path:

H(z−1) =

K
∑

k=1

dk,0 + dk,1z
−1

1 + ak,1z−1 + ak,2z−2
+

M
∑

m=0

bmz−n (1)

whereK is the number of second order sections. The filter
structure is depicted in Fig. 2.

A. Pole positioning

As the first step of filter design, the pole frequenciesfk are
set to a logarithmic frequency scale in the frequency range
of interest. For obtaining a1/β octave resolution,β/2 poles
are inserted in each octave [5]. Then, the poles of the parallel
filter, pk, are computed using the following formulas [5]:

θk =
2πfk

fs

(2a)

pk = e−
∆θ

k

2 e±jθk , (2b)

where θk are the pole frequencies in radians given by the
predetermined analog frequency seriesfk and the sampling
frequencyfs. The bandwidth of thekth second-order section
∆θk is computed from the neighboring pole frequencies

∆θk = θk+1−θk−1

2
for k = [2, .., K − 1]

∆θ1 = θ2 − θ1

∆θK = θK − θK−1. (3)

Equation (2b) sets the pole radii|pk| in such a way that the
transfer functions of the parallel sections cross approximately
at their -3dB point (the approximation was obtained by as-
suming|pk| ≈ 1).

B. Weight estimation

Once the denominator coefficients are determined by the
poles (ak,1 = pk +pk andak,2 = |pk|

2), the problem becomes
linear in its free parametersdk,0, dk,1 andbm.

Writing (1) in matrix form for a finite set ofϑn angular
frequencies yields

h = Mp (4)

wherep = [d1,0, d1,1, . . . dK,0, dK,1, b0 . . . bM ]T is a column
vector composed of the free parameters. The rows of the
modeling matrix M contain the transfer functions of the
second-order sections1/(1+ak,1e

−jϑn+ak,2e
−j2ϑn) and their

delayed versionse−jϑn/(1+ ak,1e
−jϑn + ak,2e

−j2ϑn) for the
ϑn angular frequencies. The last rows ofM are the transfer
functions of the FIR parte−jmϑn for m = [0 . . . M ]. Finally,
h = [H(ϑ1) . . . H(ϑN )]T is a column vector composed of the
resulting frequency response.

Now the task is to find the optimal parameterspopt such
that h = Mpopt is closest to the target frequency response
ht = [H(ϑ1)t . . .H(ϑN )t]

T . If the error is evaluated in the
mean squares sense

eLS =

N
∑

n=1

|H(ϑn) − H(ϑn)t|
2 = (h − ht)

H(h − ht), (5)

the minimum of (5) is found by the well-known least-squares
(LS) solution

popt = (MHM)−1MHht (6)

whereMH is the conjugate transpose ofM.
Note that (6) assumes a filter specificationHt(ϑn) given for

the full frequency rangeϑn ∈ [−π, π]. Thus, the design can
be used for obtaining filters with complex coefficients, since
the frequency specification is not constrained to be conjugate-
symmetric.

However, in most of the cases we are interested in filters
with real coefficients: in this case either the user has to ensure
thatHt(−ϑn) = Ht(ϑn), whereHt is the complex conjugate
of Ht, or, in the case of one sided (ϑn ∈ [0, π]) specifications,
the following formula has to be used instead of (6):

popt = (Re
{

MHM
}

)−1Re
{

MHht

}

(7)

whereRe{A} corresponds to taking the real part ofA.

C. Comparison to time-domain filter design

The time-domain and frequency-domain versions of
parallel-filter design provide the same result if theϑn frequen-
cies are distributed evenly according to a linear frequencyscale
and the grid is dense enough. This is due to Parseval’s theorem:
if the energy of the estimation error is minimal in the time-
domain, so is it in the frequency-domain. However, if theϑn

frequencies are given at a logarithmic frequency scale, slightly
different results are achieved, as displayed in Fig. 1 (d) for a 16
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section (32nd order) design. Since the measured loudspeaker
response was available on a linear frequency scale, a 128 point
logarithmic frequency scale specification was computed by
averaging the neighboring linear frequency bins (not displayed
in Fig. 1). The slight improvement compared to the time-
domain method (c) visible at low frequencies arises because
now the error is minimized on a logarithmic frequency grid
as opposed to the linear-grid equivalent of the time-domain
design.

If the filter specificationHt(ϑn) is available in the fre-
quency domain, as often the case, a benefit of the frequency-
domain approach compared to the time-domain design [4]
is that the impulse response does not have to be computed.
Note that computing the impulse response does not only
involve IFFT operation, but also a suitable interpolation of
the frequency response, if the frequency points are not spread
uniformly along the unit circle.

In addition, in the case of a non-uniform (e.g. logarithmic)
frequency specification, the frequency-domain design requires
fewer specification points (shorterM matrix andht vector)
compared to the time-domain version, leading to lower compu-
tational complexity for filter design. This is because the length
of the corresponding time-domain target response is defined
by the minimal frequency distance in the frequency-domain
specification. In the case of a logarithmic frequency scale
specification, the resulting target impulse response will have
a long low-frequency tail corresponding to the high resolution
required at low frequencies. For example, for the designs of
Fig. 1 (c) and (d) the frequency-domain method required 80
times fewer specification points and thus around two orders of
magnitude smaller design time compared to the time-domain
design. The reduced complexity may be beneficial for certain
real-time applications, such as loudspeaker–room equalization
based on on-line measurements.

III. M AGNITUDE-ONLY FILTER DESIGN

Oftentimes only the magnitude of the target frequency
response is specified, and the phase of the filter can be
arbitrary. In this case the magnitude error

emagn =

N
∑

n=1

(|H(ϑn)| − |H(ϑn)t|)
2, (8)

should be minimized instead of the complex transfer function
error of (5). For this, the above design algorithm is modi-
fied based on the iterative technique originally presented for
the frequency-domain Steiglitz-McBride algorithm [7]. The
method is based on the fact that minimizing the complex
transfer function error of (5) corresponds to magnitude error
minimization if the phase of the filterϕ{H(ϑn)} and the
specificationϕ{Ht(ϑn)} are equal, since in this case we have
|H(ϑn) − Ht(ϑn)|2 = (|H(ϑn)| − |Ht(ϑn)|)2.

As a starting point, a minimum-phase target specification
Ht,0(ϑn) is obtained from the magnitude specification based
on the Hilbert-transform relation of magnitude and phase
of minimum-phase transfer functions [8]. Then, the filter
coefficients are estimated according to (6) or (7).
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Fig. 3. Magnitude-only parallel filter design: minimum-phase specification
(thin line), magnitude response of the first filter|H1(ϑ)| (thick dashed line),
and the final filter magnitude response|H10(ϑ)| after 10 iterations (thick
solid line).

Next, an iterative procedure is started where the phase of
the specification is adjusted to match the phase of the filter
obtained in the previous stepϕ{Ht,i(ϑn)} = ϕ{Hi−1(ϑn)},
while the magnitude is kept unchanged. A new filterHi(ϑn) is
designed based on this updated specification. The convergence
of the procedure is fast, requiring five-ten iterations in practice.

Figure 3 shows a 32nd order parallel filter design. The target
is a loudspeaker–room response given by 128 specification
points on a logarithmic scale (thin line in Fig. 3). It can be seen
that the fit improves only slightly by the iterations (thick solid
line) compared to the first filter (thick dashed line), showing
that the minimum-phase target is a good starting point for the
magnitude-only design.

IV. FREQUENCY DEPENDENT WEIGHTING

A further benefit of designing the fixed-pole parallel filter
in the frequency-domain is that this allows adding different
weights to the different specification points.

In this case, the error becomes

eWLS =
N

∑

n=1

W (ϑn)|H(ϑn) − H(ϑn)t|
2 =

(h− ht)
HW(h − ht), (9)

whereW (ϑn) is the weight for theϑn frequency, andW is
the weighting matrix havingW (ϑn) in its diagonal and zeros
elsewhere. The minimum is obtained by the weighted-least-
squares (WLS) solution:

popt = (MHWM)−1MHWht, (10)

or, in the case of one sided (ϑn ∈ [0, π]) specifications:

popt = (Re
{

MHWM
}

)−1Re
{

MHWht

}

(11)

For example, if the target specification was obtained by
averaging multiple noisy responses and the varianceσ2

n was
also computed, it is possible to use weighting so that the less
reliable data points have a smaller effect in the error to be
minimized. By usingW (ϑn) = 1/σ2

n the best linear unbiased
estimator (BLUE) of the measured system response is obtained
for a given pole set, which is equivalent to the maximum-
likelihood estimate in the case of Gaussian measurement noise.
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V. D IRECT EQUALIZER DESIGN BY A SYSTEM

IDENTIFICATION APPROACH

Equalizing a system by the parallel filter can be done by
dividing the desired target responseHt(ϑn) (e.g. a bandpass
response) by the system responseHs(ϑn) and designing a
parallel filter for thisHt(ϑn)/Hs(ϑn) specification according
to Sec. II. However, the narrow dips ofHs(ϑn) result in sharp
peaks inHt(ϑn)/Hs(ϑn) because of the division, biasing the
filter design.

While the problems of division can be reduced by regular-
ization, a more appropriate way of designing an equalizer is
to minimize the error between the final, equalized response
Heqd(ϑn) and the target frequency responseHt(ϑn), as was
also proposed in the case of time-domain design in [4]. This
is basically a system identification problem with output error
minimization: the input of the parallel filter is the system
responseHs(ϑn) and we should estimate the filter parameters
such that its outputHeqd(ϑn) best matches the target response
Ht(ϑn).

Accordingly, the equalized response is given by

Heqd(z
−1) = H(z−1)Hs(z

−1) =
K

∑

k=1

dk,0 + dk,1z
−1

1 + ak,1z−1 + ak,2z−2
Hs(z

−1)+

M
∑

m=0

bmz−nHs(z
−1).

(12)

Writing this in a matrix form for a finite set ofϑn angular
frequencies yields

heqd = Meqpeq (13)

wherepeq = [d1,0, d1,1, . . . dK,0, dK,1, b0 . . . bM ]T is a col-
umn vector composed of the free parameters of the parallel
equalizer. The rows of the equalizer modeling matrixMeq are
obtained from the modeling matrixM constructed in Sec. II by
multiplying them with the system frequency responseHs(ϑn).
For example, instead of1/(1 + ak,1e

−jϑn + ak,2e
−j2ϑn) we

simply haveHs(ϑn)/(1 + ak,1e
−jϑn + ak,2e

−j2ϑn). Finally,
heqd = [Heqd(ϑ1) . . . Heqd(ϑN )]T is a column vector com-
posed of the resulting final frequency response. Since (13)
has the same structure as (4), the optimal set of parameters
are obtained in the same way as in Sec. II, e.g. by (6) or (7)
for complex and real filters, respectively.

The comparison of division-based and direct equalizer
design is presented in Fig. 4. The equalization based on
transfer function division (b) leads to biased results due to
the inverted dips of the system response, while the direct
equalizer design (c) does not show this erroneous behavior.
The pole frequencies (vertical lines in Fig. 4) were chosen to
have higher density at low frequencies for increased resolution
in the more problematic region of the transfer function.

Note that magnitude-only design and frequency-dependent
weighting can be used also for direct equalizer design in the
same way as presented for filter design in Secs. III and IV.

VI. CONCLUSION

This letter has presented the frequency-domain variant of
the fixed-pole second-order parallel filter design algorithm.
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Fig. 4. Minimum-phase room response equalization: (a) unequalized
loudspeaker–room response, (b) equalized by a 50th-order parallel filter
designed for division basedHt(ϑn)/Hs(ϑn) specification, and (c) equalized
by a 50th-order parallel filter estimated by the direct equalizer design of
Sec. V. The thick lines show the third-octave smoothed versions of the transfer
functions, and the target specification is displayed by dashed lines. The same
pole frequencies were used for both filter designs, indicated by vertical lines.

The new method allows the use of magnitude-only speci-
fications and frequency-dependent weighting, which is also
useful for taking into account the different reliability ofthe
specification points. Finally, frequency-domain direct equalizer
design by the system identification approach was presented
and compared to equalizer design based on transfer function
division. Matlab code for parallel filter design is available at
http://www.mit.bme.hu/∼bank/parfilt.
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