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Converting Infinite Impulse Response Filters to
Parallel Form

Balazs Bank, Member, IEEE

Abstract—Discrete-time rational transfer functions are often
converted to parallel second-order sections due to better uz
merical performance compared to direct form infinite impulse
response (lIR) implementations. This is usually done by pdorm-
ing partial fraction expansion over the original transfer function.
When the order of the numerator polynomial is greater or equd
to that of the denominator, polynomial long division is appled
before partial fraction expansion resulting in a parallel finite
impulse response (FIR) path.

This article shows that applying this common procedure can
cause a severe dynamic range limitation in the filter becausthe
individual responses can be much larger than the net transfe
function. This can be avoided by applying a delayed paralleform
where the response of the second-order sections is delayadsuch
a way that there is no overlap between the IIR and FIR parts. In
addition, a simple least-squares procedure is presented tzerform
the conversion which is numerically more robust than the usal
Heaviside partial fraction expansion. Finally, the possillities of
converting series second-order sections to the delayed piel
form are discussed.

Index Terms—digital signal processing, infinite impulse re-
sponse (IIR) digital filters, partial fraction expansion, parallel
second-order sections, least-squares method.

I. INTRODUCTION
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Finally, the complex-conjugate pairs of poles and zeros are
recombined to form second-order sections. Carefully pguiri
those poles and zeros is of utmost importance, and the agleri
of the sections is also critical as it influences the roundoiée

and dynamic range of the filter [1].

Today, the parallel implementation is gaining more and
more interest since it provides several advantages compare
to series biquads: it has lower quantization noise [2], and
even more importantly, it leads to a significant speedup in
modern multicore processors that can take advantage of the
fully parallel filter structure [3].

While alternative methods are available for direct-togtiat
conversion [4], [5], by far the most common way of converting
filters to parallel form is based on partial fraction expansi
[1]. Here the first step is converting the transfer functi@p (
to the residue form
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wherer,, are the residues corresponding to the pglgesThe

IR digital filters are part of most signal processing algoysyal way of determining, is the Heaviside cover-up method,

rithms. They are not only used in classic filtering applicas

(low-pass, high-pass, and so on), but also as tools for appro
mating any given transfer function, e.g., a measured frecype

which can be formulated mathematically as

rn = (1—2""py)H(2)| (4)

2=Pn

response that we wish to model in discrete time. Comparg@te that (3) and (4) are general only if poles are distinct.

to FIR filters, IIR filters typically require lower computatial

resources for the same modeling accuracy. However, care

to be taken to assure their stability: a theoretically stdbR

In the case of pole multiplicity, higher order terms also egup
S

The partial fraction expansion requires that the transfer

filter might become unstable when implemented with finitg,ction H(z) is strictly proper, that is, the order of the de-
coefficient precision. The problem becomes pronounced Whegminator is larger than the order of the numerafér$ M).
the filter has high (_)rder and/or ha_s poles near the unit t_:irc|fa this is not the case, polynomial long division has to be
As a remedy, IR filters are often implemented as a series QErformed to result in a FIR paft(z—') and a strictly proper

parallel combination of (typically, second-order) sulefi [1].

IR part B'(271)/A(z71) as

The conversion to series second-order sections starts with

finding the poles,, and zeros:,,, of the transfer function

H() = Bz _bo+ bzl boz24.. . 42 M
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where K = M — N is the order of the FIR part. Partial
fraction expansion, including the polynomial long divisjo
is performed by the MATLAB/Octave function residuez
included in the Signal Processing Toolbox. The last step of
the conversion is combining the complex-conjugate pairs to
second-order sections having real coefficients:

H(z™h

bos + b1zt
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K
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To my knowledge, the method discussed so far is tt 30 ‘
one that is covered in all digital signal processing texisoo & 20
However, this common method, when implemented in rea% 10
world processors, may produce several problems. First, i3
overlap between the FIR and IIR parts lead to a dynamic ran % 10
problem, and thus, increased quantization noise. Secbed, =
expansion can be numerically sensitive leading to probler
when factoring high-orderY > 100) transfer functions. These
problems are addressed in this article, in addition to doger
the case of converting filters given in series or pole-zermfo 30

All of the MATLAB codes used to create the figures irg 20
this article are available for download, which can help th< 10
interested reader gain more insight to the presented &igusi
(see the “Supplementary Material” section).
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II. THE DYNAMIC RANGE PROBLEM

As can be seen in (6), both the IR pdst(z~1)/A(z71)
and the FIR partF'(z~1) have an impulse response starting
at sample zero, meaning that the fi&t + 1 samples are Fig. 1. The parallel implementation of a (20/20) transfendiion: (a) The
determined by the combination of the FIR and IIR parts. ThtsﬁditiOft\;\' para!lellf?fm «'s;ndf(b) tthe dela&/?ﬁ parg"gl f?]ﬂ’gz_thilck bl;lhe |inet
overlap leads to the fact that the individual transfer s v " 2191 tanste funton and the red dasheddipiys te ne
of the filter sections can be significantly larger than the nglagnitude responses of the second-order sections, andaitie dashed line
transfer function, leading to the limitation of practicgithmic shows the magnitude response of the constant gain path.
range [7].

This is illustrated in Figure 1(a) for an IIR filter designed
to model a measured loudspeaker response. The sampling editthe denominatoiV. This is illustrated in Figure 2(a) for
is fs = 44.1 kHz in all of the examples in this article. Firstnumerator and denominator orders of 25 and 20, respectively
a direct-form IIR filter is designed by the Steiglitz-McBeid (25/20). Figure 2(a) shows that now the fifth-order FIR part
method [8] 6tmcbcommand in MATLAB) shown by a thick (black dashed line) is around 70 dB larger than the net teansf
blue line, and then converted to a parallel set of secondfordunction, decreasing the signal-to-noise ratio by 70 dB tue
sections plus a FIR part as described in the “Introductiontfie required downscaling. There is a red line very close ¢o th
section. The orders of the numerator and the denominabdack dashed line that again corresponds to a second-order
are both 20, with the short notation: (20/20). This resultsansfer function with almost opposite phase comparedéo th
in 10 second-order sections plus a constant gain sectionpirallel FIR part.
parallel. The red dashed line shows the net transfer fumctio
overlapping the direct-form transfer function (thick bliiree) 1. THE DELAYED PARALLEL EORM

perfectly. The black dashed line displays the transfertionc . .
of the FIR partF(z~1), which is now a constant gain, while _ The aforementioned dynamic range problem becomes par-

the thin colored lines correspond to the magnitude respon&gularly serious in such constellations when the net fiems

of the individual second-order sections. function is a result of phase cancellations between the RIR a
Figure 1(a) shows that some of the individual transfdlR parts. This can be completely avoided if we do not allow

functions (in this case, the constant gain part displayed B§Y overlap between the FIR and IIR part [7]. This results in

the black dashed line and one second-order transfer functid® form

-30

Frequency [Hz]

displayed by a thin purple line) are significantly largerrtha B B bro—+bp 1zt

the net transfer function. Figure 1(a) also shows only mag- H(z™') = =z (KH)Z T ’ _1’+ 3

nitude responses; therefore it cannot be seen that these two =1 1% 1,22

upper curves have almost opposite phase, and the required K e

net response is a result of the phase cancellation of these +kaz ) (")
k=0

individual responses. In theory, this does not lead to any

difficulties. However, when the filter is implemented withwhere the firsti 41 samples of the impulse response are now

finite word-length, this requires the downscaling of theuinp determined solely by thé&'-th order FIR part, and the rest of

signal to avoid overload, which, in turn, will lead to inceeal the impulse response by the IIR part.

guantization noise. (No direct downscaling is required in The coefficients of the delayed form can be obtained in

floating-point implementation, since it is done “automallig’ a very similar way as those of the traditional parallel form

by the number format. However, the dynamic range reductidiscussed in the “Introduction”. The only difference is ttha

remains the same.) now the FIR partF'(z~') and the strictly proper numerator
This dynamic-range problem becomes even more pr‘(z~!) is computed by performing polynomial long division

nounced if the order of the numeratdf is larger than that over the reversed numerator coefficients [6], [7] to get
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Fig. 2. The parallel implementation of a (25/20) transfendtion: (a) The Fig. 3. The delayed parallel implementation of a (200/2e@psfer function:

traditional parallel form and (b) the delayed parallel foffhe thick blue line conversion done (a) by partial fraction expansion and (bplgast-squares
shows the original transfer function and the red dasheddisplays the net fit. The thick blue line is the original transfer function atie red dashed line
response of the parallel implementation. The thin coloiedsl display the is the net transfer function of the delayed parallel forme Tthin colored lines
magnitude responses of the second-order sections, andattle dashed line show the responses of the individual second-order sectindshe black line
shows the magnitude response of the parallel FIR path. displays the transfer function of the constant gain.

IV. NUMERICAL ISSUES WITH PARTIAL FRACTION
EXPANSION

B’(z*l) S . For moder.ate filter ord_ersd 109), obtainin.g th_e parallel
A1) +fotfiz7 +.. .+ fxz" 7. (8) form of IIR filters by partial fraction expansion is the most
practical option. However, for higher filter orders the con-
version can lead to numerical errors. This is displayed in
Next, the transfer functioB’(z~1)/A(z~') is expanded Figure 3(a), where the blue line shows a 200th order IIR
to partial fractions. This complete procedure is performdilter (200/200) designed by the Steiglitz-McBride meth8§l [
by the residuedcommand distributed in Octave. Thesidue (stmcbcommand in MATLAB) to model a measured room
function in MATLAB originally intended for convertings- response. The red dashed line is the net transfer function of
domain transfer functions can also be used for Mie> N a delayed parallel filter obtained by the procedure already
case (note however that it produces wrong resultdfox. N) outlined, that is, performing polynomial long division on
[7]. Finally, the partial fractions are recombined to sedonthe reversed numerator polynomial and then partial fractio
order sections in the same way as for the nondelayed casexpansion. It can be seen that the magnitude response of the
Note that, if the transfer function is available in the norconverted filter does not match that of the original, which is
delayed parallel form, it is not necessary to convert it ba¢kie to numerical errors.
to direct-form to obtain the coefficients of the delayed form
in [7] a simple procedure is proposed to convert between the V. OBTAINING THE PARALLEL FORM BY A
nondelayed and delayed parallel forms. LEAST-SQUARES FIT

Next, we see that such a simple change has a dramatic effeghstead of formulating the problem in terms of converting
on the dynamic range requirements of the filters: Figure 1(Rtional expressions, here we take a different approachevhe
shows the same (20/20) transfer function as in Figure 1(ge numerator parameters of the parallel filter are detezthin
but now the IIR part is delayed by one sample so that thefe such a way that the impulse response of the parallel
is no time domain overlap with the constant gain part. Nowhplementation is the closest possible to the impulse mespo
the individual transfer functions are only approximateld of the original filter in the mean square sense.

Iarger than the net transfer fUnCtion, which is 15 dB smaller This |east_squares procedure gives the parameters of the
compared to that of the traditional parallel form of Figu(e)l delayed parallel form directly and is robust even for large

Even more pronounced is the difference for the (25/2@) 1000) filter orders. The method is inspired by the fixed-pole
transfer function of Figure 2(a): with the delayed form disdesign of parallel filters [9], a methodology used for obitagn
played in Figure 2(b), the need for downscaling the inpuiR filters having uneven (e.g., logarithmic)-frequencgoti-
signal by 70 dB is completely eliminated, leading to a drasttion. First, the roots of denominatei(>~1) are found that are
improvement in signal-to-noise ratio. used to form the denominator polynomials of the second+orde

H(z™Y) = z~(K+1)
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. _ . Error with Partial Error with Least-
sectionsA;(z~"). Next, the numerators of the sections are Fiter order Fraction Expansion Conversion | Squares Conversion
obtained via a least-squares fit such that the differencedsst (50/50) 2.36 x 10-10 dB 3.86 x 10~ 10 dB
the impulse responses of the original and parallel strestigr __ (100/100) 7.97 x 10" dB 5.52 x 10’: dB
minimized. (Alternatively, it is also possible to minimizee ggggggi i'ig gg S'ggi 18:8 gg
difference between the complex transfer functions of theadi —555/7000) NaN 170 x 10=7 dB
form and parallel form filters, leading to practically thersa ~(1500/1500) NaN 1.34 x 105 dB
results.) This can be done easily because the transferidanct
(7) becomes linear in its free parametggs b, o, b;,1 once the TABLE |

THE MEAN ABSOLUTE DECIBEL ERRORS OF THE CONVERTED TRANSFER

denominator coefficients; 1, a; 2 are determined. FUNCTIONS.

While the procedure is also applicable to the traditional,
nondelayed parallel form, it will be illustrated for the nar
cally better-performing delayed version. We can see ingv) f

M > N that the firstk' + 1 = M — N + 1 samples of the afgrementioned least-squares fit. Now the conversion ishmuc
impulse response are solely determined by the FIR coeftiiefore accurate compared to the one obtained by using partial
fr, and thus the problem reduces to finding the parametersction expansion shown in Figure 3(a). As for the size of
of the second-order sections such that the resulting inepuige least-squares problem, the impulse response fit was made
response is the closest to the original impulse respong@sta for 1 — 2707 — 400 samples, to have more equations than
from sampleK’ + 1. _ . unknowns (we havé/ = 200 free parameters).
~ The steps of the conversion are given next. The procedurergpe | Jists the mean absolute dB errors computed between
is outlined for the case of no pole multiplicity. In the cade Gne original and converted transfer functions in the range
repeated poles, terms of higher than second-order must 80 Hz and 22.05 kHz for various filter orders, including
be included, similarly to the case of partial fraction exgian. he (200/200) example of Figure 3. The significantly better
1) Compute the rootp,, of the denominatord(z~"), flip  accuracy of the least-squares procedure is apparentnstarti
the unstable poleg,| > 1 inside the unit circle by from order 100. For the orders of 1000 and 1500, some of the
replacing them withl /p,, find the complex-conjugate extracted poleg,, are outside the unit circle, thus, the partial
pairs and recombine the denominators of the secorféaction expansion based method leads to an unstable @iter.

order SeCtiOﬂS‘ll_(Z_l)- . the other hand, the proposed procedure still produces atecur
2) Compute the impulse responsk(i) of the filter results since it starts with stabilizing the poles by fligpthem
H(z')=B(:")/A(z"") for samples =0...1. inside the unit circle in step 1.

3) For M > N, the coefficients of the FIR part equal to  The reason for the significantly better performance com-
the first K = M — N + 1 samples of the filter impulse pared to partial fraction expansion is that the numericairer

response, that ish = h(k) for k=0... K. in finding the poles are compensated by the numerators of
4) Compute the impulse responsesi) of the numerators the second-order sections: the least-squares fit will diee t
1Az =1/Q+ a2 +apz7?). best possible impulse response match for the given (shightl

5) Find the numerator coefficients o, b;1 by a least- inaccurate) denominators. Besides simplicity, the abili
squares fit such that the resulting impulse response correct the numerical errors of pole finding (even unstable
L poles) is a great benefit of the LS design also compared to
h(i) = Z browi(i) + byug(i — 1) (9) other conversion methods proposed previously [4], [5].
=1

is closest to the impulse response of the original filter VI. CONVERSION FROM SERIES OR POL&ZERO FORM
h(i) starting from sampleé = K + 1.

Since (9) is linear in its free parametég, b; 1, it can
be written in a matrix form

In some situations, the transfer function we are convetting
a parallel form is given as a series of second-order segtins
equivalently, in pole-zero form. Examples include classve-
h = Ub, (10) Pass, band-pass filters such as Butterworth, Chebyshev, etc
[1]. The butter, chebyl etc. commands in MATLAB/Octave
whereU contains the impulse responsegi) and their can give the pole-zero versions of the filters making the @npl
delayed versionsy (i — 1) in its columns, andb is @ mentation possible for such a high-order/low-cutoff-fregcy
column vector composed of the correspondbpg and filters where the direct form implementation is unfeasihle d
b1 values. Now the resulting impulse response vect@s numerical reasons. Other examples can be series graphic
h should be the closest possible to the taryetector or parametric equalizers [10] and equalizer filters iteeayi
containing the sampléeg(i) fromi = K +1in the least- designed directly in the series form [11] or obtained from a
squares sense. This is a standard linear least-squai@gped IIR design [12].
problem (overdetermined set of equations) and can beror strictly proper transfer functions{ < N) the partial
solved by themldividefunction in MATLAB/Octave by fraction expansion works well since the poles are eithemkno
using the syntab = U\h. (pole-zero form) or computed from second-order polynosnial
Figure 3 (b) shows the net transfer function of the déseries second-order form), and the numerator can also be
layed parallel form when the conversion is done by thevaluated in its factored form.



PUBLISHED IN THE IEEE SIGNAL PROCESSING MAGAZINE, VOL. 35, ®. 3, PP. 124-130, MAY 2018 5

On the other hand, wheM > N, we need to perform 0
polynomial long division to reduce the order of the numeratc
and for that the denominator and numerator have to
recombined from the poles and zeros. At this is point we wou
loose all the numerical benefits coming from the fact thagpol
zero form of the filter is known instead of the rational form -20-
Therefore, this procedure is not recommended.

_10 Series implementation

] _30- Parallel implementation
A. Least-squares fit
One possibility is obtaining the delayed parallel form b =
the least-squares fit as we have seen before for the dire 40

to-parallel conversion case. Of course, the target impul
responseh(i) is computed by running the series version ¢ _ | i
the filter, and we are not converting the series or pole-ze
form to direct form. Also, the numerically problematic roo
finding is avoided, since either the poles, or the secondror( ~60 17 7 1
denominators, are known. Frequency [Hz]
Such a conversion example is presented in Figure 4. The

measured transfer function of an average ||V|ng room is th_'g 4 The parallel implementation of a (1090/1000) trané({nction. The

- . . . . . blue line shows the response of the 500 series second-ocedgorss, which
starting point to design a warped IIR filter. Warped filterides is then converted to 500 parallel second-order sectionshéyldast-squares
is one possible methodology to obtain filters with logarittym fit, displayed by red line. The red curve is offset by -20 dB dtarity.
like frequency resolution to fit the resolution in human liregyr
a desirable property in audio applications. However, warpe
filters require a complicated all-pass-based structurenfer 50
plementation. This can be avoided when they are converi
series second-order sections [12]. To show the robustrfess
the conversion method, in the example of Figure 4 a 100(C
order warped IIR filter is designed by thpony function in
MATLAB based on the warped room response (the warpir _
parameter is\ = 0.8). Next, the warped IIR filter is converted Z.
to series second-order sections [12]. The net transfettifumc
of the 500 series second-order sections is displayed by b’
line. Finally, the filter is converted to the delayed pafalle=
form by the least-squares method, displayed by a red line. T
two transfer functions in Figure 4 match perfectly: the mee¢ -100
absolute dB error from 20 Hz to 22.05 kHz #s70 x 10712
dB.

agnitude [dB]

tude
|

o

o

agni

L L
10° 10
Frequency [Hz]

B. Factoring out zeros before partial fraction expansion ‘15101 1¢

If we are willing to give up the full parallelization of the
mte_r structure, there is another pOSSIbIIIty for convegtithe Fig. 5. The factored parallel implementation of an 8th orBertterworth
series form to the parallel form: factoring out zeros from thhigh-pass filter. The cutoff frequency & = 100 Hz, while the sampling
numerator until we reach/ < N. For the typical scenario of rate is f¢ = 44.1 kHz. The thick blue line shows the response of the 4

_ ; ; ; ries second-order sections, and the red dashed linayfisihle response of
M = N, this means faCto””g outone real Z€r0, Or, if there af e factored parallel implementation. The dotted linepldis the magnitude
no real zeros, a complex conjugate pair. Now the filter stmect responses of the parallel second-order sections in seiibstve response of
is a set of parallel second-order sections (without adukitio the first-order FIR filter that has been factored out.
delay) and a first- or second-order FIR filter in series. Fer th

case of factoring out one real zero, we obtain:

L ~ ~
_ _ boy + by gzt
H(z") = (1-2""2) (ZH R
=1

a2zt 4 ag 272

. (11) out one of them before performing partial fraction expansio
Thus, the resulting filter structure is composed of four seleo

The conversion is illustrated in Figure 5 for an 8th ordeprder IIR filters in parallel and an FIR filtdr(z ') = 1—2""

high-pass Butterworth filter designed by thetter command in series. Obviously, the four second-order sections can be

in MATLAB. The thick blue line shows the magnitude recomputed in parallel, but the first-order FIR filter cannot,

sponse of the series second-order implementation obtaivgaich might lead to a slight increase in computational time i

from the pole-zero form (the direct-form implementationis ~ parallel architectures.

stable, thus, not shown). Since all the zeros of the Buttehwo The benefit of the factored conversion is the significantly

) filter equal to unityz,,, = 1 for m = 1...8, we simply factor
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reduced design time. Since no root finding is required, tla¢ a price of a low-order FIR filter in series with the parallel
partial fraction expansion requires very few (though campl sections.

operations. This allows computing the parallel form on tye fl The goal of this article is to raise awareness about the
when the user is manipulating the parameters of the seriegmerical issues related to the common way of converting
transfer function in real time, e.g., by changing the cutofilters to the parallel form, with the hope that the readet wil
frequency of the high-pass filter. Another typical examplfind the alternative methods appealing and useful in many
would be varying the parameters of a parametric or graphpcactical situations.

equalizer in series form and converting it to the more efficie

parallel form in real time. ACKNOWLEDGMENT
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