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Converting Infinite Impulse Response Filters to
Parallel Form
Balázs Bank, Member, IEEE

Abstract—Discrete-time rational transfer functions are often
converted to parallel second-order sections due to better nu-
merical performance compared to direct form infinite impulse
response (IIR) implementations. This is usually done by perform-
ing partial fraction expansion over the original transfer function.
When the order of the numerator polynomial is greater or equal
to that of the denominator, polynomial long division is applied
before partial fraction expansion resulting in a parallel finite
impulse response (FIR) path.

This article shows that applying this common procedure can
cause a severe dynamic range limitation in the filter becausethe
individual responses can be much larger than the net transfer
function. This can be avoided by applying a delayed parallelform
where the response of the second-order sections is delayed in such
a way that there is no overlap between the IIR and FIR parts. In
addition, a simple least-squares procedure is presented toperform
the conversion which is numerically more robust than the usual
Heaviside partial fraction expansion. Finally, the possibilities of
converting series second-order sections to the delayed parallel
form are discussed.

Index Terms—digital signal processing, infinite impulse re-
sponse (IIR) digital filters, partial fraction expansion, parallel
second-order sections, least-squares method.

I. I NTRODUCTION

IIR digital filters are part of most signal processing algo-
rithms. They are not only used in classic filtering applications
(low-pass, high-pass, and so on), but also as tools for approxi-
mating any given transfer function, e.g., a measured frequency
response that we wish to model in discrete time. Compared
to FIR filters, IIR filters typically require lower computational
resources for the same modeling accuracy. However, care has
to be taken to assure their stability: a theoretically stable IIR
filter might become unstable when implemented with finite
coefficient precision. The problem becomes pronounced when
the filter has high order and/or has poles near the unit circle.
As a remedy, IIR filters are often implemented as a series or
parallel combination of (typically, second-order) subfilters [1].

The conversion to series second-order sections starts with
finding the polespn and zeroszm of the transfer function

H(z−1) =
B(z−1)

A(z−1)
=

b0 + b1z
−1 + b2z

−2 + . . . + z−M

1 + a1z−1 + a2z−2 + . . . + z−N
,

(1)
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resulting in

H(z−1) = K
(1 − z−1z1)(1 − z−1z2) . . . (1 − z−1zM )

(1 − z−1p1)(1 − z−1p2) . . . (1 − z−1pN )
. (2)

Finally, the complex-conjugate pairs of poles and zeros are
recombined to form second-order sections. Carefully pairing
those poles and zeros is of utmost importance, and the ordering
of the sections is also critical as it influences the roundoffnoise
and dynamic range of the filter [1].

Today, the parallel implementation is gaining more and
more interest since it provides several advantages compared
to series biquads: it has lower quantization noise [2], and
even more importantly, it leads to a significant speedup in
modern multicore processors that can take advantage of the
fully parallel filter structure [3].

While alternative methods are available for direct-to-parallel
conversion [4], [5], by far the most common way of converting
filters to parallel form is based on partial fraction expansion
[1]. Here the first step is converting the transfer function (1)
to the residue form

H(z−1) =
r1

1 − p1z−1
+

r2

1 − p2z−1
+ . . .+

rN

1 − pNz−1
, (3)

wherern are the residues corresponding to the polespn. The
usual way of determiningrn is the Heaviside cover-up method,
which can be formulated mathematically as

rn = (1 − z−1pn)H(z)
∣

∣

z=pn

. (4)

Note that (3) and (4) are general only if polespn are distinct.
In the case of pole multiplicity, higher order terms also appear
[6].

The partial fraction expansion requires that the transfer
function H(z) is strictly proper, that is, the order of the de-
nominator is larger than the order of the numerator (N > M ).
If this is not the case, polynomial long division has to be
performed to result in a FIR partF (z−1) and a strictly proper
IIR part B′(z−1)/A(z−1) as

H(z−1) =
B(z−1)

A(z−1)
=

B′(z−1)

A(z−1)
+f0 +f1z

−1 + . . .+fKz−K ,

(5)
where K = M − N is the order of the FIR part. Partial
fraction expansion, including the polynomial long division,
is performed by the MATLAB/Octave function residuez
included in the Signal Processing Toolbox. The last step of
the conversion is combining the complex-conjugate pairs to
second-order sections having real coefficients:

H(z) =
L
∑

l=1

b0,l + b1,lz
−1

1 + a1,lz−1 + a2,lz−2
+

K
∑

k=0

fkz−k. (6)
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To my knowledge, the method discussed so far is the
one that is covered in all digital signal processing textbooks.
However, this common method, when implemented in real-
world processors, may produce several problems. First, the
overlap between the FIR and IIR parts lead to a dynamic range
problem, and thus, increased quantization noise. Second, the
expansion can be numerically sensitive leading to problems
when factoring high-order (N > 100) transfer functions. These
problems are addressed in this article, in addition to covering
the case of converting filters given in series or pole-zero form.

All of the MATLAB codes used to create the figures in
this article are available for download, which can help the
interested reader gain more insight to the presented algorithms
(see the “Supplementary Material” section).

II. T HE DYNAMIC RANGE PROBLEM

As can be seen in (6), both the IIR partB′(z−1)/A(z−1)
and the FIR partF (z−1) have an impulse response starting
at sample zero, meaning that the firstK + 1 samples are
determined by the combination of the FIR and IIR parts. This
overlap leads to the fact that the individual transfer functions
of the filter sections can be significantly larger than the net
transfer function, leading to the limitation of practical dynamic
range [7].

This is illustrated in Figure 1(a) for an IIR filter designed
to model a measured loudspeaker response. The sampling rate
is fs = 44.1 kHz in all of the examples in this article. First
a direct-form IIR filter is designed by the Steiglitz-McBride
method [8] (stmcbcommand in MATLAB) shown by a thick
blue line, and then converted to a parallel set of second-order
sections plus a FIR part as described in the “Introduction”
section. The orders of the numerator and the denominator
are both 20, with the short notation: (20/20). This results
in 10 second-order sections plus a constant gain section in
parallel. The red dashed line shows the net transfer function,
overlapping the direct-form transfer function (thick blueline)
perfectly. The black dashed line displays the transfer function
of the FIR partF (z−1), which is now a constant gain, while
the thin colored lines correspond to the magnitude responses
of the individual second-order sections.

Figure 1(a) shows that some of the individual transfer
functions (in this case, the constant gain part displayed by
the black dashed line and one second-order transfer function
displayed by a thin purple line) are significantly larger than
the net transfer function. Figure 1(a) also shows only mag-
nitude responses; therefore it cannot be seen that these two
upper curves have almost opposite phase, and the required
net response is a result of the phase cancellation of these
individual responses. In theory, this does not lead to any
difficulties. However, when the filter is implemented with
finite word-length, this requires the downscaling of the input
signal to avoid overload, which, in turn, will lead to increased
quantization noise. (No direct downscaling is required in
floating-point implementation, since it is done “automatically”
by the number format. However, the dynamic range reduction
remains the same.)

This dynamic-range problem becomes even more pro-
nounced if the order of the numeratorM is larger than that
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(b)

Fig. 1. The parallel implementation of a (20/20) transfer function: (a) The
traditional parallel form and (b) the delayed parallel form. The thick blue line
shows the original transfer function and the red dashed linedisplays the net
response of the parallel implementation. The thin colored lines display the
magnitude responses of the second-order sections, and the black dashed line
shows the magnitude response of the constant gain path.

of the denominatorN . This is illustrated in Figure 2(a) for
numerator and denominator orders of 25 and 20, respectively
(25/20). Figure 2(a) shows that now the fifth-order FIR part
(black dashed line) is around 70 dB larger than the net transfer
function, decreasing the signal-to-noise ratio by 70 dB dueto
the required downscaling. There is a red line very close to the
black dashed line that again corresponds to a second-order
transfer function with almost opposite phase compared to the
parallel FIR part.

III. T HE DELAYED PARALLEL FORM

The aforementioned dynamic range problem becomes par-
ticularly serious in such constellations when the net transfer
function is a result of phase cancellations between the FIR and
IIR parts. This can be completely avoided if we do not allow
any overlap between the FIR and IIR part [7]. This results in
the form

H(z−1) = z−(K+1)
L
∑

l=1

b̃l,0 + b̃l,1z
−1

1 + al,1z−1 + al,2z−2
+

+

K
∑

k=0

f̃kz−k, (7)

where the firstK+1 samples of the impulse response are now
determined solely by theK-th order FIR part, and the rest of
the impulse response by the IIR part.

The coefficients of the delayed form can be obtained in
a very similar way as those of the traditional parallel form
discussed in the “Introduction”. The only difference is that
now the FIR partF̃ (z−1) and the strictly proper numerator
B̃′(z−1) is computed by performing polynomial long division
over the reversed numerator coefficients [6], [7] to get
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Fig. 2. The parallel implementation of a (25/20) transfer function: (a) The
traditional parallel form and (b) the delayed parallel form. The thick blue line
shows the original transfer function and the red dashed linedisplays the net
response of the parallel implementation. The thin colored lines display the
magnitude responses of the second-order sections, and the black dashed line
shows the magnitude response of the parallel FIR path.

H(z−1) = z−(K+1) B̃
′(z−1)

A(z−1)
+f̃0+f̃1z

−1+. . .+f̃Kz−K . (8)

Next, the transfer functioñB′(z−1)/A(z−1) is expanded
to partial fractions. This complete procedure is performed
by the residuedcommand distributed in Octave. Theresidue
function in MATLAB originally intended for convertings-
domain transfer functions can also be used for theM ≥ N
case (note however that it produces wrong results forM < N )
[7]. Finally, the partial fractions are recombined to second-
order sections in the same way as for the nondelayed case.

Note that, if the transfer function is available in the non-
delayed parallel form, it is not necessary to convert it back
to direct-form to obtain the coefficients of the delayed form:
in [7] a simple procedure is proposed to convert between the
nondelayed and delayed parallel forms.

Next, we see that such a simple change has a dramatic effect
on the dynamic range requirements of the filters: Figure 1(b)
shows the same (20/20) transfer function as in Figure 1(a),
but now the IIR part is delayed by one sample so that there
is no time domain overlap with the constant gain part. Now
the individual transfer functions are only approximately 5dB
larger than the net transfer function, which is 15 dB smaller
compared to that of the traditional parallel form of Figure 1(a).

Even more pronounced is the difference for the (25/20)
transfer function of Figure 2(a): with the delayed form dis-
played in Figure 2(b), the need for downscaling the input
signal by 70 dB is completely eliminated, leading to a drastic
improvement in signal-to-noise ratio.
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Fig. 3. The delayed parallel implementation of a (200/200) transfer function:
conversion done (a) by partial fraction expansion and (b) bya least-squares
fit. The thick blue line is the original transfer function andthe red dashed line
is the net transfer function of the delayed parallel form. The thin colored lines
show the responses of the individual second-order sectionsand the black line
displays the transfer function of the constant gain.

IV. N UMERICAL ISSUES WITH PARTIAL FRACTION

EXPANSION

For moderate filter orders (< 100), obtaining the parallel
form of IIR filters by partial fraction expansion is the most
practical option. However, for higher filter orders the con-
version can lead to numerical errors. This is displayed in
Figure 3(a), where the blue line shows a 200th order IIR
filter (200/200) designed by the Steiglitz-McBride method [8]
(stmcbcommand in MATLAB) to model a measured room
response. The red dashed line is the net transfer function of
a delayed parallel filter obtained by the procedure already
outlined, that is, performing polynomial long division on
the reversed numerator polynomial and then partial fraction
expansion. It can be seen that the magnitude response of the
converted filter does not match that of the original, which is
due to numerical errors.

V. OBTAINING THE PARALLEL FORM BY A

LEAST-SQUARES FIT

Instead of formulating the problem in terms of converting
rational expressions, here we take a different approach where
the numerator parameters of the parallel filter are determined
in such a way that the impulse response of the parallel
implementation is the closest possible to the impulse response
of the original filter in the mean square sense.

This least-squares procedure gives the parameters of the
delayed parallel form directly and is robust even for large
(≈ 1000) filter orders. The method is inspired by the fixed-pole
design of parallel filters [9], a methodology used for obtaining
IIR filters having uneven (e.g., logarithmic)-frequency resolu-
tion. First, the roots of denominatorA(z−1) are found that are
used to form the denominator polynomials of the second-order



PUBLISHED IN THE IEEE SIGNAL PROCESSING MAGAZINE, VOL. 35, NO. 3, PP. 124–130, MAY 2018 4

sectionsAl(z
−1). Next, the numerators of the sections are

obtained via a least-squares fit such that the difference between
the impulse responses of the original and parallel structures is
minimized. (Alternatively, it is also possible to minimizethe
difference between the complex transfer functions of the direct
form and parallel form filters, leading to practically the same
results.) This can be done easily because the transfer function
(7) becomes linear in its free parametersf̃k, b̃l,0, b̃l,1 once the
denominator coefficientsal,1, al,2 are determined.

While the procedure is also applicable to the traditional,
nondelayed parallel form, it will be illustrated for the numeri-
cally better-performing delayed version. We can see in (7) for
M > N that the firstK + 1 = M − N + 1 samples of the
impulse response are solely determined by the FIR coefficients
f̃k, and thus the problem reduces to finding the parameters
of the second-order sections such that the resulting impulse
response is the closest to the original impulse response starting
from sampleK + 1.

The steps of the conversion are given next. The procedure
is outlined for the case of no pole multiplicity. In the case of
repeated poles, terms of higher than second-order must also
be included, similarly to the case of partial fraction expansion.

1) Compute the rootspn of the denominatorA(z−1), flip
the unstable poles|pn| > 1 inside the unit circle by
replacing them with1/pn, find the complex-conjugate
pairs and recombine the denominators of the second-
order sectionsAl(z

−1).
2) Compute the impulse responseh(i) of the filter

H(z−1) = B(z−1)/A(z−1) for samplesi = 0 . . . I.
3) For M ≥ N , the coefficients of the FIR part equal to

the firstK = M − N + 1 samples of the filter impulse
response, that is,̃fk = h(k) for k = 0 . . .K.

4) Compute the impulse responsesul(i) of the numerators
1/Al(z

−1) = 1/(1 + al,1z
−1 + al,2z

−2).
5) Find the numerator coefficients̃bl,0, b̃l,1 by a least-

squares fit such that the resulting impulse response

h̃(i) =
L
∑

l=1

b̃l,0ul(i) + b̃l,1ul(i − 1) (9)

is closest to the impulse response of the original filter
h(i) starting from samplei = K + 1.
Since (9) is linear in its free parametersb̃l,0, b̃l,1, it can
be written in a matrix form

h̃ = Ub̃, (10)

whereU contains the impulse responsesul(i) and their
delayed versionsul(i − 1) in its columns, and̃b is a
column vector composed of the correspondingb̃l,0 and
b̃l,1 values. Now the resulting impulse response vector
h̃ should be the closest possible to the targeth vector
containing the samplesh(i) from i = K +1 in the least-
squares sense. This is a standard linear least-squares
problem (overdetermined set of equations) and can be
solved by themldividefunction in MATLAB/Octave by
using the syntax̃b = U\h.

Figure 3 (b) shows the net transfer function of the de-
layed parallel form when the conversion is done by the

Filter order
Error with Partial

Fraction Expansion Conversion
Error with Least-

Squares Conversion
(50/50) 2.36× 10−10 dB 3.86× 10−10 dB

(100/100) 7.97× 10−4 dB 5.52× 10−8 dB
(200/200) 2.84 dB 6.78× 10

−8 dB
(500/500) 4.45 dB 7.02× 10

−8 dB
(1000/1000) NaN 1.70× 10−7 dB
(1500/1500) NaN 1.34× 10−6 dB

TABLE I
THE MEAN ABSOLUTE DECIBEL ERRORS OF THE CONVERTED TRANSFER

FUNCTIONS.

aforementioned least-squares fit. Now the conversion is much
more accurate compared to the one obtained by using partial
fraction expansion shown in Figure 3(a). As for the size of
the least-squares problem, the impulse response fit was made
for I = 2M = 400 samples, to have more equations than
unknowns (we haveM = 200 free parameters).

Table I lists the mean absolute dB errors computed between
the original and converted transfer functions in the range
of 20 Hz and 22.05 kHz for various filter orders, including
the (200/200) example of Figure 3. The significantly better
accuracy of the least-squares procedure is apparent starting
from order 100. For the orders of 1000 and 1500, some of the
extracted polespn are outside the unit circle, thus, the partial
fraction expansion based method leads to an unstable filter.On
the other hand, the proposed procedure still produces accurate
results since it starts with stabilizing the poles by flipping them
inside the unit circle in step 1.

The reason for the significantly better performance com-
pared to partial fraction expansion is that the numerical errors
in finding the poles are compensated by the numerators of
the second-order sections: the least-squares fit will give the
best possible impulse response match for the given (slightly
inaccurate) denominators. Besides simplicity, the ability to
correct the numerical errors of pole finding (even unstable
poles) is a great benefit of the LS design also compared to
other conversion methods proposed previously [4], [5].

VI. CONVERSION FROM SERIES OR POLE-ZERO FORM

In some situations, the transfer function we are convertingto
a parallel form is given as a series of second-order sections, or,
equivalently, in pole-zero form. Examples include classiclow-
pass, band-pass filters such as Butterworth, Chebyshev, etc.
[1]. The butter, cheby1, etc. commands in MATLAB/Octave
can give the pole-zero versions of the filters making the imple-
mentation possible for such a high-order/low-cutoff-frequency
filters where the direct form implementation is unfeasible due
to numerical reasons. Other examples can be series graphic
or parametric equalizers [10] and equalizer filters iteratively
designed directly in the series form [11] or obtained from a
warped IIR design [12].

For strictly proper transfer functions (M < N ) the partial
fraction expansion works well since the poles are either known
(pole-zero form) or computed from second-order polynomials
(series second-order form), and the numerator can also be
evaluated in its factored form.
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On the other hand, whenM ≥ N , we need to perform
polynomial long division to reduce the order of the numerator,
and for that the denominator and numerator have to be
recombined from the poles and zeros. At this is point we would
loose all the numerical benefits coming from the fact that pole-
zero form of the filter is known instead of the rational form.
Therefore, this procedure is not recommended.

A. Least-squares fit

One possibility is obtaining the delayed parallel form by
the least-squares fit as we have seen before for the direct-
to-parallel conversion case. Of course, the target impulse
responseh(i) is computed by running the series version of
the filter, and we are not converting the series or pole-zero
form to direct form. Also, the numerically problematic root
finding is avoided, since either the poles, or the second-order
denominators, are known.

Such a conversion example is presented in Figure 4. The
measured transfer function of an average living room is the
starting point to design a warped IIR filter. Warped filter design
is one possible methodology to obtain filters with logarithmic-
like frequency resolution to fit the resolution in human hearing,
a desirable property in audio applications. However, warped
filters require a complicated all-pass-based structure forim-
plementation. This can be avoided when they are converted
series second-order sections [12]. To show the robustness of
the conversion method, in the example of Figure 4 a 1000th
order warped IIR filter is designed by theprony function in
MATLAB based on the warped room response (the warping
parameter isλ = 0.8). Next, the warped IIR filter is converted
to series second-order sections [12]. The net transfer function
of the 500 series second-order sections is displayed by blue
line. Finally, the filter is converted to the delayed parallel
form by the least-squares method, displayed by a red line. The
two transfer functions in Figure 4 match perfectly: the mean
absolute dB error from 20 Hz to 22.05 kHz is5.70 × 10−12

dB.

B. Factoring out zeros before partial fraction expansion

If we are willing to give up the full parallelization of the
filter structure, there is another possibility for converting the
series form to the parallel form: factoring out zeros from the
numerator until we reachM < N . For the typical scenario of
M = N , this means factoring out one real zero, or, if there are
no real zeros, a complex conjugate pair. Now the filter structure
is a set of parallel second-order sections (without additional
delay) and a first- or second-order FIR filter in series. For the
case of factoring out one real zero, we obtain:

H(z−1) = (1− z−1z1)

(

L
∑

l=1

b̂0,l + b̂1,lz
−1

1 + a1,lz−1 + a2,lz−2

)

. (11)

The conversion is illustrated in Figure 5 for an 8th order
high-pass Butterworth filter designed by thebutter command
in MATLAB. The thick blue line shows the magnitude re-
sponse of the series second-order implementation obtained
from the pole-zero form (the direct-form implementation isun-
stable, thus, not shown). Since all the zeros of the Butterworth
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Fig. 4. The parallel implementation of a (1000/1000) transfer function. The
blue line shows the response of the 500 series second-order sections, which
is then converted to 500 parallel second-order sections by the least-squares
fit, displayed by red line. The red curve is offset by -20 dB forclarity.
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Fig. 5. The factored parallel implementation of an 8th orderButterworth
high-pass filter. The cutoff frequency isfc = 100 Hz, while the sampling
rate is fs = 44.1 kHz. The thick blue line shows the response of the 4
series second-order sections, and the red dashed line displays the response of
the factored parallel implementation. The dotted lines display the magnitude
responses of the parallel second-order sections in series with the response of
the first-order FIR filter that has been factored out.

filter equal to unityzm = 1 for m = 1 . . . 8, we simply factor
out one of them before performing partial fraction expansion.
Thus, the resulting filter structure is composed of four second-
order IIR filters in parallel and an FIR filter̂F (z−1) = 1−z−1

in series. Obviously, the four second-order sections can be
computed in parallel, but the first-order FIR filter cannot,
which might lead to a slight increase in computational time in
parallel architectures.

The benefit of the factored conversion is the significantly
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reduced design time. Since no root finding is required, the
partial fraction expansion requires very few (though complex)
operations. This allows computing the parallel form on the fly
when the user is manipulating the parameters of the series
transfer function in real time, e.g., by changing the cutoff
frequency of the high-pass filter. Another typical example
would be varying the parameters of a parametric or graphic
equalizer in series form and converting it to the more efficient
parallel form in real time.

We note that, for high-order filters such as in the example
of Figure 4, partial fraction expansion can lead to numerical
errors even when converting from the series form. Indeed, the
example of Figure 4 cannot be converted by the factored partial
fraction expansion method discussed in this section, and the
least-squares method should be used.

VII. C ONCLUSION

In this article, the common approach of converting direct
form IIR filters to parallel form has been revisited: the
method based on partial fraction expansion. If the order of the
numeratorM is greater or equal to that of the denominator
N , the responses of the individual transfer functions can
be significantly larger than the net transfer function leading
to reduced dynamic range and increased quantization noise.
The use of an alternative parallel form is suggested to avoid
the dynamic range problem: in the delayed parallel filter the
response of the second-order sections is delayed such that there
is no overlap with the parallel FIR path. The parameters of the
delayed parallel form can also be computed by the usual partial
fraction expansion; the only difference is that the order ofthe
numerator polynomial is reduced by performing polynomial
long division over the reversed numerator polynomial.

For high (> 100) filter orders, conversion via partial fraction
expansion can be numerically sensitive. Therefore, a simple
least-squares procedure is proposed to obtain the delayed
parallel form directly. The denominators of the second-order
sections are computed by recombining the roots of the original
denominator. The coefficients of the parallel FIR part simply
equal to the firstM −N + 1 samples of the original impulse
response, and the numerators of the second-order sections are
estimated by a least-squares fit such that the resulting impulse
response is the closest possible to the impulse response of the
original filter. Since we are directly optimizing the error of the
impulse response, this guarantees optimal filter performance
(the frequency response error will be also minimal due to
Parseval’s theorem). Indeed, filters in the order of 1000 can
be factored with very high accuracy.

Finally, the case in which the original transfer function
is available in a pole-zero form or, equivalently, in a series
combination of second-order sections has been tackled. In
addition to the least-squares fit, an alternative method has
been presented that starts with factoring out zeros from the
numerator until we reachM < N so that partial fraction
expansion can be performed in the pole-zero form. The
factored partial fraction expansion method has a very low
computational complexity requirement, thus, it is ideal for
cases when the conversion must be done on the fly. This comes

at a price of a low-order FIR filter in series with the parallel
sections.

The goal of this article is to raise awareness about the
numerical issues related to the common way of converting
filters to the parallel form, with the hope that the reader will
find the alternative methods appealing and useful in many
practical situations.
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