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Abstract

The present work is about the synthesis of piano sound based on the grounds of
physical principles. For that, �rst the acoustical properties of the piano have to be
understood, since the underlying physical phenomena establish the framework for
the model-based sound synthesis. Therefore, the di�erent parts of the piano were
measured and analyzed.

The groundwork of the piano model lies in the digital waveguide modeling of
the string behavior. Accordingly, the digital waveguide string model is thoroughly
discussed and analyzed. The mathematical equivalence of the digital waveguide and
the resonator bank is also presented.

The partition of the piano model follows the principles of the sound production
mechanism of the real piano. The hammer is modeled by nonlinear interaction. The
discontinuity problem arising when connecting the hammer to the string is investi-
gated and new solutions for its avoidance are proposed. The instability problems of
the hammer model are overcome by a novel multi-rate implementation. The possible
use of a nonlinear damper model is also discussed. The string simulation is based
on the digital waveguide. For beating and two-stage decay, a new parallel resonator
bank structure is proposed. The soundboard model consists of a feedback delay
network with shaping �lters. A new technique is presented to reproduce the attack
noise of the piano sound in an e�cient and physically meaningful way. Concerning
the implementation issues, a multi-rate piano model is proposed, which resolves the
problem of di�erent computational loads presented by the string models of the low
and high register.

Additionally, the calibration of the piano model is described. A new loss �lter
design algorithm is presented for the calibration of the digital waveguide. The new
technique minimizes the error of the resulting decay times and also ensures the
stability of the feedback loop. For the one-pole �lter as a special case, a novel �lter
design technique is proposed. It is founded on the new theoretical results of the
Appendix concerning the decay times of a feedback loop containing the one-pole
loop �lter. A robust technique for the measurement of beating and two-stage decay
is presented. This is used for the calibration of the parallel resonator bank.

The methods and techniques proposed here are described with the application to
piano sound synthesis. Nevertheless, most of them can be exploited for the e�cient
synthesis of other musical instruments as well.

Keywords: digital signal processing, digital waveguide, musical acoustics, mu-
sical instruments, piano, sound synthesis
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Chapter 1

Introduction

The aim of this thesis was understanding and simulating the sound generation of the
piano. Examining the physical principles of a musical instrument can be useful in
many ways: a better insight in the sound production mechanism of the piano could
lead to improvements of the instrument. On the other hand, it can be also applied
for the design of sound synthesis algorithms, issuing in more realistic synthetic piano
tones.

These two approaches yield di�erent modeling levels. While for understanding
physical phenomena complicated and accurate models are used, the e�cient sound
synthesis calls for simple and fast algorithms. Here we concentrate on the second
approach. Accordingly, the proposed model captures only the most essential parts
of the structure and sound generating behavior of the instrument.

The tasks for developing the structure of a physical model for an instrument are
the following: �rst, the acoustical properties of the instrument have to be carefully
investigated, then, a decision has to be made which features need to be simulated,
the last step is �nding e�cient implementations for these features. After designing
the structure, the parameters of the model are calibrated. This is based on the
analysis of the real instrument. Thus, the design procedure both begins and ends
with the analysis of the real world.

The physics-based approach has several advantages compared to traditional
methods. The traditional techniques of sound synthesis simulate the resulting sound
signal by means of abstract algorithms or by the modi�cation of prerecorded sam-
ples. Consequently, they hide the underlying sound production mechanism. More-
over, their parameters have no meaning to the musician. This is similar to black-box
modeling in system identi�cation. On the contrary, physical modeling techniques
concentrate on the internal structure, similar to white-box models in the �eld of
system identi�cation. This way, the parameters of the model will have a more direct
interpretation in the real word. They can be, e.g., the length of a string or the sti�-
ness of the hammer felt. Once a speci�c instrument is designed, the modi�cation of
the parameters will lead to meaningful results. For example, a modern grand piano
can be turned to an old pianoforte by changing two or three parameters. The largest
bene�t of the physical modeling approach is that the interactions of the musician
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16 CHAPTER 1. INTRODUCTION

are easily incorporated during sound synthesis.
Nonetheless, physical modeling does not mean that all the parts of the model

have to be based on equations describing the behavior of the real piano. The gen-
eral structure of the model originates from the real instrument, but some of the
elements are modeled by non-physical algorithms. The aim is to incorporate the
most advantageous methods for simulating the di�erent parts of the instrument.

The drawbacks of the physical modeling technique are the loss of generality
and the high implementation costs. While abstract algorithms or methods based
on prerecorded samples can be used for the reproduction of many kinds of instru-
ments, a physical model is valid only for a speci�c instrument, or instrument family.
Generally, physical models need more computational time compared to traditional
techniques. Most likely these are the reasons why physical modeling techniques have
not gained signi�cance in the commercial synthesis market. Nevertheless, the year
by year increase in the computational power of digital signal processors can change
this state. Multimedia applications are also a promising �eld for the physics-based
modeling of musical instruments.

Since this work deals with the physics-based modeling of the piano, the acoustical
properties of the instrument has to be discussed. This is done in Chapter 2, by
reviewing the literature and presenting the results of own measurements. In Chapter
3, di�erent sound synthesis algorithms are brie�y outlined, concentrating on the
application to piano sound. Chapter 4 discusses the principles of digital waveguide
modeling, which is an e�cient technique for simulating the string behavior. Based
on the equations describing the digital waveguide, the equivalent resonator bank
structure is presented. In Chapter 5, we concentrate on the structure of the piano
model. After presenting the general structure, the di�erent parts of the model are
discussed and several new methods are proposed. The model structure follows that
of the real piano. Namely, it consists of the hammer, string, and soundboard models.
The chapter ends with the discussion of practical implementation issues. Chapter
6 discusses the calibration of the di�erent parts presented in Chapter 5. These
are aimed at determining the parameters of the model from measurements made
on real pianos. The goal is to �nd a parameter set to the model which gives the
most similar sound output to the real piano. New calibration techniques are also
presented. Finally, Chapter 7 summarizes the results and gives the planned direction
of future research.



Chapter 2

Acoustical properties of the piano

The piano belongs to the group of struck string instruments. Historically, it is the
descendant of the harpsichord, but its excitation mechanism resembles that of the
clavichord. The �rst piano was built as early as 1709 by Bartolomeo Cristofori, but
it had to go through many changes to reach its modern form. This development
was mostly due to the work of Henry Steinweg in the middle of the 19th century.
The comparison of a new and the 1720 Cristofori piano can be found in [Conklin
1996a,b,c]. The upright pianoforte was developed in the middle of the nineteenth
century [Fletcher and Rossing 1998]. Here we concentrate on the grand piano, but
most of the statements are valid for the upright piano as well. The description of
the measurements can be found in the Appendix.

The general structure of the piano is the following: an iron frame is attached
to the upper part of the wooden case and the strings are extended upon this in
a direction nearly perpendicular to the keyboard. That end of the string which is
closer to the keyboard is connected to the tuning pins on the bin block, and the
other end, after crossing the bridge, is attached to the hitch-pin rail of the frame.
The bridge is a thin wooden bar transmitting the vibration of the string to the
soundboard, which can be found under the frame. This is displayed in Fig. 2.1.

Figure 2.1: Schematic structure of the piano.

According to the above-mentioned parts, the sound-production mechanism of
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18 CHAPTER 2. ACOUSTICAL PROPERTIES OF THE PIANO

the piano can be divided into the following steps:

1. The �rst is the excitation, the hammer strike. The piano action belongs to this
part as well, since it transmits the kinetic energy taken in by the artist to the
kinetic energy of the hammer, which, after bouncing to the string, transforms
to vibrational energy.

2. This energy is stored by the string in its normal modes. One part of that is
dissipated due to internal losses, the other gets to the soundboard through the
bridge.

3. The soundboard converts the vibrational energy to acoustical energy, to the
audible sound.

2.1 Piano action and hammer

2.1.1 The action

The action of the piano is an artwork of precision mechanics, and its operation
is pretty complicated. This complexity is aimed at allowing the fastest possible
repetition of a single note. In this way the repetition can be made before the hammer
reaches its rest position. Roughly, the action can be considered as a lever system
with a ratio of 1:5 between the movement of the key and the hammer. An important
�avor of the action is that in the instant of hammer-string contact the hammer
rotates freely. When the key is pressed down slowly, the hammer stops 4-6 mm
beneath the strings. Under normal playing conditions the hammer is sent towards
the string by the transferred kinetic energy. By pressing a key the corresponding
damper is also lifted, which mutes the string by falling back after the key is released
[Fletcher and Rossing 1998; Askenfelt and Jansson 1990, 1991].

By the examination of the timing of the action, Askenfelt and Jansson [1990]
made some interesting observations. They concluded that the delay introduced by
the action depends on the dynamic level to a great extent. In the piano-legato touch
this delay can be as high as 100 ms, while at the forte-staccato touch from the hit of
the key to the sound of the note elapses only 25 ms. Since this di�erence is audible,
the skilled pianist must compensate for this actor. The key bottom contact can
provide some mechanical feedback to the player, since the di�erence there is in the
order of 15 ms, nevertheless skillful artists perform even more accurate timing.

The second article of the same series [Askenfelt and Jansson 1991] studies the
dynamic properties of the action. There were contradicting standpoints between
pianists and researchers concerning the possibilities of the pianist to in�uence the
piano tone. Researchers claimed that the resulting sound is controlled by the �-
nal velocity of the hammer only. Nonetheless, pianists pay much attention to the
�touch�. According to them considerable variations can be made in the tone this
way. Askenfelt and Jansson [1991] showed that the hammer exhibits various reso-
nances and their level di�ers according to the type of touch. In legato playing, when
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the action was accelerated continually, the amplitude of the hammer resonances was
considerably lower than that of the staccato touch. The resonant frequencies were
found at 50, 250 and 600 Hz with quality factor values between 15 and 30. It is
still unclear if these vibrations can have an in�uence on the string vibrations or not.
Thus, it calls for future investigation.

2.1.2 The hammer

Hammers have a great in�uence on the timbre of the piano, since they excite the
strings. The hardwood cores of the hammers are covered by wool felt. The char-
acteristics of the felt a�ect the resulting sound considerably. Harder felt results in
stronger partials, i.e., a brighter tone. On the contrary, softer hammers produce
less partials and a softer tone. The timbre of the piano can be in�uenced by �voic-
ing�. Hammers can be made softer by needling, or hardened by a hardening agent.
Voicing is the last step of piano production, giving a �personality� to the instrument
[Conklin 1996a].

The felt of the hammer is not homogeneous. Its hardness gradually changes from
the outer part to the core. This is the main reason for the spectral di�erences at
various dynamic levels: the high-frequency content of the tone increases with impact
velocity [Conklin 1996a; Askenfelt and Jansson 1993]. Consequently, the felt can be
considered as a nonlinear spring, with a sti�ness increasing with compression. An
approximate power-law model for the felt can be found in many articles [see, e.g.,
Boutillon 1988]:

F = K(�y)p (2.1)

where �y refers to the compression of the felt, K is the sti�ness coe�cient and p
is the sti�ness exponent. This may seem too simple for characterizing the complex
behavior of the hammer, but in practice, with proper K and p values, it describes
the hammer-string interaction at appropriate precision. These values (K and p)
can be determined by curve-�tting from measured data [Boutillon 1988; Chaigne
and Askenfelt 1994a]. Some papers suggest a hysteretic model for the hammer felt
[Boutillon 1988; Stulov 1995]. An extensive theoretical and numerical analysis of
the hammer-string interaction can be found in [Hall 1986, 1987a,b; Zhu and Mote
1994].

The process of the hammer-string interaction is the following: the hammer,
accelerated by the action, hits the string, but it does not bounce back immediately,
since its mass is not negligible compared to the string. The hammer is thrown
back by the re�ected pulses returning from the closer end of the string. The force
experienced by the string (and the hammer) is a sequence of shock waves, which
gives to the graph of the force a lumpy character [Fletcher and Rossing 1998].

The shape and smoothness (and thus the frequency content) of the force curve
is in�uenced by p, K and the initial velocity as well. Increasing K or the initial
velocity has the same e�ect, they both enlarge the high-frequency content of the
excitation. The average duration of the hammer-string contact is determined by
the ratio of the hammer and string mass. The heavier the hammer, the longer is



20 CHAPTER 2. ACOUSTICAL PROPERTIES OF THE PIANO

the contact time. With increasing initial velocities or K values the duration of the
contact decreases to some extent, but the signi�cance of this e�ect is much less than
that of the mass ratio [Chaigne and Askenfelt 1994b; Fletcher and Rossing 1998].

The string is excited most e�ectively by the hammer when the contact time is
equal to the half period of the tone. That's the case in the middle register. On
the contrary, in the bass range the contact duration is much shorter, and in the
treble much longer than the ideal. In contemporary pianos, hammers of gradually
changing mass are used in order to reduce this e�ect [Conklin 1996a].

The spectra of the resulted sound depends on the striking point as well. This
results in a comb �ltering e�ect, since those modes of the string, which have a node
near to the striking position cannot be excited e�ectively [Fletcher and Rossing
1998; Conklin 1996a].

The model built for synthesis purposes (details are described later) allows the
investigation of the hammer-string interaction. The results of the simulation were
very similar to those of the literature. The high-frequency content of the excitation
force increased with initial velocity and the contact time decreased by a negligible
amount. All other modi�cations on the excitation (hammer mass or sti�ness pa-
rameter) gave the same results as those that can be found in the referred papers.
This also justi�es the correctness of the model.

2.1.3 Measurement of the hammer behavior

The movement of the hammer was examined by a small accelerometer. In this way
we have an insight on the excitation signal, since one can estimate the shape of the
force experienced by the hammer from the acceleration of the hammer. The correct
value of the force could be calculated only by knowing the inertia of the hammer.
Consequently, the results shown here di�er from the force signal by a scaling factor.
Ten di�erent keys were measured at various dynamic levels using legato and staccato
touch. The results resembled those found in the literature. Hammers in the middle
register showed resonances at about 20 and 300 Hz. These values are presumably
lower than those of normal conditions, since adding the mass of the accelerometer
lowers the frequency of the resonances. The measured contact times were similar
to those of the referred papers. In Fig. 2.2 one can examine the acceleration of
the hammer at the hammer-string contact at piano and forte levels (the measured
string: A]

4, 467 Hz). For clarity the sign of the acceleration was inverted (since the
hammer accelerates downwards during bouncing back from the string).

It can be seen that at higher initial velocities not only the amplitude of the
excitation force is changing but also its waveform. This is because of the nonlinear
behavior of the hammer felt. By vertically magnifying and horizontally compressing
the graph of the piano-level signal one can investigate the acceleration of the hammer
before and after the impact (see Fig. 2.3). The �rst peak in the acceleration signal
at around 20 ms corresponds to the beginning of the touch and the impact is now
represented by a vertical line at about 140 ms. Here positive values correspond to
upward acceleration.
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Figure 2.2: Acceleration of the hammer at the instant of the impact.

The �gure shows that the hammer acceleration is not smooth, but it exhibits
several resonances. The oscillation after the impact can be an important factor in
the attack of the piano sound as well. The delay of the action is more than 100 ms
in this case. At forte dynamic level it is about 20-30 ms.

2.2 Piano strings

The strings of the piano are made of steel wire. High e�ciency requires high tension
(about 700 N for each string), and accordingly the strings are strained at the 30-60%
of their yield strength. In order to reach higher acoustic output, three strings for
the same note are used (except for the lowest two octaves). These strings are not
tuned in perfect unison, introducing beating and two-stage decay, two important
characteristics of piano sound. The length of the strings is not exactly in inverse
proportion to the fundamental frequency. If it were so, the lowest strings would
be too long. Hence, the case should be larger than acceptable. This is avoided by
increasing the mass of the bass strings. On the other hand, thicker string results in
higher inharmonicity, since the string begins to behave as a sti� bar. The solution
is winding the bass strings with one or two layers of copper wire, which reduces
sti�ness [Fletcher and Rossing 1998].
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Figure 2.3: Acceleration of the hammer during the touch and after the impact.

2.2.1 Beating and two-stage decay

Having more strings for the same note not only increases the e�ciency of the energy
transmission towards the bridge but is also responsible for the characteristic piano
sound. If we assume that the strings are not tuned to the same frequency but neglect
the e�ect of coupling, the result will be beating between the partials. In reality, these
strings are not independent, since they are coupled to the bridge, giving rise to new
modal frequencies. Coupling can be the reason for the two-stage decay as well. This
means that in the early part of the tone the sound decays much faster than in the
latter part [Weinreich 1977].

Weinreich [1977] studied the behavior of the coupling in the case of two one-
polarization strings. He found that depending on the admittance of the bridge,
di�erent kind of normal modes arise. In the case of purely reactive bridge admit-
tance, the frequencies of the two normal modes will be always di�erent, even if
the original uncoupled modal frequencies were the same for the two strings. When
the bridge admittance is purely resistive, the behavior of the system falls to two
regimes, depending on the amount of the uncoupled frequency di�erence of the two
strings. If this frequency di�erence is greater than a certain value, both normal
modes will have the same decay rate but will di�er in frequency. In the other case,
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the frequencies of the two normal modes will be the same, and their decay time will
di�er. If the admittance has both real and imaginary parts, as it is the case for a
real soundboard, both the frequencies and decay times of the two normal modes can
di�er. This means that the beating can grow and decay. The beating will reach its
maximum when the amplitudes of the two modes approximately equal.

There is another explanation for the two-stage decay: the behavior of the two
di�erent polarizations. Since the vertical polarization of the string is coupled more
e�ciently to the bridge than the horizontal polarization, the decay times di�er
signi�cantly. The hammer excites the vertical polarization to a greater extent, and
the energy transmission to the bridge is more e�ective in this direction as well. As a
result, in the beginning of the tone the sound produced by the vertical polarization
will be the dominant. As the vibration of the vertical polarization decays faster, the
latter part of the tone will be determined by the horizontal polarization. However,
these two polarizations are coupled to each other, so the description given here is
rather a simpli�cation of the real phenomenon. A detailed treatment on this subject
can be found in [Weinreich 1977].

2.2.2 Inharmonicity

As mentioned earlier, the sti�ness of the strings results in a slightly inharmonic
sound. The wave equation of the sti� string is the combination of the equations for
the ideal string (see Eq. 4.1) and ideal bar (for bending waves) [Morse 1948; Fletcher
and Rossing 1998]:

�
@2y

@t2
= T

@2y

@x2
�QS�2

@4y

@x4
(2.2)

where x is the position along the string, y is the transversal string displacement,
t is the time, T refers to tension and � to mass density. In Eq. (2.2) Q stands
for Young's modulus, S is the cross-section area of the string and � is the radius of
gyration. As a result of the forth-power term, dispersion will appear, and waves with
higher frequency will travel faster on the string, i.e., the wave velocity will not be
constant any more. The results of group velocity measurements in good agreement
to the theory can be found in [Podlesak and Lee 1988]. As a result of dispersion,
higher modes will go back and forth on the string within a shorter time, so their
frequency will be somewhat higher than that of the ideal string. Solving Eq. (2.2)
for small sti�ness the modal frequencies of the string will be the following [Fletcher
et al. 1962; Fletcher and Rossing 1998; Morse 1948]:

fn = nf0
p
1 +Bn2 B =

�3Qd4

64l2T
(2.3)

where f0 is the fundamental frequency of the ideal string, n is the number of the
partial, d is the diameter of the string and l is its length. The inharmonicity co-
e�cient B can be calculated in this manner only for homogenous strings, but for
wounded ones it is somewhat more di�cult, the precise formula gives a lower value
than this. The exact formula can be found in [Fletcher and Rossing 1998]. It can
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be seen from the equation that inharmonicity increases with partial number. The
B values are also increasing with the fundamental frequency of the string (since the
lower strings are wound). On the contrary, when listening to piano sound, it seems
to be more inharmonic in the lower register than in the higher one. One reason for
this can be that the number of the partial which can be still heard is much higher
for the low strings. The other is a psychoacoustic phenomenon: for higher funda-
mental frequencies the limit of perception for inharmonicity is higher than at low
frequencies [Järveläinen et al. 1999]. The bandwidth of perceived inharmonicity was
studied in [Rocchesso and Scalcon 1999].

It is an important question whether the inharmonicity is a desired factor or
just an unavoidable feature. Conklin [1996c] states that pianists usually choose the
largest piano available, which generally exhibits the lowest inharmonicity. The rea-
son for this is that for low notes the amplitude of the fundamental is quite weak and
the determination of the pitch is mainly based on the higher partials. Due to inhar-
monicity the frequency di�erence between partials is higher than the fundamental
frequency and it increases with partial number. Accordingly, the de�nition of pitch
becomes uncertain. Conklin [1996c] concludes that inharmonicity is an important
factor of piano sound, but there should be as little of it as possible.

Inharmonicity also a�ects piano-tuning. Since tuning is based on beating be-
tween intervals (for �fths beating between the third partial of the lower note and
the second of the higher), stretching of partials will cause stretching of fundamental
frequencies as well. As a result, the lowest notes of the piano are 30 cent below,
while the highest are 30 cent above the tempered values. There appears to be a
psychological reason for stretched tuning too, since listeners often judge intervals
as true octaves when their frequency ratio is slightly greater than 2:1 [Fletcher and
Rossing 1998].

2.2.3 Measurement of inharmonicity

Several piano tones were recorded in this study with a microphone close to the sound-
board. The results were similar to those of the literature. The graphs follow the
theoretical curves quite well. In Fig. 2.4 the inharmonicity indices (In = fn=(nf0))
of the note C2 (65 Hz) and A]

4 (466 Hz) are plotted. The inharmonicity coe�cients
calculated by curve �tting were 0.0001 for C2 and 0.00075 for the A]

4 note. It can be
noted that higher strings show higher inharmonicity, although perceptually they are
considered to be less inharmonic. Besides the earlier mentioned reasons, another
cause for this di�erence can be that the higher partials of the higher note decay
much faster than those of the lower one making the inharmonicity less audible.

Based on the measurements, subjective experiments were made in order to ex-
plore whether it is needed or not to simulate inharmonicity in the synthesis model.
Several piano tones were analyzed and resynthesized via additive synthesis. The
partials had simple exponential decay curves �tted to measurements. The result
sounded like a somewhat unsuccessful attempt to synthesize piano tones, but it was
clear that it should be a piano sound. Then the dispersion was discarded, so all the
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Figure 2.4: Inharmonicity indices of notes C2 (65 Hz) and A]
4 (466 Hz).

partial frequencies were set to be perfectly harmonic with respect to the fundamen-
tal frequency. The di�erence for higher notes was negligible, it could be heard only
in the attack part, since the higher harmonics fade away fast. For lower tones (below
C4) the e�ect was drastic: the synthetic sound was not a piano tone anymore, since
it sounded rather harsh and disturbing. It should be also noted that the inharmonic
synthesized tones for lower notes sounded more piano-like than the higher ones. As
a conclusion, inharmonicity is an important factor and should be taken into account
since it is essential in the distinction of the piano timbre.

2.2.4 Nonlinear e�ects and longitudinal waves

When examining the sound of string instruments, those modes which have a node at
the excitation point are not missing completely, in contrast to the theoretical model.
Their envelope also di�ers from the others, they rise slowly for the �rst 0.1 second
and just after that start to decay (although the referred paper [Legge and Fletcher
1984] does not say if it is the case for piano). It follows that these modes gain energy
from other modes and it can be only due to a nonlinear coupling. Legge and Fletcher
[1984] made both theoretical and experimental examinations. The starting-point of
mode-coupling is the tension variation. As the shape of the string changes during
its motion, its length changes as well, causing tension modulation proportional to
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the elongation. By examining the lossy (�rst-order losses only), rigidly terminated
string they concluded that the tension and the fundamental frequency decrease
exponentially as the sound decays. A modulation in tension at a double frequency
of the fundamental can be also found. In the case of completely rigid terminations,
this tension variation can only a�ect the modes from which it originates. However,
if one of the terminations has �nite impedance perpendicular to the string, modes n
and m can transfer energy to the mode 2n �m. When the string passes the bridge
at an angle, the tension modulation exerts a force to the bridge perpendicular to
the strings. As the tension is modulated by twice the fundamental frequency, mode
n can deliver energy to the mode 2n [Legge and Fletcher 1984].

In a more recent paper [Hall and Clark 1987] claim that the nonlinear generation
of missing modes is not the case for the piano, since the support is much more rigid
than that in Legge's and Fletcher's experiments. They explain that the small resid-
ual amplitude of the �missing� modes comes from the �nite resistance of the bridge
(they did not �nd the slow rise in the envelopes of these modes). The contradiction
of the two papers has not been resolved yet, hence it calls for further research.

Conklin [1999] showed that the tension modulation is also audible in the acous-
tical output of the piano. The so called �phantom partials� were only about 10 dB
lower in amplitude than the nearest �real� partials. These were found at frequen-
cies two times that of the exciting mode (2fn) and at sum and di�erence frequencies
(fn�fm) of the exciting modes as well, contradicting the theoretical results of Legge
and Fletcher [1984]. The signi�cance of phantom partials is exceptionally high in
the case of piano, since they produce beating with the inharmonic real partials.
Note that in a perfectly harmonic string the e�ect would be only a change in the
initial amplitude. This can be one of the reasons why pianists prefer pianos with less
inharmonicity, since in that case the frequency di�erence between real and phantom
partials is lower.

The tension modulation as nonlinear coupling can also transfer energy between
the two transversal polarizations. As a result, the polarization ellipse does not re-
main still but it features a slow precession [Fletcher and Rossing 1998] Experimental
results on the subject can be found in [Hanson et al. 1994].

According to Giordano and Korty [1994], tension modulation is the cause of the
rise of longitudinal waves as well. Their starting-point was the observation that the
musical sound is preceded by a precursor signal. This precursor has to be transferred
by the longitudinal waves since they travel faster than the transversal ones. They
are excited by the tension-variation exerted by the hammer strike.

The relative frequencies of the longitudinal modes also in�uence the quality of
the piano sound. The di�erence between the �rst transversal and longitudinal modes
is typically between 4200 and 5200 cents (42-52 semitones), and it is constant ir-
respectively of the tuning of the string. In order to reach good quality, the �rst
longitudinal mode should be in tune with the piano. This means that it should
coincide with the �rst transversal mode of any higher note [Conklin 1996c].
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2.3 The bridge and the soundboard

The soundboard of modern pianos is generally made of assembling strips of solid
softwood (such as Sitka or red spruce). These 5-15 cm wide strips are glued together.
Since the sti�ness of the wood is higher along the grain, the cross-grain sti�ness is
increased by adding ribs to the soundboard. This increases the travel velocity in
that direction. Pianos of lower cost are generally built of laminated wood. The
comparison of soundboards of di�erent materials can be found in [Conklin 1996b].

The vibration of the strings is transmitted to the soundboard through the bridge.
The bridge functions as an impedance transformer, presenting higher impedance to
the string than that if the strings were directly connected to the soundboard. In the
latter case decay times would be too short. By carefully designing the soundboard
and the bridge the loudness and the decay time of the partials can be set, although
these parameters are in an inverse ratio [Fletcher and Rossing 1998].

The impedance curve of the soundboard exhibits a high modal density. Many
studies have been done on the low frequency behavior of the soundboard. These
resonances are similar to the simple motion of a plate and can be easily observed by
the Chladni method [Conklin 1996b]. The higher frequency region of the soundboard
was investigated by Giordano [1998]. He found that the average of the impedance is
constant up to about 3-7 kHz (between 1000 and 10000 kg/s) and after that it starts
to decrease with frequency. This decline is due to the ribs. Although the sti�ness of
the soundboard di�ers in the di�erent directions, without ribs it would not produce
this result, since the modal density would remain constant. According to Giordano
[1998] the ribs sti�en the soundboard at lower frequencies to a higher extent, as at
higher frequencies the modes �t in between the ribs. This result was supported by
numerical simulations as well [Giordano 1997].

2.3.1 Measurement of the soundboard

The soundboard was measured by an impact hammer and the movement of the
bridge was recorded by an accelerometer. The near�eld pressure of the soundboard
was also measured. The excitation signal (the force measured by the impact ham-
mer) was of a lowpass character. It consisted spectral components at appropriate
level until 5 kHz. Di�erent measurements of the same position along the bridge
showed good agreement until this frequency, but above 10 kHz they were very di�er-
ent because of measurement noise. Therefore, these measurements were considered
to be relevant only up to 5 kHz. By changing the measurement point the curves
varied a lot. This is also caused by the strings, although they were damped. The
di�erence would be smaller if the strings were removed, but that would not equal
the normal playing conditions. The impedance and force-pressure transfer function
curves for the note A]

4 can be seen in Fig. 2.5.

By looking at the low-frequency part of the �gures it is easy to notice that the
impedance minima coincide with pressure maxima. At higher frequencies the inter-
ference and cancellation of sound from di�erent areas of the soundboard becomes
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Figure 2.5: Impedance and force-pressure transfer function of the soundboard.

more signi�cant, and the former coincidence cannot be found any longer. The aver-
age value of the soundboard impedance is similar to the results of Giordano [1998],
although the decrease with frequency cannot be observed. To answer this question,
new measurements are needed which can be used at least up to 10 kHz.

2.4 Pedals

Pianos have either two or three pedals. The most important one is the sustain pedal
on the right, which lifts the dampers of all the strings. This sustains the struck keys
on the one hand and also changes the character of the timbre on the other, since all
the other strings can vibrate freely in sympathetic mode.

The e�ect of the sustain pedal was also measured. The bridge was hit by an
impact hammer and the acceleration of the bridge and the near-�eld sound pressure
were recorded. The impedance curve of the bridge did not change signi�cantly
compared to that without sustain pedal. The resonances became more peaky but the
di�erence of the two curves stayed below one or two decibels. The main reason for the
timbral change is not the change of the impedance but of the force-pressure transfer
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function. The 300-400 ms long attack noise coming from the impulse response of the
soundboard remains the same but it is superimposed on the slow (10-20 sec long)
decay of string vibrations. The impulse response varies largely with the measurement
position: hitting the bridge at the low register results in a softer timbre, hitting at
the high stings in a brighter one.

The left pedal is the una corda pedal, which shifts the entire action sideways.
Consequently, the hammers strike only two strings out of three in the treble, or
one out of two in the midrange. This causes only about 1 dB reduction of the
sound pressure level, but changes the timbre [Fletcher and Rossing 1998]. One of
the reasons for this is that the third string gains energy from the vibration of the
other two. The initial conditions of the coupled vibration are changed, resulting in
a slower decay [Weinreich 1977]. Another reason for the spectral change can be that
when the same hammer hits a smaller number of strings, it appears to be heavier
with respect to the single strings, causing longer contact times and a softer timbre.

In upright pianos, the left pedal is a soft pedal. It moves the hammers closer to
the string, resulting in lower striking force [Fletcher and Rossing 1998].

The middle pedal is the sustenuto pedal, which sustains only those notes that
have been hit before depressing the pedal. In some uprights, this is a practice pedal,
which lowers a piece of felt between the strings and the hammers [Fletcher and
Rossing 1998].

2.5 Spectra of the piano sound

Fig. 2.6 shows the spectrum of the �rst 0.5 sec of the A]
4 note at forte dynamic level.

The inharmonicity can be easily recognized: the distance between partials gets larger
as the frequency increases. Between the real partials the phantom partials can also
be found. Some are marked by � in Fig. 2.6. The frequencies of the marked phantom
partials in terms of the real partial frequencies are: 2f4, f4+f5, 2f5, f1+f10, f6+f7,
and f7 + f8.

The upper part of Fig. 2.7 illustrates the STFT (Short Time Fourier Transform)
of the �rst second of the same note up to 5 kHz. The length of the Hamming
window was four times the pitch period. The envelopes of the distinct partials
evolve di�erently as a result of the complex coupling. The basic phenomenon is the
beating whose frequency is proportional to the partial number. The two-stage decay
is not visible, since the displayed 1 sec time is too short for that.

The lower part of Fig. 2.7 shows the STFT diagram of the same note at piano
level. It can be seen that not only the overall amplitude but also the level ratio of
the partials changes. At lower hammer velocities the spectrum decays more steeply
with frequency. The time-domain evolutions of the envelopes exhibit di�erences as
well. The reason for this can be the nonlinear string behavior on one hand and the
di�erent excitation of the individual strings on the other. Because of the unevenness
of the felt the hammer compliance for the distinct strings can be dissimilar, so the
strings gain energy from the hammer with di�erent ratios at di�erent dynamic levels.
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Figure 2.6: The spectrum of the �rst 0.5 sec of the A]
4 note.

Despite of this the average decay times remain the same.
The fundamental frequency of the tone decreases with respect to time by a

negligible amount. At A]
4 forte note the di�erence is less than 0.2 Hz, which equals

to 0.75 cent. As this change can be considered inaudible [Feldtkeller and Zwicker
1956; Rossing 1990], it can be stated that it has no e�ect on the timbre of the piano.
The tension modulation can be still an important factor, since it is the cause of the
phantom partials and longitudinal modes.

2.6 Conclusion

The timbre of the piano is determined by several factors. The main characteristic of
the sound comes from the fact that the piano is a struck string instrument. It implies
that the string is a�ected by an impulse excitation, resulting in a decaying amplitude.
As the string is hit at about 1/7 of its length, a comb �ltering e�ect occurs, where the
amplitude of every 7th partial is signi�cantly decreased, although these partials may
gain energy later by nonlinear coupling. The variations in the timbre and dynamic
level come from the nonlinear behavior of the hammer. At higher initial velocities
the spectrum gets wider and the peaks of the spectral envelope are shifted slightly
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Figure 2.7: STFT diagram of the A]
4 note at forte and piano dynamic levels.
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to the right.
The kinetic energy of the hammer transforms to the vibrational energy of the

string. The main part of this energy is stored by the string, the second slowly gets
to the soundboard and the third part dissipates. The string determines the funda-
mental frequency of the note and in�uences the decay of the partials. The decay and
the transmitted energy also depend on the terminating impedance. At impedance
maxima of the soundboard the partials can deliver less energy to the soundboard
during the same amount of time. Therefore, their amplitudes will be lower and
their decay times longer than those which are located at impedance minima. The
sti�ness of the string results in a high dispersion. There is no other western string
instrument where the inharmonicity would be as high as in the case of the piano.
Simulation results and informal listening experiments show that inharmonicity is
especially important at the low register of the piano.

The di�erent coupling of the two polarizations to the soundboard results in a
two-stage decay. The envelope of the partials decays faster in the early part of the
tone than in the latter. The slight frequency di�erence of the two or three strings
causes beating. The resulting amplitude modulation is quite complicated because
of the coupling of the strings. The tension modulation gives rise to longitudinal
waves whose relative amplitude to the transversal modes increases with dynamic
level. The appearance of phantom partials comes from the tension modulation as
well. The three strings and their three di�erent polarizations constitute a complex
nonlinearly coupled system, issuing in a dynamic change of the timbre.

The soundboard, besides in�uencing the decay times, determines the overall
spectrum signi�cantly. Its behavior can be assumed to be linear, but its numerous
resonances alter the timbre largely. The characteristic attack noise of the piano
sound comes mainly from the impulse response of the soundboard, but also from
the noise of the action.



Chapter 3

Overview of synthesis methods

Here we brie�y overview the di�erent techniques used for sound synthesis purposes,
and their application to the piano. The details of the algorithms will not be given, for
more thorough discussion see [Roads 1995; Tolonen et al. 1998]. The classi�cation
of di�erent methods is based on the work of Smith [1991] and Tolonen et al. [1998].

3.1 Abstract algorithms

Here we discuss abstract algorithms. Their advantages are simplicity, generality, and
the small number of control parameters. The drawback is that analysis procedures
are complicated, making it almost impossible to simulate the sound of many real
instruments. They are rather useful for creating synthetic, never heard sonorities.

The FM (frequency modulation) synthesis was presented by [Chowning 1973].
It is founded from the theory of frequency modulation used in radio transmission,
but the frequencies of the modulating and carrier waves are in the same order here.
Its advantage is that even a two-oscillator system can produce a rich spectrum.
Inharmonic sounds can also be generated by this technique. If both the carrier and
modulating waves are sinusoids, the amplitudes of the resulting harmonics can be
calculated by the Bessel functions. Van Duyne [1992] used the FM synthesis for
modeling inharmonic low piano tones.

The waveshaping synthesis was developed by Le Brun [1979] and Ar�b [1979]. It
is based on the nonlinear distortion of a simple input signal. An advantage is that the
amplitude variation of the signal results in a large alteration of the output spectrum.
When the input signal is sinusoidal, the amplitudes of the resulting harmonics are
determined by the Chebyshev polynomials. This way, the shaping function can be
analytically derived from the partial amplitudes. The method is capable to simulate
harmonic spectra only.

The Karplus-Strong algorithm [Karplus and Strong 1983] is a simple algorithm
based on the modi�cation of the wavetable synthesis. In the wavetable synthesis,
the signal is periodically read from a computer memory. In the Karplus-Strong
algorithm the sample is modi�ed after reading and written back to the same position.
This way, the content of the wavetable will evolve with time. The algorithm has

33
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been found very e�cient in the simulation of plucked string and drum timbres.
However, it was found soon that the Karplus-Strong algorithm is a special case of
the technique now called digital waveguide modeling [Ja�e and Smith 1983; Smith
1983].

3.2 Processing of pre-recorded samples

The methods described here are based on recording and processing of real sounds.
Accordingly, they are very accurate in reproducing the speci�c sound, which was
recorded. They are not able to reproduce the changes in playing conditions, i.e., the
simulation of not recorded sounds is not realistic. Another problem is that a large
amount of data is needed for describing the instruments.

Sampling synthesis is the basic form of these algorithms. All the commercially
available digital pianos use this technique. They store separate tones of the instru-
ment in a memory and play it back when a key is depressed [Roads 1995]. The
memory need is reduced by looping, that is, continuously repeating the steady state
part of the tone. The amplitude and timbre evolution of the piano is simulated by a
time-varying amplitude envelope and a time-varying �lter. Di�erent dynamic levels
are taken into account by modifying these envelopes, hence a forte note results in
a brighter and louder sound than a piano one. The method synthesizes the notes
separately. Therefore, it cannot simulate the coupled vibrations of the strings or the
restrike of the same string. Nevertheless, even if physical models theoretically could
provide better results, the highest quality synthesized piano sounds are coming from
devices using the sampling technique. Also an advantage is that the implementation
of the algorithm is simple. Sampling synthesis can be successful in the synthesis of
piano sound, because the impact velocity can be easily mapped to the amplitude
and �lter envelopes. Other instruments, such as the violin, where the musician has
more in�uence on the sound, could not be realistically simulated.

Multiple wavetable synthesis is in a way similar to sampling synthesis. One mu-
sical tone is reproduced by many wavetables, whose content is interpolated [Roads
1995]. It also resembles additive synthesis since the wavetables have separate ampli-
tude envelopes and their output is summed. In [Yuen and Horner 1997] the attack
of sounds were synthesised by sampling, and for the decay part multiple wavetable
synthesis was used.

Granular synthesis is based on composing the synthetic sounds from short sound
elements in the time domain [Roads 1995]. The algorithms can be divided into
asynchronous and pitch synchronous methods. The �rst method can rahter be used
for creating synthetic sounds. For the reproduction of musical instrument sounds,
usually the latter one is applied.



3.3. SPECTRAL MODELS 35

3.3 Spectral models

Spectral models try to approach the synthesis problem from the spectral domain,
which is more similar to the human sound perception. Some of them also take
psychoacoustic criteria into account. Their advantage comes from this fact. A
drawback is that generally many parameters are needed for the description of an
instrument. The simulation of transients is problematic, which makes them di�cult
to use for the synthesis of piano sound.

The simplest spectral technique is the additive synthesis. It is based on summing
sinusoidal signals with di�erent frequency and amplitude envelopes. It is popular
since its mathematical background, the Fourier transform, is well developed. An
advantage of the additive technique is the �exibility. Its drawback is the huge
number of control parameters. [Fletcher et al. 1962] used this technique for the
synthesis of piano sound by means of analog circuits.

Group additive synthesis is a combination of additive and wavetable synthesis
techniques. It is motivated by the need for reducing the control stream of the
additive synthesis. Therefore, some partials are grouped together and they will
have common frequency and amplitude envelopes. These grouped partials are then
combined to form wavetables. Lee and Horner [1999] used the method for modeling
the sound of the piano. The grouping of the partials was determined with the help
of genetic algorithms. In Zheng [1999], a critical-band based grouping was used.

Spectral modeling synthesis is a method which decomposes the sound into deter-
ministic and stochastic components in the spectral domain [Serra and Smith 1990].
More recently, methods for deterministic, stochastic and transient decomposition
were developed [Verma and Meng 1995]. Modeling the transients seems to be essen-
tial in synthesizing piano sound.

3.4 Physical modeling

The main feature of physical modeling approaches is that they model the origin
of the sound phenomenon, and not the resulting signal. This issues in a realistic
response to the interactions of the musician, since the input parameters of the model
are analogous with the real world. Theoretically, the physical modeling approach
could give the most realistic synthetic instrument sounds. Their drawback is the loss
of generality and the high computational cost. The calibration of the parameters is
not always trivial either.

The �rst method used in physical modeling was the discrete time solution of the
�nite di�erence equation [Hiller and Ruiz 1971a,b]. The �nite di�erence method was
applied for simulating the string of the piano in [Chaigne and Askenfelt 1994a,b].
Giordano [1997] used the technique for modeling the soundboard of the piano. A
complete piano model based on the �nite di�erence method was presented in [Hikichi
and Osaka 1999]. The advantage of the approach is that the physical equations can
be directly implemented as algorithms. Its drawback is the high computational cost,
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especially if the structure is not one-dimensional.
Modal synthesis describes the structure with the linear combination of vibration

modes [Adrien 1991]. Its main advantage is the generality, since the same kind of
formulation can be used for the simulation of every vibrating structure. Analy-
sis techniques for the determination of the modal parameters are already available,
mostly used in the car and aircraft industry. However, these tools are rather expen-
sive for academic research. The parameters of the model have physical meanings,
but they are not intuitive. The visible parameters of the real structure, e.g., the
length of the string, are hidden.

The exciter-resonator technique was used in [Laroche and Meillier 1994] for the
synthesis of piano sound. A common excitation signal was derived which was �ltered
through the resonators. The drawback of the exciter-resonator approach is that it
is not capable of simulating nonlinear interaction.

McIntyre et al. [1983] recognized that most of the instruments can be simulated
with a nonlinearity and a linear element in a feedback loop. The linear element is
the re�ection function, whose main feature is the delay.

Smith [1983, 1987, 1992] proposed a computationally very e�cient technique,
the digital waveguide modeling. The method is based on the discretization of the
time-domain solution of the wave equation. The e�ciency of the digital waveguide
lies in lumping the losses and dispersion of the structure to one point. Hence, the
string or acoustic tube is simulated by a delay and a linear �lter. In this way, it is
similar to the approach of McIntyre et al. [1983]. The Karplus-Strong algorithm is
a special case of digital waveguide modeling [Ja�e and Smith 1983]. The �rst piano
model based on the digital waveguide was presented in [Garnett 1987]. There, the
digital waveguides were connected to a common termination. In [Borin et al. 1997]
a nonlinear hammer model was used. The computationally most e�cient digital
waveguide piano model is the commuted piano proposed in [Smith and Van Duyne
1995; Van Duyne and Smith 1995]. Since these are the approaches, which are most
similar to the model presented in this thesis, their detailed description will be given
in Chapter 5 with relation to the proposed model structure.

3.5 Conclusion

Until this time, the sampling synthesis has given the best results in synthesizing the
piano tone. If all the notes of the piano are recorded at di�erent dynamic levels,
no other synthesis method can result in more realistic sound. The author believes
that the only exception is the physical modeling, since it can take into account the
interaction of the di�erent parts, such as the coupling between di�erent strings. The
single weak point of sampling synthesis is that it treats the sounds separately. The
only way to make a better synthesis method is to attack this weakness. However, the
physical model described in this thesis does not completely ful�ll this requirement
yet. It can be only considered as a �rst step towards the high quality synthesis of
piano sound.



Chapter 4

Principles of string modeling

In this chapter the mathematical background of digital waveguide modeling is pre-
sented. The formulation originates from the time-domain solution of the wave equa-
tion. After an overview of the ideal string, the e�ect of losses and dispersion is
discussed. This chapter also introduces a new resonator bank interpretation and
shows its equivalence to the digital waveguide model.

4.1 Modeling the ideal string

An e�ective approach for modeling a string and an acoustical tube was introduced
by Smith [1987, 1992]. The method is based on the discretization of the time-domain
solution of the wave equation.

By forming the wave equation of the ideal string, it is needed to make several
simpli�cations: the length of the string is assumed to be in�nite, its mass density
� and tension T is supposed to be homogenous and its displacement to be small
with respect to string length, which means that its slope is very small (dy=dx� 1).
Furthermore, only one transversal polarization of the string is taken into account.
The result is the one-dimensional wave equation Eq. (4.1), which is similar to that of
transmission lines or the longitudinal motion of bars. The derivation of this equation
can be found in the literature [Morse 1948; Fletcher and Rossing 1998] et al.

@2y

@x2
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@2y

@t2
; c =

s
T

�
(4.1)

In Eq. (4.1) x is the position along the string, y is the transversal displacement,
t stands for time, T for the tension, � for linear mass density and c for the wave
velocity. The equation shows that the acceleration of a small section of the string
is proportional to the curvature of the string at that section. Every traveling wave
which retains its shape is a solution of the wave equation. Because of the linearity
of the string, the general solution is a superposition of two traveling waves; one of
them going to the right, the other to the left direction:

y(x; t) = f+(ct� x) + f�(ct+ x)

37
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v(x; t) =
dy

dt
= c

df+

dt
(ct� x) + c

df�

dt
(ct+ x) (4.2)

According to these equations, the shapes of the two traveling-waves f+ and f� are
completely determined by the initial displacement y(x; 0) and velocity v(x; 0).

If the Nyquist condition [Oppenheim and Schafer 1975]is met, the temporal
and spatial sampling of the string can be performed. In this case the continuous
waveform can always be calculated via interpolation among the time-domain and
spatial discrete points. If the sampling is done in a way that the traveling waves
move one spatial sampling interval during one time-instant, it will lead to the digital
waveguide model of the ideal string [Smith 1992]:

y(tn; xm) = y+(n�m) + y�(n+m) (4.3)

This can be implemented by two parallel delay lines, where the transversal displace-
ment of the string is calculated by adding up the output of the samples of the two
delay lines at the same spatial coordinate. This is illustrated in Fig. 4.1.

Figure 4.1: The principle of digital waveguide [Smith 1987, 1992].

As a result of the linear behavior of the digital waveguide, other variables can also
be used instead of transversal displacement. These can be for example transversal
velocity or acceleration, slope, curvature or force, since all of these satisfy the wave
equation.

Nevertheless, it is worth turning our attention to the transversal velocity v and
the force F , since they are proportional to each other. The characteristic impedance
Z0 of the string can be de�ned as follows (see e.g. [Fletcher and Rossing 1998]):

Z0 =
F+

v+
= �F

�

v�
; Z0 =

q
T� (4.4)



4.1. MODELING THE IDEAL STRING 39

where F+ and v+ are the force and velocity waves traveling to the right, and F�

and v� to the left, respectively. Eq. (4.4) is valid at every position of the string and
at every time instant. If a string with a characteristic impedance Z0 is terminated
by an impedance Z, the traveling waves will be re�ected (except when Z = Z0).
This is identical to the termination of a transmission line. The equations for the
re�ection of force and velocity waves are the following:

rv =
v�(xterm; t)

v+(xterm; t)
=
Z0 � Z

Z0 + Z
; rF =

F�(xterm; t)

F+(xterm; t)
= �rv = Z � Z0

Z0 + Z
(4.5)

An ideally rigid termination corresponds to an in�nite terminating impedance Z =
1. This implies that force waves re�ect with the same amplitude and sign (rF = 1),
and velocity waves re�ect with same amplitude but opposite sign (rv = �1). In the
following derivation the velocity v is used as the variable of the delay lines. The
excitation force can be taken into account by adding vin = Fin=(2Z0) to both delay
lines at the position of the excitation. On the grounds of these equations the digital
waveguide model of the ideal string can be formulated as shown in Fig. 4.2.

Figure 4.2: Digital waveguide model of the ideal string.

If the force is introduced at the node Min in Fig. 4.2 the velocity at the node
Mout will be:

vout(z) =
1
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�
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�
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Fin

2Z0

vout(z) =
1

1 � z�N
Hin(z)Hout(z)z

�(Mout�Min)
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(4.6)

where N = 2M . After the fractional expansion of the �rst term one gets the
following equation:

vout(z) =
1

N

�
1

1� z�1ej#1
+ : : :+

1

1 � z�1ej#N

�
Fin

2Z0
�

�Hin(z)Hout(z)z
�(Mout�Min) (4.7)

where #k = (2k�)=N . According to Eq. (4.7), the digital waveguide can be inter-
preted as a resonator bank nested in comb �lters. This con�guration is illustrated
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Figure 4.3: The equivalent resonator bank of the digital waveguide structure of
Fig. 4.2.

in Fig. 4.3, where now A refers to 1=(2Z0)Hin(z) and a junction, and B adds up the
outputs of the resonators and implements (1=N)z�(Mout�Min)Hout(z).

It can be seen that the resonance frequencies are determined by the resonators.
In the case of the ideal string the poles are equally distributed on the unit circle. The
comb �lters Hin and Hout, besides introducing some delay, control the amplitude of
the harmonics. They behave in a physically meaningful way: if the string is excited
for example at the 7th of its length (Min=M = 1=7), the amplitude of every 7th mode
will be zero. The amplitudes of the harmonics are in�uenced by the position of the
observation point Mout in the same way.

Since all the poles lie on the unit circle, the impulse responses of the resonators
are non-damping sinusoids. In this way the e�ect of the comb �lters can be realized
by multiplying the output of every resonator by the transfer function value of the
comb �lters at the corresponding frequency. Since the comb �lters are of linear
phase, the phase part of the transfer function is represented by the delay z�M .
Eq. (4.8) was derived by substituting z = ej#.
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� �
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�
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= z�M
�
ej#Min � e�j#Min

� �
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�
= �4 sin(#Min) sin(#(M �Mout))z

�M (4.8)

So the transfer function of the whole string will be:
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When substituting the comb �lters by multipliers at the output of the resonators,
the output of the two systems represented by Eqs. (4.7) and (4.9) will be identi-
cal after the transient of the comb �lters, which is 2M +Min �Mout steps. The
force-velocity impulse response of a digital waveguide and the equivalent resonator
structure is illustrated in the upper and middle part of Fig. 4.4. In this example,
M = 8, Min = 2, Mout = 7, and Z0 = 1=2.
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Figure 4.4: (a) The output of the digital waveguide, (b) the equivalent resonator
structure with delay line, (c) and the resonators with circular delay.

As it can be seen in Fig. 4.4 (b), in the beginning of the response two impulses
are missing, and therefore the output signal is not fully periodic. The periodicity
can be retained when a �circular delay� is used. This means a circular convolution
with a dirac function �(n�M) in a space whose length is N . This can be done by
changing the initial phases of the resonators with a value corresponding to a delay
z�M . The transfer function of the string takes the form:
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The impulse response of the system is shown in Fig. 4.4 (c). Now in Fig. 4.3 A will
refer to a junction with input coe�cients ak to every branch and B reduces to a
simple adder.

The impulse response of Eq. 4.10 can be formulated in the following way:

h(n) =
N�1X
k=0

ake
j#kn =

N�1X
k=0

ake
j 2�
N
kn (4.11)

which is the Inverse Discrete Fourier Transform of the ak coe�cients. Generally,
when the poles of the resonators are equally distributed on the unit circle, the
impulse response of the digital waveguide and the initial amplitudes and phases of
the resonators are related by the Discrete Fourier Transform. This holds for the
ideal string discussed above. This way the complex resonator coe�cients ak can be
computed by taking the DFT of the �rst N samples of the impulse response.

In the digital waveguide the behavior of the string between the nodes can be
calculated by interpolation [Smith 1992; Laakso et al. 1996]. The inverse opera-
tion of that is the deinterpolation [Välimäki et al. 1993; Välimäki 1995], where the
excitation force is introduced by fractional delay �lters between the nodes of the
waveguide. In the resonator implementation of Eq. (4.9) there is no need for such
operations since by choosing proper input and output coe�cients for the resonators,
Min and Mout can be arbitrary rational numbers.

In the case of multiple inputs and outputs, the input and output signals form
vectors x and y, and the input and output coe�cients can be arranged to matrices
A and B. The matrix R is diagonal and contains the transfer functions of the
resonators. The output of the system is calculated in the following way:

y = BRAx Rkk =
1

1 � z�1ej#k
(4.12)

It is worth to note that in some cases the delay z�M of Eq. (4.9) cannot be
realized with a circular delay as shown in Eq. (4.10). Equation (4.10) is useful only
when all the resonators are implemented. In the case of simulating some secondary
e�ects of the piano sound, as it will be presented in Section 5.3, only some resonators
are used. The solution for the problem will be discussed there.

In the simulation of string instruments, it is more important to know the force
experienced by the termination (bridge) than the movement of the string. The
reason for this is that the sound is mainly radiated by the body or the soundboard
and not the string, since the impedance matching between the string and the air is
ine�cient. From Eqs. (4.4) and (4.5) the force at the bridge Fbr will be:

F+ = v+Z0

F� = rFF
+ = rFv

+Z0

Fbr = F+ + F� = (1 + rF )Z0v
+ = 2Z0v

+ (4.13)

The transfer function from the excitation point to the bridge is:
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The resonator coe�cients ak will take the form:
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where #k = (2k�)=N .
The output of Eqs. (4.14) and (4.15) will di�er only in the �rstM+Min taps. The

delay z�M can be eliminated from Eq. (4.15) in the same way as shown in Eq. (4.10).
Then the impulse response of the resonators and of the digital waveguide will be the
same from the �rst time instant.

4.2 Non-ideal termination

When the string is terminated by a �nite impedance Z > Z0, the absolute value
of the re�ection coe�cient rv will be somewhat lower than 1. If the termination
is purely resistive (Z is real and frequency independent), rv will be a real constant
number. The waves traveling in the delay lines are multiplied by a constant factor
every time they pass through the termination. Consequently, all the harmonics will
decay exponentially with the same time coe�cient � . If one of the terminations is
completely rigid and the other has an impedance of Z > Z0, the decay time of the
harmonics will be the following:

� = � 1

f0 ln rF
(4.16)

where rF is the force re�ection coe�cient (rF = �rv), f0 = N=fs is the fundamental
frequency, fs refers to the sampling frequency, and N to the total length of the
delay line. The re�ection coe�cient rF can be calculated using Eq. (4.5). Eq. (4.16)
was presented with relation to the decay times of the Karplus-Strong algorithm in
[Ja�e and Smith 1983]. If none of the terminations are completely rigid, the rF
used in Eq. (4.16) is the product of the re�ection coe�cients of the two sides. The
equivalent resonator bank will change in the radius of the poles since they move
slightly towards the origin:
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where #k = (2k�)=N , N = 2M and rk are the pole radii.
The approximate decay times can be calculated in the same way for frequency

dependent rational impedance Z(z) with the help of Eqs. (4.5) and (4.16) at the
modal frequencies. If e.g. the impedance of the termination decreases with frequency,
the decay times of the higher harmonics will be smaller than those of the lower ones.
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If the slope of the function rF is small, the modal frequencies will not di�er from
that of the in�nitely rigid termination signi�cantly.

By an arbitrary, complex termination the modal frequencies also change. A good
approximation for these frequencies is:

'(#k)� #kN = �2k� (4.18)

where the �rst term '(#k) = arg(rF ) stands for the phase response introduced by
the impedance, and the second term refers to the phase of the delay line. The
physical meaning of Eq. (4.18) is that a standing wave of the frequency #k has to
�t in the string k=2, or in the delay line of the digital waveguide k times.

If the amplitude of rF is constant with respect to the frequency, Eq. (4.16) is
exact. If not, the modal frequencies will be slightly in�uenced by the slope of jrF j.
In our cases this di�erence can be neglected, since jrF j is close to 1 and its slope is
very small, thus it can be considered constant around the resonance frequencies of
the digital waveguide.

If the impedance is not of an explicit form, the modal frequencies #k cannot be
calculated directly. They can be estimated by the iterate use of Eq. (4.18) with a
starting value of the ideal waveguide ('(#k) = 0). Precise results in determining
the modal frequencies and decay times can be achieved by the fractional expansion
of the whole transfer function. Because of the high order of the transfer function,
numerical methods (such as the residue command in MATLAB) should be used,
although these algorithms can easily give wrong results due to numerical instability.

4.3 The non-ideal string

In the general case, the wave equation of the string is similar to Eq. (4.1), but it
has to be extended by higher-order spatial- and time-derivate terms. The odd-order
time-derivates are responsible for the losses and the even-order spatial-derivates for
the dispersion of the string [Smith 1993]. The latter means that the wave velocity
of the sti� string will vary with the frequency. As a result, the partials will not be
harmonic anymore.

Since we are observing the behavior of the string between two points (the input
and the output), the losses and dispersion can be lumped to one point [Smith 1992].
As it was shown in the previous section, the in�uence of the termination can be easily
taken into account by a frequency dependent re�ection coe�cient rv. Hence, it is
bene�cial to use the re�ection coe�cient for implementing the dispersion and losses
of the string as well. The re�ection coe�cients of the two sides can be transformed
to one side of the string (rv = �rvleft � rvright), therefore on the other side only a
multiplication by �1 is needed (see Fig. 4.5). This new re�ection coe�cient rv
will contain the losses and dispersion of the string on the one hand and the e�ect
of the terminations on the other. Our task now is to determine this re�ection
coe�cient from measurement data or analytical expressions. If it succeeds, the
digital waveguide will behave in the same way as the original system.
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Figure 4.5: Digital waveguide model of the non-ideal string.

4.4 Equivalent resonators for lossy and dispersive

waveguides

In the former sections, the resonators were presented rather for analytical reasons,
making the behavior of the digital waveguide easier to understand. On the other
hand, there are some instruments where the resonators can be more e�cient. The
resonators have been also used for sound synthesis purposes. For example Laroche
and Meillier [1994] used them for the synthesis of piano sound, with a common
excitation signal. The author of this thesis has found the digital waveguide more
appropriate for the synthesis of piano sound, even for the high register of the piano.
In the case of gongs and bells, where the inharmonicity is high, the case can be the
contrary.

In the literature, the resonators are mostly treated as linear �lters. The excitation
signal is precomputed or given. On the other hand, the resonator structure presented
here is capable of simulating nonlinear interaction as well. The nonlinear hammer
model proposed in Section 5.2 could be connected to a resonator structure, since
with the circular delay approach its impulse response is identical to the one of the
digital waveguide. The semphasis is now on the delay, as the excitation mechanism
of most instruments can be simulated with a nonlinear, time-invariant function
and a feedback loop with delay [McIntyre et al. 1983]. It has to be noted that
synthesizing the sound by means of resonators is somewhat similar to the modal
synthesis approach presented in [Adrien 1991].

In the case of a general string model, where the poles of the transfer function
are not on the unit circle, this delay can be still implemented by proper output
coe�cients for the resonators. With N second-order resonators, 2N samples of the
impulse response can be determined by setting the initial amplitudes and phases.
This is because the outputs of the resonators form linearly independent vectors.
These 2N samples are typically the beginning of the impulse response, but could
be anywhere else, although there are some constraints if the impulse response is
periodic.

The analysis procedure for a general, nonlinear, resonator-based model can be
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the following: �rst, the partial frequencies and decay times are determined. Then
the impulse response of the acoustical resonator (string, bell, etc.) is estimated.
By using the frequency and decay time parameters of the N resonators, together
with 2N samples of the impulse response, 2N linear equations can be written. One
resonator corresponds to two equations, since both the initial amplitude and phase
are free parameters. These parameters can be determined by using resonators, e.g.,
with initial amplitude of 1 and initial phases of 0 and 90 degrees in the linear
equations.

4.5 The digital waveguide as an approximation

By reversing the order of ideas, the digital waveguide can be viewed as the approx-
imation of the resonator bank. If the fractions of the resonators are brought to a
common denominator, the resulting system will be an exact copy of the resonator
bank with respect to the input-output behavior. In the general case, the delay line
disappears and the whole digital waveguide will become a re�ection-coe�cient �lter
with feedback. In this case the number of operations remains the same. On the
contrary, if we let the speci�cation for the modal frequencies and decay times to be
somewhat loose, the computational complexity can be radically reduced. Nearly har-
monic signals can be produced by using a delay line and, e.g., a 10th-order re�ection
�lter instead of using 100 resonators. While in the resonator-bank implementation
the computational complexity depends on the number of the harmonics, in the digi-
tal waveguide it depends on the precision of the approximation. The human auditory
system seems to be more tolerant for slight inaccuracies than for completely missing
harmonics. Consequently, the digital waveguide is a more e�cient tool for modeling
nearly harmonic sounds. On the other hand, when the generation of a small number
of partials is needed, the resonator bank can be a more e�cient approach. This is
the case for example when simulating the two-stage decay of the piano sound.

4.6 Conclusion

We overviewed a computationally very e�cient technique for modeling the string
behavior, the digital waveguide model. Its e�ciency comes from the fact that losses
and dispersion of the string-termination system are lumped to one point. Therefore,
the string simulation loop consists of two delay lines and one re�ection �lter. By
mathematically reformulating the transfer function of the digital waveguide, the
equivalent resonator bank structure was presented. Methods for calculating the
parameters of the resonator bank were also given. A new feature of this approach
is that the resonator bank can be used for simulating nonlinear interaction, since
its behavior is the same as that of the digital waveguide. This can be useful for
the modeling of instruments with high inharmonicity, such as mallet percussion
instruments, gongs, or bells.



Chapter 5

Model structure

First, the general structure of the piano model is presented. Then separate parts
of the model are described in detail. A new multi-rate hammer model and a novel
technique for simulating beating and two-stage decay are proposed. A simple tech-
nique for the realistic simulation of the attack sound of the piano is also outlined.
The last part of the chapter deals with the issues of practical implementation and
presents a multi-rate piano model. The calibration of the model and the estimation
of the parameters are discussed in Chapter 6.

5.1 General structure of the piano model

Since the physical modeling approach tries to simulate the structure of the instru-
ment, and not the sound itself, the piano model consists of the same parts as the
real piano. The structure of the model is displayed in Fig. 5.1. The �rst step of
the sound production mechanism is the excitation, which is the hammer strike in
the case of the piano. The resulting signal propagates to the string, which deter-
mines the fundamental frequency of the tone. The periodic output signal is �ltered
through the radiator, covering the e�ect of the soundboard.

Figure 5.1 shows that the interaction between the string and the excitation
is bidirectional, since the hammer force also depends on the string displacement
[Fletcher and Rossing 1998]. On the other hand, there is no feedback from the
soundboard to the string. Although the impedance of the bridge and the sound-
board in�uence the decay times of the partials, this e�ect is taken into account in
the string model. At this point, our model di�ers from the real piano: the two func-
tions of the soundboard, namely, the determination of the decay times and forming
the spectrum, are put to separate parts of the model. This way, the e�ect of the
soundboard can be treated as a linear �ltering operation [Smith 1983; Välimäki et
al. 1996].

The hammer model solves the di�erential equation of the hammer in discrete
time. This part of the model is responsible for shaping the initial spectrum, by
providing the excitation to the string model. On the other hand, it has no in�uence
on the time dependent evolution of the spectra in the decay part of the sound. Its
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Figure 5.1: General structure of the piano model.

main role is varying the spectrum according to the dynamic level. This comes from
its nonlinear behavior. It is an advantage that the input parameter of the hammer
model is the impact velocity, which makes the control of the model straightforward
and physically meaningful. In a nonphysical implementation the model parameters
should be analyzed at every dynamic level and then used for resynthesis. In our case
it is not needed, since the model gives the correct force input signal automatically.

The string is modeled by a digital waveguide, where the losses and the dispersion
of the string are consolidated to one point [Smith 1987, 1992]. Its task is to control
the frequencies of the partials and the decay times. It also in�uences the spectra by
a comb �ltering e�ect. The latter is a physically meaningful feature: those modes,
which have a node at the excitation point, will be missing from the spectrum. It
comes also from the principle of the digital waveguide that the displacement of the
string can be computed at every point. This is crucial at the hammer position,
since the displacement of the string is the feedback signal to the nonlinear hammer
model. Lumping the losses and dispersion of the string has no physical sense, but it
increases the computational e�ciency of the model signi�cantly [Smith 1987, 1992].

For secondary e�ects, such as beating and two stage decay, a resonator bank is
used in parallel to the digital waveguide. This can be considered a linear �lter, and
it rather concentrates on the resulted signal and not on the structure. The string
model is a transition between the physical and general signal models.

The simulation of the soundboard has no physical interpretation: it is simulated
by a special linear �lter, similar to that used for reverberation algorithms. By using
a nonphysical model, the �exibility that the sound pressure generated by the sound-
board is known at any point in the acoustic space, is lost, but the computational
complexity can be reduced radically. Since the parameters of the soundboard do not
change during playing, the nonphysical approach is adequate. The impulse response
of the soundboard depends only on which string excites it, and therefore it can be
considered a linear time-invariant multi-input, single-output system.

The model structure described here is a combination of di�erent approaches.
Physical modeling exhibits the most bene�ts in the realistic control of the parame-
ters. Since in the case of the piano the only input parameter is the impact velocity,
it is worthwhile to implement the hammer-string interaction as a physical model.
For the other parts of the model, which have static parameters, the most e�ective
implementation should be found, even if it is not analogous to the real structure of
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the piano.

5.2 Modeling the hammer and the dampers

First, the di�erent hammer models found in the literature are reviewed. Then, the
problems for feeding the interaction force into the digital waveguide are discussed,
and for avoiding these problems, new solutions are proposed. After that, the hammer
and damper models are presented1.

The hammer is modeled by a linear di�erence equation and an instantaneous
nonlinearity. The di�erence equation calculates the movement of the hammer and
the nonlinear part accounts for the felt characteristic. An advantage of the nonlinear
model is the dynamic variation of the timbre, according to the impact velocity. A
novel multi-rate hammer model is presented for assuring the stability of the model.
The e�ect of dampers is simulated with a linear �lter. A new nonlinear damper
model is also proposed, which is based on the hammer model.

5.2.1 Overview of prior work

The hammer is generally considered as a mass connected to a nonlinear spring
[see, e.g., Boutillon 1988]. As it has an initial velocity, it hits the string. The
spring compresses, and the interaction force pushes the hammer away from the
string. The most straightforward approach for modeling the hammer is discretizing
the di�erential equation of the mass. The position of the hammer is obtained by
multiplying the interaction force with a scalar and integrating twice with respect to
time. The nonlinear felt characteristic (see Eq. 2.1) can be directly implemented in
a discrete form. This approach was taken in [Chaigne and Askenfelt 1994a,b], where
the hammer was connected to a �nite-di�erence model of the string. Simulation
results showed good agreement with the measured data. Borin et al. [1992] applied
the same kind of power law model to the digital waveguide. An advantage of this
technique is its simplicity, and, as it is a nonlinear model, the spectrum of its
output varies dynamically according to the impact velocity. The problem with
this straightforward approach is that for high sti�ness and initial velocity values the
hammer model can become unstable, mostly in the high note range of the piano
[Borin and De Poli 1996; Borin et al. 1997].

A solution to this problem can be found in [Borin and De Poli 1996; Borin et
al. 1997]. It is based on the separation of known and unknown terms, and solving
an implicit equation. For integer sti�ness exponents (p = 2, 3, or 4 in Eq. 2.1)
an analytic solution of the implicit equation can be derived. They also introduce
the hysteresis to their model by discretizing the equations of [Stulov 1995]. The
drawback of the model is that the computation of the interaction force is quite
complicated, even for a sti�ness exponent value p = 2. The model cannot be used

1parts of this section are also published in [Bank 2000]
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with noninteger p values, since the solution of an implicit equation would take too
many computations.

An elegant solution for the hammer model based on the traveling wave decom-
position of the mass-spring system was proposed in [Van Duyne et al. 1994]. There,
a distributed hammer model was attached to the string by a scattering junction.
The distributed model was derived for a linear spring. The nonlinear character-
istic of the felt was taken into account by reading the sti�ness coe�cient from a
lookup-table, according to the compression of the felt. Hysteresis was modeled by
o�setting the pointer in the table, corresponding to the velocity of felt compression.
The disadvantage of this technique lies in its complexity.

In [Smith and Van Duyne 1995; Van Duyne and Smith 1995], a linear hammer
model was used. The hammer was modeled by a linear �lter, whose parameters
were determined by nonlinear simulation. The advantage of the linear approach is
that the soundboard �lter can be commuted through the string and the hammer
[Karjalainen and Välimäki 1993; Smith 1993]. Hence, the soundboard need not
be implemented as a �lter, but as a wavetable, whose content is played into the
string through the hammer �lter. This reduces the computational complexity of the
soundboard model largely. A drawback is that the hammer �lter has to be designed
for all of the strings and at every dynamic level. Accordingly, the nice feature of the
nonlinear model, that it responds to the initial velocity in a physically meaningful
way, is lost. Moreover, the restrike of the string cannot be simulated correctly.

5.2.2 The discontinuity problem: nonlinear interaction in the

digital waveguide

There are two di�erent tasks when connecting the hammer to the string. One is
introducing the interaction force to the digital waveguide and the other is determin-
ing the displacement of the string, since that is the feedback signal to the hammer
model. These can be done as shown in Fig. 4.2, where Mout = Min for this case.
The displacement of the string can be determined by integrating the velocity signal
vout. However, there is a problem with this simple approach. Here we will deal with
the problem thoroughly, since it has not been discussed in the literature.

Let us assume that the string is in�nite, or terminated by a Z0 impedance, i.e.,
there is no re�ection from the terminations. There are two possibilities for connect-
ing the hammer model to the digital waveguide, according to Fig. 4.2. One is �rst
to read the string velocity from the delay lines and then to add the excitation signal
to the cells. After this, the delay lines are shifted. In this case, the velocity which
is read from the cells at the hammer position will be always zero. Consequently, all
parts of the string will be moving, but not the excitation point. Since the feedback
to the hammer model is coming from the displacement of the excitation point, the
hammer will behave as if it was bouncing to a rigid wall. Obviously, this method is
not appropriate.

The other approach is the opposite: �rst we add the excitation signal to the
delay cells at the position of the hammer, then read the string velocity, and shift



5.2. MODELING THE HAMMER AND THE DAMPERS 51

the delay lines. Now the problem is that the string velocity and displacement at
the excitation point will be twice the value of any other cells. This is illustrated
in Fig. 5.2 (a), where Ts = 1=fs is the sampling period. Assume that a discrete
unit impulse is added to the cells corresponding to the hammer position, and the
delay lines of the digital waveguide are consecutively shifted. The velocity of the
string, which is displayed in the �gure, is calculated by summing the content of the
delay cell pairs corresponding to the same spatial position. Note that the velocity
of the excitation point will be twice that of the impulse. However, as this pulse
travels further in the delay lines, the velocity values will be the same as the pulse
amplitude. Integrating the string velocity in the time domain shows a discontinuity
in the string displacement in Fig. 5.2.

Figure 5.2: String velocities and displacements: (a) discrete and (b) continuous case.

The continuous string does not show this behavior: Fig. 5.2 (b) reveals the ve-
locity and the displacement of a string excited with a continuous-time Dirac velocity
impulse. The velocity and displacement values of the string are displayed for the
same time instants as the discrete model, and the arrows refer to Dirac impulses.
The di�erence comes from the fact that although there are two continuous Dirac
pulses in the region corresponding to the spatial sample of the excitation position,
these stay within this region only a half time step. They travel from the midpoint
of this section to its borders within Ts=2. Thereafter, in every spatial section of the
string there will be only one impulse, staying for Ts. Since in the discrete model an
impulse cannot be in a cell for less than the sampling period, we have to diminish the
amplitude of the impulse by a factor of two at the interaction position. Nevertheless,
the amplitude of the impulse in the other cells should not be altered.

This can be done by �rst adding only half of the excitation to the delay lines at
the hammer position Min, and after one time sampling-interval, when the impulses
moved further, we can add the remaining part. The corresponding structure is
illustrated in Fig. 5.3. An equivalent and simpler method is to �rst add a pulse at
position Min to the upper delay line only, and one sampling period later to the lower
one, but at the position Min � 1.

Another solution can be keeping track of the string velocity at the excitation
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Figure 5.3: Proposed method for the correct simulation of force input.

point separately. This way, the displacement of the string at the excitation position
is not calculated directly from the digital waveguide, but with the help of a separate
variable.

Note that for linear synthesis, when there is no feedback from the excitation
position, the digital waveguide behaves properly, and therefore the procedures pro-
posed for avoiding the discontinuity problem are not needed. Probably this is the
reason why this question has not been dealt with in the literature. However, in the
case of nonlinear interaction, the di�erence between the output of the earlier, simple
method (Fig. 4.2, Mout = Min) and of the proposed one (Fig. 5.3) is dramatic. This
is shown in Fig. 5.4. The parameters of the hammer and the string were taken from
[Chaigne and Askenfelt 1994a], C4 note, and the impact velocity was set to 4 m/s.
The solid line shows the interaction force of the �nite-di�erence implementation, as
discussed in [Chaigne and Askenfelt 1994a], but the sti�ness of the string was set to
zero. The dash-dotted line shows the hammer force when the same hammer model
is connected to lossless, nondispersive digital waveguide in the traditional way. This
di�ers from the force of the �nite di�erence method largely. The dashed line displays
the interaction force when the structure of Fig. 5.3 is used. The force curve is now
close to that of the �nite di�erence method.

The method based on discretizing the di�erential equation of the hammer works
well for the low and middle range of the piano, but for the high notes with large
impact velocities the model becomes unstable. This is because the assumption, that
the interaction force changes only a little in one step, is no longer valid for those
cases. This was also noted by Borin and De Poli [1996], but their solution to the
problem, which was based on the separation of known and unknown terms and
solving an implicit equation, seems to be too complicated.
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Figure 5.4: Interaction force for note C4 calculated by �nite di�erence method of
Chaigne and Askenfelt [1994a] (solid line), by a digital waveguide using the tradi-
tional technique of Fig. 4.2 (dash-dotted line), and by using the proposed method
of Fig. 5.3 (dashed line).

5.2.3 The multi-rate hammer

Here a novel multi-rate hammer model is proposed, which overcomes the stability
problems. The idea comes from the fact that by increasing the sampling rate of the
whole string model, the instability can be avoided. The hammer model is based on
the discretization of a di�erential equation. It is stable when the variables change
only a little in every sampling interval. The stability of such a system can be always
maintained by choosing a su�ciently large sampling rate, assuming that the analog
system was stable. When the sampling period converges to zero, the discrete system
will behave as the original continuous di�erential equation.

Unfortunately, increasing the sampling rate by a factor of two of the whole
string model would double the computation time as well. Nevertheless, if only the
hammer model operates at a double rate, the computational complexity is raised
by a negligible amount. Therefore, in the solution proposed here the string model
operates at normal, but the hammer model runs at double sampling frequency. The
process is the following: �rst the incoming string velocity signal has to be upsampled
by a factor of two, then the hammer model is executed twice. The force input to the
string is calculated by downsampling the output signal of the hammer model. Since
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the hammer model needs the string displacement in between the time steps of the
digital waveguide, the string displacement is kept track within the hammer model.
This also overcomes the problem discontinuity discussed in the earlier section. The
core of the hammer model is displayed in Fig. 5.5.

Figure 5.5: The core of the proposed hammer model.

The hammer model of Fig. 5.5 �rst computes the velocity di�erence of the string
and the hammer �v = vh � vin;h � Fout;h=(2Z0), where vin;h is the incoming string
velocity, vh is the velocity of the hammer,Z0 is the string impedance, and Fout;h is the
force signal computed by the power law in the previous time instant. Then, the felt
compression�y is calculated by integrating�v with respect to time. The integrators
used here are obtained by the impulse-invariant transform of the continuous time
integrator [Oppenheim and Schafer 1975]. The interaction force is computed by a
power law of Eq. (2.1), whenever �y is positive. For �y < 0, that is, the hammer
is below the string, the interaction force is zero. The delay z�1 is inserted for
computation purposes. The velocity of the hammer vh is calculated by integrating
the hammer acceleration ah = Fout;h=mh, where mh is the hammer mass. The initial
velocity vh0 of the hammer is controlled by sending an appropriate acceleration pulse
to the integrator, or by setting the initial value of the corresponding delay cell to
vh0.

Generally, the hammer model is a single-input single-output nonlinear �lter.
Alternatively, it can be seen as a linear �lter with one signal dependent coe�cient.
Then, F (�y) is replaced with a multiplier with a coe�cient a(�y) = F (�y)=�y in
Fig. 5.5. It would be interesting to analyze the model from this point of view, in
order to get some information about its stability.

When operated at a normal sampling rate, the model of Fig. 5.5 can be directly
connected to the digital waveguide model of Fig. 4.2, by setting vin;h = vout, Fin =
Fout;h, and Mout = Min. The sampling rate of the hammer model now equals to that
of the entire system, Ts;h = Ts. It works as follows: �rst the cells at position Min are
read and used as the input vin;h of the hammer model. Then, the hammer model
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computes the force input Fin to the string, and this value is added to the delay lines.
After that, the delay lines are shifted. Since the string velocity vin;h + Fout;h=(2Z0)
is computed inside the hammer model, the problems mentioned in the beginning of
section 5.2.2 are avoided. However, this model is still running at normal sampling
rate. An interface has to be made between the hammer and the string to be able to
operate them at di�erent sampling rates. This is done by up- and downsampling,
as illustrated in Fig. 5.6.

Figure 5.6: Connecting multi-rate hammer model to the digital waveguide.

In the proposed implementation, the core of the hammer model runs at a double
sampling rate, that is, Ts;h = Ts=2. The simplest way to implement the upsampling
(" 2 in Fig. 5.6) operation is by using zeroth-order interpolation, i.e., repeating the
sample for the unknown time instant, vin;h(nTs+Ts=2) = vin;h(nTs). A more accurate
solution can be obtained by linear interpolation [Schafer and Rabiner 1973]. In this
manner, the unknown samples will be the average of two consecutive known values.
To be able to do this without introducing a delay, one should know the next incoming
sample. This is easy in the case of the digital waveguide, since the upcoming values
at the excitation point are already in the delay lines, exactly one time-step away
(see Eq. 4.3 and Fig. 4.1). Hence, the input for the hammer model can be calculated
using linear interpolation for upsampling by the following equations:

vin;h(nTs) = vout(nTs) = y+(n;Min) + y�(n;Min)

vin;h(nTs + Ts=2) =
vout(nTs) + vout(nTs + Ts)

2

=
y+(n;Min) + y+(n;Min � 1)

2
+

+
y�(n;Min) + y�(n;Min + 1)

2
(5.1)

where y+(n;m) and y�(n;m) refer to the content of the upper and lower delay lines,
at the time instant n and position m, respectively.
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The force input for the string is computed by simply averaging the two output
samples of the force model, i.e., Fin(nTs) = (Fout;h(nTs) + Fout;h(nTs + Ts=2))=2.

The analysis of the new method

The multi-rate method has proven to be a robust solution for modeling the hammer.
For note C7 (2090 Hz), the hammer starts to be unstable for an impact velocity as
much as 20 m/s, which is three times of the maximal velocity which can arise in a
real piano. By using the single-rate model, it is already unstable at around 5 m/s.

In Fig. 5.7 the interaction force is shown for note C5 (522 Hz). For the simula-
tion, an ideal digital waveguide model was used, without any dispersion or losses.
The parameters of the hammer were taken from [Chaigne and Askenfelt 1994a], C4

hammer. The impact velocity was vh0 = 6 m/s. The dash-dotted line refers to
the single-rate hammer model with fs = 44:1 kHz. The solid line shows the force
of the single-rate model, but the whole digital waveguide model is run at a double
sample rate, that is, fs = 88:2 kHz. This is our reference structure. The dashed
line in Fig 5.7 is the force of the multi-rate implementation, by using fs = 44:1 kHz
for the waveguide model. It can be seen that the traditional technique operating
at normal sampling rate goes unstable, while the output of the proposed multi-
rate hammer model coincides with the output of the single-rate model operating at
double sampling frequency.

Surprisingly, the multi-rate method is more stable than the single-rate operating
at double sampling rate. For the same string and hammer parameters as in the
previous example, the single-rate model at double sampling frequency goes unstable
for vh0 > 18 m/s, the multi-rate model is still stable until vh;0 = 42 m/s. This is
because the multi-rate model functions like the single-rate model running at dou-
ble sampling frequency, but with lowpass-�ltering at the input and output of the
hammer model. This comes from the up- and downsampling: the hammer model
operates at 2fs, but its input vin;h is upsampled from a signal vout whose sampling
rate is fs. Consequently, the input cannot contain strong frequency components
higher than fs=2. In this way, the incoming high frequency components, which are
mainly responsible for stability problems, are suppressed.

Hysteresis can be easily included in the model by discretizing the equations of
[Stulov 1995]. This was done by the bilinear transform in [Borin and De Poli 1996].
The �rst-order IIR �lter obtained that way is then cascaded with the instantaneous
nonlinearity F (�y) in Fig. 5.5.

To conclude, the new multi-rate hammer model proposed here, overcomes the
discontinuity problem discussed in Section 5.2.2. This is done by computing the
string displacement at the excitation point within the hammer model. The stability
of the hammer model is ensured by the multi-rate approach. This makes the model
more stable since higher sampling rate yields a better discrete time approximation
of the di�erential equation. It is also because the high frequency components of the
input signal, which are mainly responsible for instability problems, are suppressed
by the linear interpolation. Another bene�t of the model is that it is simple, easy to
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Figure 5.7: Simulated interaction forces for note C5 (522 Hz), vh0 = 6m/s, computed
by the single-rate model (dash-dotted line), the single-rate model operating at double
sampling frequency (solid line), and the multi-rate model (dashed line).

implement, and any kind of nonlinear function can be used as a felt characteristic
F (�y).

5.2.4 Modeling the e�ect of the damper

Not much work can be found on modeling the piano dampers in the literature. A
simple method, also suggested in [Van Duyne and Smith 1995], is cascading a real
coe�cient to the re�ection �lter, i.e., decreasing the gain of the loop �lter of the
string model. The author have found the value c = 0:8 a good approximation for
all the notes. This ensures that the lower notes will damp more slowly. However,
the damping, which arises when one uses such a simple method, is too clean. For
the high range, where the damping is fast, it works well, but in the middle and low
registers of the piano more re�ned methods are needed.

A development to this simple model can be using a separate damping �lter,
similarly to what was done for the guitar in [Erkut et al. 2000]. This �lter can be
implemented by cascading a new damping �lter to the loop �lter, or by changing
the loop �lter coe�cients. However, changing the coe�cients could introduce some
transients. An easy way to overcome this problem is to run a damping �lter in series
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with the loop �lter. When the key is released, one has to simply switch from the
output of the loop �lter to the output of the damping �lter, whose state variable is
already trained by the incoming samples [Välimäki and Laakso 1998]. The one-pole
�lter approach gives good results for the high and middle register, but the roughness
of the damping of low piano strings is not reproduced.

5.2.5 The nonlinear damper model

The problem of these simple approaches, namely, changing the loop gain or cascading
a damping �lter, is that they are unable to simulate a characteristic feature of the
damping. The feature is that every 7th partial is damped ine�ciently, since the
damper cannot act well on a mode which has a node at the damper position (see
Fig. 6.1). The di�erence can be heard especially at the lowest two octaves of the
piano. By using the physical modeling approach, this feature could also be modeled.

The proposed nonlinear damper model operates with the same architecture of
Fig. 5.5, although its parameters have to be changed. As the hammer hits the string
from downwards, and the dampers fall on the string from upwards, the signs of the
signals in the input and output of the hammer model have to be inverted. The
gravity force, which pushes the damper to the string, can be simulated by adding
a constant value to the hammer acceleration at every time instant. The mh value
and the F (�y) function have to be also changed. The initial velocity of the damper
vh0 is set to zero. Since the main feature of the damper is dissipating energy, losses
have to be introduced to the model. The easiest way to do that is adding hysteresis
to the felt, by cascading a highpass �lter with the output of the nonlinearity, as was
done for the hammer in [Borin and De Poli 1996]. Another way can be to render
the interaction force dependent on the velocity di�erence �v of the string and the
hammer. Then the force is calculated by F (�v;�y).

The main bene�t of the model is that the slower damping of every partial, which
has a node at the damper position, is modeled automatically. This comes from the
principle of the physical modeling approach. Another advantage is that now the
hammers and the dampers are simulated by the same part of the piano model. A
serious drawback is that the calibration of such a physical damper model can be
problematic. Unfortunately, there has been no data in the literature concerning
the damper characteristics of real pianos. This model has not been implemented in
practice, due to the previous reason. However, after conducting some measurement
on piano dampers, the author plans to experiment with this nonlinear model.

5.3 The string model

The behavior of a piano string is simulated by a digital waveguide, mostly because of
practical reasons. The equivalent resonator structure presented in Chapter 4 could
give the same sound output, but it is computationally more expensive. It will be
shown later in Section 5.3.3 that the resonators can be useful in modeling some
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details of the piano sound.
As discussed previously in connection with the hammermodel, the digital waveg-

uide has an important role in determining the excitation signal. Its other task is
linear �ltering: it controls the frequencies and decay rates of the partials and it
introduces a comb-�ltering e�ect, thus also a�ects the short-time spectrum. If the
samples of the excitation signal are recorded and then fed to the digital waveguide,
the same output will arise. This way the two functions of the digital waveguide,
namely, determining the excitation and linear �ltering, can be separated. In this
chapter, for didactical reasons, the digital waveguide is considered as a linear �lter
and the excitation signal is assumed to be given.

5.3.1 The basic string model

The basic string model consists of a digital waveguide shown in Fig. 4.5 in Chapter 4.
The fundamental frequency of the note and the frequency distribution of the partials
are determined by the delay line length M and the phase delay of the re�ection
�lter Hrv . The decay times of the partials are controlled by the amplitude transfer
function of the re�ection �lter. The estimation of these parameters and methods
for re�ection �lter design will be discussed in the next chapter. The basic string
model is capable of simulating pure exponentially decaying envelopes. Therefore it
is unable to reproduce the beating and two-stage decay found in real piano tones.
The physics of these two phenomena were discussed in Chapter 2.

5.3.2 Methods for beating and two-stage decay simulation

Here we review the methods previously presented in the literature.
By using two digital waveguides in parallel for one note, the beating and two-

stage decay can be simulated in a simple way. If the fundamental frequencies of
the two digital waveguides are di�erent, beating results, and if their decay times
are di�erent, two-stage decay will occur in the sound. The two digital waveguides
can be coupled with real coe�cients [Karjalainen et al. 1998]. Figure 5.8 shows this
con�guration, where Sv(z) and Sh(z) are the two string models. The g parameters
control the input and output amplitudes of the digital waveguides and determine
the amount of coupling. The problem with this method is that the envelopes of the
di�erent partials will be similar, which is not the case for real piano tones. It also
increases the computational complexity by a factor of two compared to the basic
string model.

Another approach was taken by Smith [1993]. In his approximation, two ideal
strings are coupled to the same termination, and all the losses are lumped to the
bridge impedance Z. The structure is shown in Fig. 5.9. This comes from the
assumption that all the losses come from the bridge, which is a rough approximation.
By using one coupling �lter Hc for calculating the velocity of the bridge, the re�ected
velocity waves v�1 and v�2 of the strings can be computed by subtracting the incoming
waves v+1 and v+2 from the bridge velocity vbr. The allpass �lters Hap1 and Hap2 still
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Figure 5.8: Realization of beating and two-stage decay with two coupled string
models, presented in [Karjalainen et al. 1998].

have to be implemented separately. The advantage of this technique is that only
one loss �lter Hc is needed, whose transfer function can be determined from the
decay times of the partials. The drawback is that the decay times and the coupling
of the modes are not independent. The reason for this is that shorter decay times
correspond to lower terminating impedance. Thus, the terminating impedance will
decrease with frequency to a great extent resulting in stronger coupling for the
higher partials. On the contrary, the average impedance of real piano bridges is
nearly constant.

Figure 5.9: Coupling �lter implementation of beating and two-stage decay by Smith
[1993].

A more general method was presented in [Daudet et al. 1999]. The approach is
similar to that of Fig. 5.8, but the coupling between the two string models is complex
and frequency dependent. As displayed in Fig. 5.10, two basic string models Sv(z)
and Sh(z) are coupled to each other with two coupling �ltersHv;h(z) and Hh;v(z). In
this manner the evolution of the partials are controlled by four independent �lters.
The �lter parameters were computed from the amplitude envelopes. The use of four
independent �lters increases the degrees of freedom, and many di�erent envelopes
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can be simulated. However, it makes the �lter design procedure quite complicated
and boosts the computational complexity heavily.

Figure 5.10: Coupled waveguides model suggested by Daudet et al. [1999].

Somewhat similar but computationally less expensive implementation was pre-
sented in [Borin et al. 1997]. There second-order loss �lters were used for the di�er-
ent strings and the strings of all notes were coupled to the same impedance. This
structure is illustrated in Fig. 5.11, where v+1 : : : v

+
n are the incoming velocity waves

from the digital waveguides, and v�1 : : : v
�

n are the re�ected ones. Z0;1 : : : Z0;n refer
to the characteristic impedance of the strings 1 : : : n, respectively. The method for
designing such a common coupling �lter Hc(z) was not discussed there. Probably
the easiest way is to use the data of impedance measurements of the bridge, and not
the envelopes of the partials. The problem with their approach is that the behavior
of the di�erent strings are not independent, since only one coupling �lter is used.
Furthermore, all the strings are coupled to each other in the same proportion, unlike
in the real piano. In reality, those strings that are closer to each other are coupled
more strongly. The advantage of the method is its low computational cost.

Figure 5.11: Coupling n strings to one terminating impedance, as presented in Borin
et al. [1997].
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5.3.3 Novel resonator bank implementation for beating and

two-stage decay

As was shown by Weinreich [1977] a two mode model with two exponentially damp-
ing sinusoids can give a good approximation for the beating and two-stage decay of
the piano sound. All the frequencies, decay times, initial amplitudes and phases of
the two modes can be di�erent. These di�erences determine the characteristics of
beating and two-stage decay.

A new method presented here2 is based on the equivalent resonator structure of
the digital waveguide presented in Chapter 4. The transfer function of the digital
waveguide can be written similarly to Eq. (4.17):

Fout

Fin

=
1

N

(
a1

1� z�1p1
+ : : :+

aN
1� z�1pN

)
z�M

pk = rke
j#k (5.2)

where M is the length of the string in samples shown in Fig. 4.5. N equals to 2M ,
ak are the complex amplitudes of the resonators, #k refer to the pole frequencies and
rk to the pole radii. Since all complex zeros and poles of Eq. (5.2) form conjugate
pairs, the transfer function of Eq. (5.2) can be realized with second-order resonators
R(z) connected in parallel. The transfer function of these resonators is as follows:

R(z) =
2<fa2kg � 2<fa2kp�2kgz�1

1� 2<fp2kgz�1 + p2kp�2kz
�2

p2k+1 = p�2k a2k+1 = a�2k (5.3)

where p2k and p2k+1 are the complex conjugate pole-pairs, a2k and a2k+1 are the
corresponding complex amplitude coe�cients, <fg refers to taking the real part of
its argument, and � denotes complex conjugation.

It is proposed here that the beating and two-stage decay should be modeled
by using one digital waveguide Sv(z) as a basic string model and connecting some
resonators R1(z) : : : RK(z) in parallel, instead of using a second digital waveguide.
This is illustrated in Fig. 5.12. The excitation signal is common for the digital
waveguide and the resonators, and it is computed via nonlinear interaction by the
hammer model presented in section 5.2. The e�ciency of this structure comes from
the fact that only those partials are simulated precisely, where the beating and two-
stage decay is prominent. For the others, no resonators are used, and they will have
simple exponential decay determined by the basic string model. By using about �ve
or ten resonators, good results can be achieved. In this way the initial amplitudes
of those modes which correspond to a resonator will be higher than those simulated
by only the digital waveguide. This amplitude di�erence is not signi�cant, since it
is much less than the one introduced by the peaks of the soundboard model.

2also published in [Bank et al. 2000]
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Figure 5.12: The proposed realization of beating and two-stage decay with a digital
waveguide and a parallel resonator bank.

Since not all of the resonators of Eq. (5.2) are implemented, the delay z�M cannot
be taken into account in the ak coe�cients, on the contrary to the case of Chapter
4. If it was done so, the parallel resonators would sound earlier than the digital
waveguide model, resulting in an unnatural attack.

The implementation of the delay z�M in Eq. (5.3) can be still avoided if needed:
the output of the digital waveguide should be moved to the force input position Min

of Fig. 4.5. In this way the delay of the digital waveguide will be z�Min , but there
will be some output from the digital waveguide already at the �rst time instant. Now
the resonators and the basic string model start to sound together. Although there
are still some di�erences from the ideal case in the �rst 2Min samples, these were
found to be inaudible. However, when setting the initial phases of the resonators,
the delay z�Min of the digital waveguide has to be taken into account.

The new structure shown in Fig. 5.12 can be used for generating many di�erent
kind of envelopes, such as two-stage decay, constant, temporally increasing or de-
creasing beating, and some other special e�ects. Figure 5.13 shows some examples.
For that the structure of Fig. 5.12 with four resonators was used. In Fig. 5.13 enve-
lope No. 5 is a pure exponential decay, as it would come from a basic string model,
since for that partial no parallel resonator is used. No. 1 is a two stage decay and
No. 3 is a beating with decreasing amplitude. The envelope No. 2 and 4 exhibit
interesting features: No. 4 is a simple exponential decay but has a hole at about
one second, and No. 2 �rst increases and then decays. In the latter the initial phase
di�erence between the digital waveguide and the resonator was 180 degrees. This
can be used for the simulation of the generation of missing modes, often found in
other string instruments [Legge and Fletcher 1984].

There are still some open questions concerning this structure which have to be
dealt with: these are the re-strike of the string, damping, and the e�ect of the una
corda pedal. If the string is struck again while it is still vibrating, the structure
can be still used. The force signal computed by the digital waveguide during the
hammer-string contact simply has to be led to the resonators, just as in the case
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Figure 5.13: Di�erent envelopes generated by the parallel resonator structure of
Fig. 5.12

of a normal strike. The e�ect of una corda pedal can be taken into account by
feeding the resonators with the output of the digital waveguide through a small
coupling coe�cient. The weight of the hammer in the hammer model should be set
accordingly, as discussed in Section 6.11.. The implementation of the damper is more
di�cult: even if a nonlinear damper model is used, which produces a force input to
the string, feeding this to the resonators will not lead to their damping, since they
di�er in phase from the modes of the basic string model. Changing the coe�cients
of the resonators to shorter decay times would introduce unwanted transients in the
sound. A solution can be multiplying the sum of the output of the resonators with
an exponential decay. The decay time should be set according to the decay of the
basic string model.

To conclude, the bene�ts of the new structure are that the beating and two-stage
decay of the partials can be set separately and it is computationally less expensive
than all the methods using two parallel digital waveguides discussed in Section
5.3.2. Computational savings are most advantageous in the case of low piano tones,
where the implementation of an another high-order dispersion �lter can be avoided,
although for the simulation of higher notes less resonators are needed. Estimated
computational costs can be found in [Bank et al. 2000].

5.4 Modeling the soundboard

After reviewing the methods used for soundboard simulation, the soundboard model
is presented. The model is based on feedback delay networks [Jot and Chaigne
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1991]. The principles of feedback delay networks are also outlined. A new method
for modeling the attack noise of the piano is proposed.

5.4.1 Earlier work on soundboard modeling

There are several di�erent approaches in the literature, concerning the simulation of
the soundboard. The computationally most e�cient one is the commuted piano of
Smith and Van Duyne [1995]; Van Duyne and Smith [1995]. It is based on commuted
synthesis [Karjalainen and Välimäki 1993; Smith 1993], where the soundboard �lter
is commuted with the digital waveguide and the hammer model. For this, the whole
system has to be linear, hence the hammer model as well. The advantage of the
method is that the soundboard model does not have to be implemented as a high
order �lter, but as a wavetable, whose content is simply played to the string. No
doubt, this is the computationally most e�cient soundboard modeling technique
so far. However, it is a serious drawback that it cannot be used with a nonlinear
hammer model (see Section 5.2.1).

The other end of the scale is the �nite di�erence soundboard model presented in
[Giordano 1997]. It is physically meaningful and allows the simulation of di�erent
features of the soundboard, such as the e�ect of ribs. However, the solution of the
two dimensional �nite di�erence equation takes a long computational time. There-
fore, the �nite di�erence technique can be considered an analytical tool, and not a
soundboard model candidate for sound synthesis.

A simple and e�cient piano soundboard model was presented in [Garnett 1987].
The strings were modeled by digital waveguides, connected to the same termination.
The soundboard was simulated by connecting six additional digital waveguides to
this common termination. Each of these interconnected waveguides contained a
lowpass �lter with a large damping factor. An advantage of the technique is that
it can provide high modal density for low computational cost. The disadvantage
is that it simulates a general soundboard, modeling of the soundboard of a speci�c
piano is quite di�cult with this method.

A similar approach, suggested, e.g., in [Rocchesso and Smith 1997], is based on
feedback delay networks. Although this approach has not been used for modeling the
soundboard of the piano, but rather for room response simulation. The principles
of the feedback delay networks are outlined in the next section.

5.4.2 Feedback delay networks

Feedback delay networks can be considered the generalization of the state space
representation of a discrete-time linear system [Rocchesso and Smith 1997]. Here,
the elementary unit delays z�1 are replaced with delay lines of arbitrary length z�mk .
The equations in the z domain are:

s(z) = D(z) (As(z) + bx(z))

y(z) = cT s(z) + dx(z) (5.4)
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where x(z) and y(z) are the input and output signals, s(z) is the state vector, D(z)
is the diagonal delay matrixDkk = z�mk , and A is the feedback matrix. In Eq. (5.4)
b is the input coe�cient vector, c is the output coe�cient vector, and d is the output
coe�cient.

It can be shown that the technique used in [Garnett 1987], i.e., connecting digital
waveguides to the same termination, is a special case of feedback delay networks
[Rocchesso and Smith 1997].

An important issue is the stability of the system. The feedback delay network is
stable when the corresponding state-space representation with z�1 = z�mk for each
delay element is stable [Rocchesso and Smith 1997]. It was proven in [Rocchesso
and Smith 1997] that as long as kAkn decays exponentially with n, the stability
is assured. A straightforward approach for controlling the properties of the system
is making a lossless prototype and then introducing losses to the system [Jot and
Chaigne 1991; Rocchesso and Smith 1997]. For such a prototype, we need that all
the poles lie on the unit circle. This can be assured when the feedback matrix A
is unitary [see, e.g., Jot and Chaigne 1991; Rocchesso and Smith 1997]. Since we
generally deal with systems with real coe�cients, the equivalent constraint is the
orthogonality (A�1 = AT ) of the feedback matrix.

When the size of A is su�ciently large (about 12 rows and columns) and the
total delay length is at least 1 second, the impulse response of the lossless prototype
can be compared to a pseudo-random noise generator [Jot 1992].

A new class of feedback delay networks was presented in [Rocchesso and Smith
1997]. By choosing the feedback matrix to be circular, the distribution of eigenvalues
is easily controlled. The eigenvalues of the system and the �rst row of the circular
feedback matrixA are related through the Discrete Fourier Transform. Losslessness
can be achieved by choosing eigenvalues of unit length, and calculating the feedback
matrix by means of Inverse Discrete Fourier Transform.

Losses are introduced to the system by connecting �lters Hk(z) to the output of
the delay lines [Jot and Chaigne 1991; Rocchesso and Smith 1997], that is, substitut-
ing z�mk with z�mkHk(z) in the delay matrix D. Then, to maintain �at magnitude
response, a tone corrector �lter has to be used in series to the feedback delay network
[Jot and Chaigne 1991; Jot 1992].

5.4.3 The soundboard model

Feedback delay networks have been successfully used for room reverberation sim-
ulation. This is because the late part of the impulse response of rooms can be
considered as a nonstationary Gaussian process with a time-variant power spectral
density. By properly choosing the feedback matrix A and the loss �lters Hk(z),
similar output arises from the feedback delay network [Jot and Chaigne 1991]. The
underlying metaphor and the connections of the response of a rectangular room and
the feedback delay network are discussed in [Rocchesso 1995].

The use of feedback delay networks for simulating the body of an instrument
was suggested in [Rocchesso and Smith 1997]. This is motivated by the fact that
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the exact position and height of resonances are perceptually insigni�cant. As long
as the modal density and the decay times are close to the original one, the sound
will be similar. In reality, when listening to the impulse response of the soundboard,
it sounds like a colored, decaying noise.

However, for soundboard modeling other considerations are needed than those
for the room response simulation. The density of the pulses in the output of feed-
back delay network is rather small in the beginning of the impulse response. This
well coincides with the behavior of real rooms, where the late reverberation slowly
builds up. These early pulses in the response of the feedback delay network can be
considered as the early re�ections in the room response. The colorless reverberation
can be ensured by using delay lines of comparable length [Rocchesso and Smith
1997].

On the contrary, the impulse response of the piano soundboard does not show
this feature. It is rather a sum of damping modes, the rise in the attack cannot
be observed. If the soundboard is simulated with a delay line lengths of more than
two or three hundred samples, the resulted sound will be rather cello-like, since the
sharp attack of the piano sound disappears. Therefore, we need energy in the early
region of the impulse response as well. This can be done by applying short delay
lines together with the long ones. The author has successfully used an eight delay
line feedback delay network with gradually increasing delay lengths (37, 87, 181,
271, 359, 492, 687, 721) for soundboard simulation. These are relative primes, in
order to avoid harmonic structure. For the losses, one-pole �lters were used in series
to the delay lines. The parameters of the model are given in Section 6.5.

The feedback delay network model was found to be a good approximation of
the soundboard impulse response. The main bene�t of such a structure against
traditional FIR or IIR �lters comes from the e�cient implementation of the delay
lines. This way, very high modal density can be obtained with relatively small
number of operations. The drawback is that the resonances cannot be controlled
separately. Consequently, this method is not capable to reproduce the exact copy
of a real soundboard impulse response, but it is good enough to capture its main
features.

From this point of view, its relation to general IIR �lters is similar to that of the
digital waveguide to the resonator bank. In IIR �lters the computational complexity
depends on the number of realized peaks in the transfer function. On the contrary,
in feedback delay networks it comes from the accuracy of the approximation. In
other words, the feedback delay network is capable to simulate many modes for low
computational cost, but their place and height cannot be precisely controlled.

If the soundboard is simulated by the feedback delay network only, more natural
result occurs, when the tone corrector �lter of [Jot and Chaigne 1991; Jot 1992] is not
used. A better approximation has been obtained by whitening the impulse response
with the tone corrector [Jot and Chaigne 1991; Jot 1992], and then �ltering with a
shaping �lter whose magnitude response is similar to that of the real soundboard.
The author has used a 100 tap FIR �lter with good results. The advantage of
the FIR �lter that it can be easily designed by means of Inverse Discrete Fourier
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Transform. Possibly, warped �lter design could give better results [Karjalainen and
Smith 1996].

There can be di�erent levels in modeling the soundboard impulse response. The
most e�cient one is by using a feedback delay network without a shaping �lter. The
second step is using the feedback delay network in series with a shaping �lter, to
match the power frequency response of the measured soundboard.

However, the impulse response of the soundboard di�ers largely when di�erent
points of the bridge are excited. This can be simulated by separate shaping �lters
for di�erent regions of the soundboard. Note that there is no need to implement
separate feedback delay networks for the di�erent parts. This comes from the fact
that when the bridge is hit at di�erent positions, the same modes of the soundboard
are excited, they only di�er in level, and not in their frequency or decay time. This
way, the string signals are �ltered through two or three shaping �lters, corresponding
to the regions of the soundboard. Then, the output of the shaping �lters are summed
and sent to the feedback delay network.

A more e�cient implementation is proposed here, illustrated in Fig. 5.14. It
is based on using only one shaping �lter Hsh(z) (e.g., the one designed for the
midrange) connected in series with the feedback delay network HFDN (z). To sim-
ulate the di�erences in the low and high range, low order IIR �lters Hlow(z) and
Hhigh(z) are used.

Figure 5.14: Proposed method for soundboard modeling.

For real-time applications, the complicated shaping �lter Hsh(z) of Fig. 5.14 can
be omitted. Instead, second or third order IIR shaping �lters are applied for all the
di�erent regions of the soundboard.

5.4.4 E�cient method for modeling the attack noise

The model of Fig. 5.14 gives good results for the low and the midrange of the piano,
but the attack noise of the high notes is not reproduced. This is because the high
frequency signal coming from the high strings cannot excite the low modes of the
soundboard model. Nevertheless, in real pianos, a knock can be heard when listening
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to high tones. This attack noise has been found to be a distinctive character of the
sound of pianos, hence its simulation is necessary.

Figure 5.15: New method for simulating the attack noise of the piano.

A simple model is proposed here to simulate the attack noise of high piano
tones. The idea is displayed in Fig. 5.15. Now the interaction force calculated by
the hammer model FH is led to the input of the soundboard model through a real
coe�cient g (compare to the earlier methods in Fig. 5.1). The value g = 0:2 was
found to be good in practice. The force input of the soundboard is the weighted
sum of the force output of the string and the hammer, i.e., FS + gFH . This way,
the force signal can e�ciently excite the low modes of the soundboard as well. It
also automatically ensures the di�erent coloration of the attack noise for di�erent
keys. This is because for low notes the impulse of the interaction force is longer
than for the high ones. Consequently, the force signals of low notes introduce more
lowpass �ltering to the impulse response of the soundboard model than that of the
high ones. Another advantage is that the amplitude and the tone of the attack noise
varies with impact velocity. Higher impact velocities correspond to a force signal
with higher amplitude and stronger high frequency content, and therefore result in
a louder and brighter attack noise. The physical meaning of the new method is
that in real pianos the interaction force experienced by the hammer can excite the
soundboard through the action and the case [Chaigne and Askenfelt 1994b]. The
earlier piano model of the present author was described to be too clean in the high
range by many experts of the �eld. This simple technique partly solved the problem
and made a large improvement in the perceptual quality of the model. What is
still missing is the simulation of the coupled vibration of the other undamped high
strings.

5.5 Real-time implementation issues

Here we discuss the practical aspects related to e�cient real-time implementation.
The model described previously exists in the form of MATLAB code. The author is
planning to implement the model in a real-time environment, since that could really
show the advantages and drawbacks of the proposed methods. Experimenting with
some parameters would also be more convenient that way. Therefore, the techniques
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discussed here are the sketches of the planned realization.

First, the idea of the multi-rate piano model is presented. Then, the considera-
tions of real-time implementation are outlined for the hammer, string, and sound-
board model separately. The last part of the section roughly discusses the e�ect of
quantization on the separate parts of the model.

5.5.1 The multi-rate piano

The computationally most expensive part of the model is the dispersion �lter needed
for the low piano strings. However, the output of these strings does not contain sig-
ni�cant frequency components above 10 kHz. Therefore, it is worth to operate the
lowest three octaves of the piano at half sampling rate. This will reduce the com-
putational load in two ways: one is that there has to be only one sample computed
instead of two during the same amount of time. The other is that the speci�cation
for the dispersion �lter will be easier to ful�ll, since the total length of the digi-
tal waveguide will diminish by a factor of two. This will result in a lower order
dispersion �lter. For notes higher than C4, informal listening tests show that the
implementation of dispersion is not necessary, especially, if the beating is simulated.
Accordingly, the string models for notes in the middle and high range operate at
the output sampling rate (e.g., fs = 44:1 kHz), but the dispersion �lters are omit-
ted. The sampling rate fs refers to the sampling rate of the output device, i.e., the
digital-to-analog converter. This way, the computational load of the high and low
notes can be made approximately equal. This is shown in Fig. 5.16. The inputs
from the strings contain the force signal coming from the digital waveguide, the
resonators, and the hammer model. These parts are not displayed.

Figure 5.16: New method for simulating the attack noise of the piano.

Note that the hammer models always run at a double sampling rate compared
to the corresponding string model. Hence, for the high notes, the sampling rate of
the digital string model, that is, the digital waveguide and the resonators, is fs. For
the hammers it equals to 2fs. In the case of the low notes, the sampling frequency
of the string model is fs=2 and fs for the hammer model. As a next step, the lowest
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octave of the piano can be operated at the fourth of the normal sampling rate fs=4,
but that could lead to some degradation in sound quality.

The shaping �lters are operated at the same sampling rate as the strings con-
nected to them. Then, the signal of the low register with sampling rate fs=2 is
upsampled. Probably a 10th order FIR �lter will be appropriate for this purpose.
After upsampling, the output signal of the low strings is added to that of the high
ones and fed to the shaping �lter and the feedback delay network.

5.5.2 Hammer and dampers

The implementation of the hammer model is quite straightforward. This is be-
cause it can be considered a linear �lter connected in series with an instantaneous
nonlinearity.

The only problem here is the realization of the F (�y) = K(�y)p function (see
Fig. 5.5). One way is to use a lookup table with the values of (�y)p for �y values
that normally occur and for about ten p values between 2 and 3. The not stored
�y values can be determined by means of linear interpolation.

A simpler solution, also proposed in [Borin and De Poli 1996], can be to ap-
proximate K(�y)p with K2(�y)

2 +K3(�y)
3. Alternatively, when determining the

parameters of the hammer model, this polynomial form could be used for optimiza-
tion (see Section 6.1.1). An advantage of this approach is that no lookup-table is
needed. The interpolation between di�erent felt characteristics is straightforward,
because the linear interpolation of K2 and K3 parameters give meaningful results.
Note that in the case of a force model K(�y) it is not obvious how to interpolate
between force characteristics of di�erent p values.

The fact, that the hammer runs at the double sampling frequency, does not lead
to any complication in the implementation. From outside, the double sampling rate
is not visible. It only means that the same kind of operations are executed twice in
the program code.

The dampers can be realized as one-pole �lters connected to the digital waveguide
in series. The implementation of a nonlinear damper needs similar considerations
as the hammer model. The problem is the lack of data about real damper behavior.
However, a real-time implementation could be useful in this sense, since the small
number of parameters of the damper model could be tuned just by listening to the
result.

5.5.3 String model

The e�ciency of the digital waveguide lies in the delay lines: they can be imple-
mented as circular bu�ers. By commuting the �1 signs in Fig. 4.5, the �gure can be
redrawn with two delay lines, without any sign change in the feedback loop [Smith
and Van Duyne 1995]. This is similar to the case when the variables of the waveg-
uide are force waves. The di�erence is up to a constant factor Z0. From a practical
point of view it is worth to use force signals in the delay lines instead of the velocity.
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This is because both the input and the output of the digital waveguide are forces.
By doing so, the connections of the hammer model and the digital waveguide have
to be changed.

Now that there is no sign change in the delay lines, the whole digital waveguide
can be implemented as one circular bu�er with four pointers. Four pointers are
needed to compute the input of the hammer (see Eq. 5.1) and two of them are used
for inserting the force input to the digital waveguide. The output of the digital
waveguide is taken from the position y+(n;Min). Then, this cell is overwritten by
the �ltered version of the output signal. This realizes the re�ection �lter Hrv(z).
After that, all the four pointers are shifted by one step.

The implementation of the resonator bank is rather straightforward, since it
consists of parallel second order sections.

5.5.4 The soundboard

The soundboard is implemented as a feedback delay network with correction and
shaping �lters (see Fig. 5.14).

The delay lines of the feedback delay network are implemented as simple circular
bu�ers. The most time-consuming operation of the feedback delay network is the
matrix multiplication (see Eq. 5.4). Nevertheless, by the careful choice of the feed-
back matrix A, the matrix multiplication can be eliminated [Rocchesso and Smith
1997]. For example, in the case of the circular feedback matrix presented in Section
6.5.1, all the output signals of the delay lines after the loss �lter are summed, mul-
tiplied by �1=4 and fed into the input of all the delay lines. This corresponds to
the �1=4 elements of the feedback matrix A. The consecutive delay lines are also
connected with gain factors of 1. The latter implements the elements 1� 1=4 in the
feedback matrix.

5.5.5 Finite wordlength e�ects

For practical implementation, it is interesting to examine how sensitive the di�erent
parts of the system are for roundo� errors. The problem with the hammer model lies
in the digital integrators, since there a very small value is added to the past output.
Some of the problems can be avoided by rescaling the signal levels in Fig. 5.5, i.e.,
using nonphysical variables. However, their realization seems to be problematic in
16-bit arithmetic.

The re�ection �lter of the digital waveguide is sensitive to quantization. Its
magnitude response is close to 1, which means very small coe�cients. Also the dis-
persion �lter can have large di�erence in the values of its coe�cients, if implemented
in direct form. Therefore, to avoid instabilities, the re�ection �lter should be split
into second order sections. If the quantization of the architecture is very rude, even
the use of an FIR loss �lter should be considered. The second order resonators of the
resonator bank can also face with stability problems, since the implemented quality
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factor values are very large. Interpolated low frequency resonators could overcome
this problem [Välimäki and Tolonen 1998].

On the contrary, the soundboard model is quite robust against quantization
errors. This is because there the magnitude of the loss �lters is not as close to unity
as that of the string model. The shaping �lter is an FIR �lter, which is stable by
principle.

To sum up, it seems that a 16-bit �x point arithmetic is not enough for the piano
model. At least 24-bit �x point arithmetic should be used. The best solution would
be the use of a �oating point architecture. Then the physical units of the variables
could be directly used, i.e., they would not need any rescaling.

5.6 Conclusion

We discussed the structure of the piano model. After outlining the general structure
of the piano, the hammer and damper models were presented. The discontinuity
problem of the string was analyzed and methods were suggested for taking in the
interaction force to the digital waveguide in a correct way. A new multi-rate hammer
model was presented, which is stable even for extremely high impact velocities. The
advantage of this method compared to those of the literature lies in its simplicity.
The same structure can also be used for the simulation of the e�ect of dampers, albeit
the calibration of such a damper model has not been solved yet. A novel resonator
bank based structure was presented for the simulation of beating and two-stage
decay. Although it simulates the harmonics separately, it responds to the variation
of the interaction force automatically. The soundboard is simulated by a feedback
delay network, a technique which has been found very successful in room response
modeling. It can be viewed as a statistical model of the impulse response, since
only the general properties of the soundboard are matched. A simple technique for
modeling the attack sound of the piano was presented. The last part of the chapter
dealt with practical implementation issues. There, a multi-rate piano model was
presented, which balances the computational load of the high and low strings of the
model.
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Chapter 6

Model calibration

In the previous chapter the structure of the piano model was presented. Here we
discuss the calibration of the di�erent parts of the model. This is the inverse op-
eration of the simulation, since in simulation the inputs are the model parameters
and the output is the audible sound. Here the case is the contrary: we wish to �nd
parameters for our model which give the most similar sound output to the sound of
the real piano.

Theoretically, the easiest approach would be a nonlinear optimization process
for all the parameters of the model. It is the easiest from the point of view of the
scientist, and not of the computer, of course. This optimization could be done by
applying genetic algorithms or neural networks for searching in the parameter space
and maximizing a �tness function between the original and the synthesized signal.
However, this would lead to instabilities in the parameter estimation, not to mention
the need for a lot of computational power. Finding an appropriate �tness function
could also be problematic.

The basic idea of this chapter is to keep the parameter estimation as simple as
possible, with respect to the necessary computations. The building blocks of the
procedures should be well known and easily realizable operations. The calibration
process should be straightforward, without any feedback from the output of the
model, to avoid any instabilities. This kind of approach needs more analytical work,
since the behavior of the model structure should be well understood.

Two new �lter design algorithms are presented for the digital waveguide, one for
the general case and another for the one-pole loop �lter. The idea of both methods is
to minimize the error of the resulting decay times, and not the magnitude response of
the �lter. An advantage of these techniques is that the stability of the �lters can be
easily assured. In Section 5.3.3, a new technique was proposed for the simulation of
beating and two-stage decay. A novel method had to be developed for the calibration
of this structure, which was found to be robust and reliable for all kind of piano
sounds.

75
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6.1 Parameters of hammer and damper models

The parameters for the hammer model were taken from the literature, because of the
lack of time. Nevertheless, a simple method for calibrating the hammer is proposed.
The calibration of the linear damper model is similar to that of the digital waveguide,
which is discussed in Section 6.2.

6.1.1 Calibration of the hammer

For the implemented piano model, the parameters of [Chaigne and Askenfelt 1994a]
were used. The parameters of the three hammers measured in [Chaigne and Asken-
felt 1994a] were interpolated for other notes. The hammer mass parameter of the
model was set in a way that the ratio of hammer and string mass was the same as
for the real piano. This means that the mass of a hammer which hits a triplet, has
to be divided by three, since in the model it is connected to one digital waveguide
only. For the same hammer, if the una corda pedal is depressed, the hammer mass
in the model will be the half of the real hammer mass.

However, there were only three hammers measured in [Chaigne and Askenfelt
1994a], which obviously does not cover the entire keyboard. It would be also bene�-
cial to make hammer measurements on old pianofortes, since their simulation could
be even more interesting than the modern ones.

A method proposed here for estimation of hammer parameters is based on the
work of [Boutillon 1988]. A miniature accelerometer is attached to the measured
hammer. Then, the key is hit several times at di�erent dynamic levels. The accel-
eration signal is recorded for analysis. The impact velocities of the hammer can be
computed by integrating the acceleration signal. Then, a digital waveguide model
with the proposed hammer model is run, and the acceleration of the hammer is com-
puted. By using standard optimization algorithms, the di�erence of the two signals
can be minimized with respect to the hammer parameters. The initial guesses for
the optimization can be obtained from analytic expressions of the hammer behavior
(see Section 2.1.2 for references). The hammer mass is computed by subtracting the
mass of the accelerometer from the outcome of the optimization. An advantage of
the method is that the piano action does not have to be disassembled, and it does
not make any harm in the hammer felt.

6.1.2 Calibration of the dampers

The calibration of the damper is similar to that of [Erkut et al. 2000], and it is
based on recorded piano tones. The analyzed signal can be sound pressure or the
acceleration of the bridge. The procedure is as follows: �rst, the beginning of the
damping has to be determined. This was done manually, but it could be made
automatic by looking for a jump in the time derivate of the amplitude envelope.
This time instant will be the beginning of the analysis signal. The end is where
the amplitude of the partials falls under the noise level. After determining the
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beginning and the end of the analysis signal, the decay times of the partials are
estimated. From the estimated decay times a one-pole loop �lter is designed. The
details of the analysis and �lter design procedures will be presented in Section 6.2.
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Figure 6.1: Prescribed (dotted line with black points), and approximated decay
times (solid line) for the linear damper model, note A]

4 (466 Hz).

Fig. 6.1 shows the decay times of damping of note A]
4 and the approximation

using a one-pole �lter. It can be seen that the �lter follows the general trend well, but
the important feature of real dampers, that every 7th partial is damped ine�ciently,
is lost. This is even a bigger problem for the low strings, were the di�erence is more
audible, because of the long damping times. A nonlinear hammer model would
overcome this problem.

The calibration of the nonlinear damper model could be made similarly to what
is proposed for the hammer, although it is more complicated. To obtain good results,
not only the acceleration of the damper should be measured, but the velocity of the
string as well. This could be done by optical, magnetic, or electrostatic sensors.
Unfortunately, this kind of measurements are more problematic than measuring
with an accelerometer. Therefore, �nding robust methods for measuring the damper
behavior are of interest. This will be also a part of future research.
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6.2 Parameter estimation for the string model

Since the model used for simulating the string behavior consists of two di�erent
parts, namely, the digital waveguide and the resonator bank, the calibration of
these needs di�erent considerations. Accordingly, the description of the string cali-
bration is split to three sections. The �rst two discuss the calibration of the digital
waveguide, namely, signal estimation and �lter design, and the third concentrates
on the calibration of the resonator bank.

The calibration of the digital waveguide consists of designing the re�ection �lter
Hrv(z) and setting the length of the digital waveguide M in Fig. 4.5. One approach
could be the impedance measurement of the bridge and the analytic derivation of
string losses and vibration. This could give an insight to the physical behavior of
the string-soundboard system. The separation of the e�ects of the string and the
termination could be helpful in determining the parameters of a model displayed
on Fig. 5.10 or 5.11. Smith [1983] computed the speci�cation for the re�ection
�lter Hrv(z) by means of linear prediction and by a system identi�cation method.
However, these did not give a robust solution. A more straightforward approach
taken here, also suggested by Välimäki et al. [1996], is based on the measurement of
partial envelopes. The loss and dispersion �lters can be designed from the frequencies
and the decay times of the partials. This way, the e�ects introduced by the string
and the termination cannot be separated, but it is not needed for a single-string
digital waveguide model. The interest is now only on designing a digital waveguide
whose behavior is similar to the measured string.

6.2.1 Overview of signal estimation methods

For the analysis of the partials, basically two types of methods are used in the liter-
ature. One is based on the Short Time Fourier Transform [Allen and Rabiner 1977].
The signal is �rst multiplied by a window function with a length corresponding to
integer number multiples of the pitch period. Then the DFT of the windowed data
is computed. As this is done for several time instants, the result is the temporal
evolution of the short time spectrum. By �nding and following the peaks of these
spectra, the frequencies and the decay times of the partials can be calculated. The
method has been described in [Välimäki et al. 1996].

The other approach, also taken here, uses heterodyne �ltering [Moorer 1977].
The observed partial is brought to around zero in the frequency domain by multi-
plying the signal with a complex exponential corresponding to that frequency. The
frequency components of other partials are suppressed by lowpass �ltering. The
amplitude of the partial is calculated by taking the absolute value of the lowpass
�ltered signal [Välimäki and Tolonen 1998; Ding and Qian 1997]. The signal is ex-
amined only at the partial frequencies, and this speeds up the analysis procedure
compared to the DFT based approach.



6.2. PARAMETER ESTIMATION FOR THE STRING MODEL 79

6.2.2 Heterodyne �ltering for signal estimation

Both the sound pressure and bridge acceleration of several piano tones were recorded
for analysis in this study. The bridge acceleration signals were found to be more
useful than the sound pressure, since they contained stronger high harmonics. This
is because the pressure signal is rather proportional to the bridge velocity, i.e., its
spectrum falls at a rate of 20 dB/decade compared to acceleration. The frequencies
and decay times of the partials are the same for the pressure and acceleration signals.
Their amplitudes di�er but the initial amplitudes are irrelevant in the �lter design.

The heterodyne technique was chosen for the analysis of the measured signal,
mostly because of its computational simplicity. The steps of the algorithm are
illustrated in Fig. 6.2. The fundamental frequency of the tone can be calculated by
some pitch estimation methods, for example based on the autocorrelation function
[Rabiner 1977; Välimäki et al. 1996], or by �nding peaks in the DFT of the signal.
This is not needed here, because the fundamental frequency of the analyzed note is
approximately known, since it comes from which key of the piano was depressed.

The analyzed signal x(n) is multiplied by a complex exponential e�j#̂1n corre-
sponding to the fundamental angular frequency estimate #̂1. Then the resulted
complex signal is lowpass �ltered. There is a tradeo� between the time domain
and frequency domain resolution of the analysis: if the lowpass �lter Hlpf has a
low cut-o� frequency, the envelopes (especially in the attack part) will be some-
what smeared, but it will suppress the measurement noise appropriately. On the
contrary, high cut-o� frequency leads to more noise, making the analysis procedure
uncertain. The cuto� frequency of the �lter obviously has to be below the fundamen-
tal frequency of the tone. Here, a fourth-order Butterworth �lter was used, designed
by the MATLAB butter command. To avoid phase distortion, the data was �ltered
in both forward and backward directions, by using the MATLAB filtfilt proce-
dure [MAT 1996]. In this way, the resulted �lter had an order of eight. The cuto�
frequency was set to half of the fundamental for the very low notes and to one fourth
for the others.

The amplitude envelope of the partial is computed by simply taking the absolute
value of the �ltered complex signal. Note that this does not give the amplitude of
the sinusoidal representation, but the amplitude of the complex exponential. To
obtain the amplitude of the corresponding sinusoid, the value should be multiplied
by two. However, we are not interested here in the amplitudes, but the decay times.
But before computing those, the time-span of valid data should be found. For the
beginning of the note, a good estimate is the time instant with maximal amplitude,
since the piano sound is decaying by nature. Finding the end is somewhat more
complicated. If the measured data is long enough, its very last part consists of
measurement noise only, whose level is then computed. The note is assumed to be
terminated when its level falls below a certain limit, which was set to 10 dB above
the measurement noise. The decay times �k are estimated by taking the logarithm of
the amplitude envelope and applying linear regression to that, similarly to [Välimäki
et al. 1996]. The slope of the �tted line determines the decay time of the partial.
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Figure 6.2: Analysis procedure for partial envelopes.

The calculation of frequency deviation from the frequency estimate is based on
calculating and unwrapping the phase of the complex lowpass �ltered signal. By
di�erentiating the phase with respect to time, the instantaneous frequency devia-
tion can be determined. The frequency #1 of the �rst partial is then computed by
adding up the frequency estimate #̂1 and the weighted average of the instantaneous
frequency deviation. The weighting is based on the amplitude envelope of the par-
tial and gives less signi�cance to the weaker, and therefore more noisy parts of the
input data.

In the case of most string instruments, the tone can be considered harmonic.
Accordingly, the frequency estimates for the partials can be simply the multiples of
the fundamental frequency (#̂k = k#1) [see Välimäki et al. 1996]. On the contrary,
the inharmonicity of the piano tone calls for a more re�ned method based on the
estimation of the inharmonicity coe�cient B. Once the fundamental partial of
the tone is analyzed, the second frequency estimate will be twice of this frequency
(#̂2 = 2#1). Then the analysis procedure is run again, giving the exact frequency #2
of the second partial. The frequency estimates for the next partials are computed
by �tting an inharmonicity curve (see Eq. 2.3) on the already measured partial
frequencies #1 : : : #k and calculating the next frequency estimate #̂k+1 from that
expression.

6.3 Filter design

The output of the analysis procedure is a set of partial frequencies and decay times,
which can be used for designing the re�ection �lter of the digital waveguide (Hrv(z)
in Fig. 4.5). This �lter has to contain the e�ect of the losses and dispersion. Its
other task is the �ne-tuning of the length of the digital waveguide. Since the digital
waveguide contains an integer number of delays, varying only that would cause large
quantization errors in the fundamental frequency, similarly to the case of the basic
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Karplus-Strong algorithm [Karplus and Strong 1983; Ja�e and Smith 1983].
The analysis data results in a complex speci�cation, which could be directly used

for �lter design. For this, one should be able to separate the phase and the amplitude
error of the approximation, since for those di�erent constraints are needed. The
phase response of the re�ection �lter has to be very accurate at the fundamental
frequency of the note. On the contrary, at other frequencies it is enough if it follows
the general trend of the prescription. If the shape of the phase delay is similar to
what is needed to simulate the inharmonicity, the sound output will be still piano-
like, even if there are some inaccuracies. The decay times of the partials depend
on the amplitude response of the �lter, as shown in Eq. (4.16). It follows from the
equation, that the closer the amplitude response is to 1, the larger error will arise in
decay times for the same amplitude di�erence. The amplitude response should never
be larger than 1, since it would make the feedback loop unstable. Consequently, a
very complicated �lter design algorithm would be needed, considering the di�erent
kind of approximation errors, in order to give good results.

Smith [1983] reviews a number of sophisticated �lter design techniques, two
of them are also discussed in [Laroche and Jot 1992]. However, these methods
su�er from instabilities. The papers rather suggest the division of the �lter design
procedure to the loss �lter, dispersion �lter and fractional delay �lter parts [Ja�e
and Smith 1983; Välimäki et al. 1996]. By using allpass �lters for simulating the
dispersion and controlling the fundamental frequency of the note, the amplitude
response of the re�ection �lter will depend only on the loss �lter, simplifying the
�lter design procedure largely. The slight phase di�erence caused by the loss �lter
can be neglected when compared to the phase response of the dispersion �lter.

Note that dividing the �lter design into di�erent steps cannot give mathemati-
cally optimal results, since the separate parts of the �lters have some constrains on
the �lter coe�cients, like being allpass for the dispersion �lter. Now the simplicity
of the analysis will lead to computationally less e�cient implementation. It follows
that in the future it is of great interest to �nd a robust algorithm which could de-
sign one complete re�ection �lter based on the previously mentioned amplitude and
phase criteria.

6.3.1 Review of loss �lter design algorithms

The speci�cation for the loss �lter can be computed by using the inverse of Eq. (4.16):

gk = e
�

1

f0�k (6.1)

where �k is the decay time of partial k, f0 is the fundamental frequency of the note
and gk is the desired amplitude value of the loss �lter at the angular frequency #k
of partial k. Fitting a �lter to gk coe�cients is not trivial, even if the phase part of
the transfer function is not considered. This is because of the previously mentioned
nature of the loop �lter: the error in the decay time is a nonlinear function of
the amplitude error. The stability of the digital waveguide loop is also hard to
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handle. Unfortunately, there exists quite a small number of papers in the literature
concerning this subject. The methods reviewed in [Smith 1983] were found to be
too complicated for practical implementation. The stability constraint of the digital
waveguide jHrv(z)j < 1 cannot be incorporated in these methods either.

In [Välimäki et al. 1996; Välimäki and Tolonen 1998] the problem was solved by
using a one-pole �lter. The transfer function of such a �lter is:

H1p(z) = g
1 + a1

1 + a1z�1
(6.2)

where �a1 is the pole of the �lter and g refers to the DC gain. In [Välimäki et
al. 1996; Välimäki and Tolonen 1998] such a �lter was found to be adequate for
simulating the acoustic guitar and other plucked string instruments. The DC gain
g was set according to the decay time of the �rst partial (g = g1), or the average
of the �rst two or three gk coe�cients. The pole of the �lter was determined by
continuously adjusting a1 and searching for the minimumof the analytical expression
of the approximation error. The error was computed in a least squares sense, by
using a weighting function putting more emphasis on slowly decaying partials. Ja�e
and Smith [1983] also discussed the use of the one-pole �lter, but without the gain
factor, i.e., g = 1 in Eq. (6.2).

The advantage of using a one-pole �lter is that it is always of a lowpass character
for a1 < 0. Since g is less than unity by the principle of calculating it, the waveguide
loop will be always stable. As we discuss in the Appendix, such a simple constraint
can be found for the �rst-order FIR �lter as well. The problem of the technique of
[Välimäki et al. 1996] comes from the separation of the g and a1 parameters, since
�rst g is set and then a1 is optimized assuming g to be given. Nonlinear optimization
can overcome this problem, as presented in [Erkut et al. 2000]. There the previously
mentioned procedure was used calculating the initial estimates for g and a1. Then
a nonlinear optimization was carried out based on the amplitude envelope of the
synthesized and the original signal. This is motivated by the fact that the overall
decay time of the synthesized sound has a large perceptual signi�cance. On the
other hand, the timbral evolution of the sound was not taken into account in the
nonlinear optimization loop, still not leading to an optimal solution. However, it is
a question, how precise the approximation must be. Listening tests show that the
threshold for recognizing di�erences in the overall decay time is rather high [Tolonen
and Järveläinen 2000].

6.3.2 The transformation method: a novel loss �lter design

technique

The fact that the loss �lter has only one pole is also a hard constraint itself, since
it restricts the sets of realizable decay times to a great extent. As we shall see, in
the case of the piano the dispersion �lter is computationally much more expensive
than the loss �lter. Hence, applying e.g., a fourth-order loss �lter instead of a �rst-
order one would not increase the computational costs signi�cantly. A straightforward
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solution for designing such a �lter is to use standard �lter design methods for gk with
a weighting function, e.g., such as presented in [Välimäki et al. 1996]. Unfortunately
this does not lead to useful results, since in most of the cases the amplitude response
of the resulted �lter goes above unity and the decay times calculated from the
designed �lter are nothing similar to those of the speci�cation. This is because the
dependence of the decay times on the �lter magnitude is highly nonlinear. Note that
weighting would give a solution to that only if this relation could be assumed linear.
Until this time, no general and robust solution to the problem has been presented
in the literature.

The new approach taken here is based on a perceptually meaningful criterion.
Rather than minimizing the amplitude error of the �lter, it optimizes the resulting
decay times. The error e� of the decay times used in the following derivations
is de�ned in the mean-square sense, but it could also be minimized according to
minimax or absolute error criteria. Consequently, the results obtained here for
least-squares optimization are valid for the other criteria as well, although when
weights wk 6= 1 are used, some corrections are necessary. The squared decay time
error is de�ned as :

e� =
KX
k=1

(�̂k � �k)
2 (6.3)

where �k are the prescribed, and �̂k are the approximated decay times of partial k.
K refers to the number of partials with which the �lter design is carried out. By
substituting the expression of decay times (see Eq. 4.16) and using the �rst-order
Taylor series approximation for the ln function (lnx � x� 1 for x � 1) one obtains:

e� =
KX
k=1

 
1

f0 ln ĝk
� 1

f0 ln gk

!2

� 1

f20

KX
k=1

 
1

1 � ĝk
� 1

1 � gk

!2

(6.4)

where gk are the prescribed �lter magnitudes at the partial frequencies jvarthetak
and ĝk = jHgk(e

j#k)j are the corresponding values of the approximation. Since the
gk and ĝk values are close to 1, the approximation for the error is very accurate.

Based on Eq. (6.5) a transformed �lter Htr(z) is designed. This can be done by
any least squares �lter design algorithm (e.g., invfreqz in MATLAB) by using a
transformed speci�cation gk;tr. This minimizes the error:

eLS =
KX
k=1

wk

�
Htr(e

j#k)� gk;tr
�2
; gk;tr =

1

1 � gk
(6.5)

where #k refers to the frequency of partial k and wk is the corresponding weight,
which is now equal to 1 for all k. The error eLS di�ers from the right hand side of
Eq. (6.4) by a constant factor only, which means that if Eq. (6.5) has a minimum, so
do Eqs. (6.4) and (6.3). This implies that the deviation from the prescribed decay
times is minimized. The loss �lter Hgk(z) can be computed from the transformed
�lter Htr(z) by an inverse transformation:

Hgk(z) = 1� 1

Htr(z)
(6.6)
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Minimizing the error of the decay times puts more emphasis on the lower, slowly
decaying partials than on the higher ones, since the same absolute di�erence will
give larger relative error for shorter decay times. The relative error

e�;rel =
KX
k=1

 
�̂k
�k
� 1

!2

(6.7)

can also be minimized by using the same procedure described above, but a weighting
of wk = 1=� 2k or the corresponding wk = (1�gk)2 should be used in the least squares
�lter design algorithm (see Eq. 6.5).

In practice, the approach of Eq. (6.3) was found to be more successful than of
Eq. (6.7), since it automatically gives better approximation for the lower harmonics
than for the higher ones, and it thus preserves the original decay time. Although
simply minimizing the error of the decay times gave good results, it would be still
interesting to experiment with other weighting functions, based on some psychoa-
coustic criteria on the audibility of decay time deviations of the partials. The audi-
bility of the overall decay time deviations were studied in [Tolonen and Järveläinen
2000]. Unfortunately, the research was conducted for the one-pole loop �lter case,
and hence the results cannot be directly used for designing a weighting function.
One interesting outcome of the study is that variations of 25 to 40 % in the overall
decay time are inaudible.

There is still one point which has to be considered: calculating the gk coe�cients
by Eq. (6.1) is precise only if the inharmonicity of the digital waveguide can be
neglected, that is, the partial frequencies are multiples of the fundamental frequency
(fk = kf0). In the case of the piano string model, when the inharmonicity is
simulated by a dispersion �lter, the e�ective length of the digital waveguide will be
smaller for the higher harmonics than for the lower ones. Consequently, components
of high frequency will travel around the digital waveguide more times during the
same amount of time than in the harmonic case. This will result in more damping
than desired. The audibility of the error caused by this is rather small, since the
relative error depends on the corresponding inharmonicity index Ik = fk=(kf0),
which is close 1 for the perceptually most signi�cant low partials. For the upper
ones, some error is introduced, but their amplitude and decay time is small anyway.
However, this error can be avoided easily by using a variation of Eq. (6.1), where f0
is replaced with fk=k:

gk = e
�

k
fk�k (6.8)

where fk is the frequency of the partial k.

The optimization for the decay time deviation can be done by using Eqs. (6.5) and
(6.8) with a weighting of wk = (k=fk)

2 or, the same with angular frequencies, wk =
(k=#k)2. This can be easily con�rmed by solving Eq. (6.8) for �k and substituting
into Eq. (6.3).
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Analysis of the new method

It is interesting to note that the designed transformed �lter Htr(z) has a physical
interpretation. When all losses are assumed to come from the termination, it comes
from Eq. (6.6) that the inverse of the transformed �lter 1=Htr(z) is the bridge �lter,
which calculates the velocity of the bridge vbr from the incoming velocity wave v+.
The re�ected velocity wave is then computed by a subtraction (v� = vbr�v+). This
is similar to the two string case of Fig. 5.9, but now only one string is connected to
the termination (see Fig. 6.3).

Figure 6.3: Physical interpretation of the transformed �lter Htr(z).

By using Eq. (4.5), the transformed �lter can be expressed with the following
physical parameters:

Htr(z) =
v+(z)

vbr(z)
=

v+(z)

v+(z) + v�(z)
=

1

1 + rv(z)
=
Z(z) + Z0

2Z0
(6.9)

where Z0 is the characteristic impedance of the string, Z(z) is the impedance of the
termination and rv is the velocity re�ection coe�cient.

Note that in the case of equal string impedances, the coupling �lter Hc(z) of
Fig. 5.9 can be computed from the designed Htr(z) in a simple way (Hc(z) =
1=(Htr(z) + 1=2)). This kind of approach would lead to better results than design-
ing the coupling �lter from a one string loss �lter prototype, which was suggested
in [Van Duyne and Smith 1995], since Htr(z) is optimal in the least squares sense
considering the decay times. Mathematically this approach is equivalent to design-
ing the loss �lter Hgk(z) from Htr(z) by Eq. (6.6) and then applying the equations
of [Van Duyne and Smith 1995] for determining the coupling �lter Hc(z) from the
single string loss �lter Hgk(z).

Practically, the loss �lter does not have to be implemented as shown in Fig. 6.3.
It can be transformed back by Eq. (6.6), and then the structure of Fig. 4.5 can be
used. After this inverse transformation, the resulting �lter will always have at least
the same amount of zeros as poles. As a special case, if Htr has only poles, the
re�ection �lter Hgk will be an FIR �lter.

The stability of the designed �lter Hgk is still an issue, since the standard �lter
design algorithms (such as invfreqz in MATLAB) do not always give stable results.
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The �lter can made stable by re�ecting the unstable poles to the unit circle. This
will change the phase response only. Since in the phase response of the complete
re�ection �lter the dispersion �lter will be dominant, the e�ect of this change can
be neglected. The magnitude response remains the same up to a constant factor,
which can be easily corrected [Oppenheim and Schafer 1975].

The stability of the overall digital waveguide loop is another question. The
constraint for the stability of the waveguide is that the modulus of the loss �lter
cannot exceed unity at the resonance frequencies of the string loop:

jHgk(e
j#k)j < 1() j1 � 1

Htr(ej#k)
j < 1 (6.10)

This means that 1=Htr(ej#k) must be within a circle of radius 1 centered at z = 1.
From that comes the stability constraint for Htr(z):

<fHtr(e
j#k)g > 1

2
(6.11)

which should hold for every partial frequency #k. Since the speci�cation gk is real
and close to one, the transformed speci�cation gk;tr of Eq. 6.5 is much larger than
1=2. As a result, there is a large margin for the �lter design inaccuracies, where the
loop still remains stable.

Note that when designing the �lter from gk using traditional methods, the spec-
i�cation gk is very close to 1, therefore already small error in the approximation
makes the loop unstable, on the contrary to the new method. The new method
proposed here was used with speci�cations of piano tones in the entire range of the
keyboard. The designed �lters never had an amplitude response greater than unity
at the prescribed frequency points. On the other hand, they sometimes exceeded
unity between the speci�cation points, particularly for high �lter orders. The au-
thor has not found any cases when it would have led to the instability of the digital
waveguide loop, but this still should be avoided. Especially if the number of the pre-
scribed points is small, it can happen that the loop gain exceeds unity at one of the
nonspeci�ed resonant frequencies of the digital waveguide. This can be avoided by
increasing the number of points in the speci�cation, e.g., by interpolating between
the known gk coe�cients.

Fig. 6.4 and 6.5 show the output of the �lter design algorithm for the note A]
4

(466 Hz), for IIR �lter of orders of 2, 4 and 12. In Fig. 6.4 the speci�cation gk and the
magnitude response of the designed �lters at the partial frequencies ĝk = jHgk (e

j#k)j
are displayed. Note that the match is more precise where the speci�cation is closer
to unity. Fig. 6.5 illustrates the decay times of the speci�cation and of the di�erent
approximations. This was calculated from ĝk by Eq. (4.16). The accuracy of the
approximation is about the same for every point, since the method minimizes the
mean square error of the decay times. The graph of the transformed speci�cation
gk;tr is not shown here, as it is very similar to that of the decay times (Fig. 6.5).

The �gures reveal that already a second-order IIR �lter (solid line) can follow
the trend of the decay times, and a fourth-order �lter (dashed line) is appropriate
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Figure 6.4: Prescribed (dotted line with black points) and approximated loss �lter
magnitudes for �lter orders of 2 (solid line), 4 (dashed line), and 12 (dash-dotted
line) using the novel method.

for our purposes (compare with Fig. 6.6 of the one-pole �lter). The results of the
12th-order �lter (dash-dotted line) design are presented just to show the stability of
the method. In practice there is no use for such a large �lter, since simulation of
the small deviations in the decay times gives only slightly better sound.

6.3.3 New method for designing the one-pole �lter

For real-time applications, it is still useful to consider the one-pole �lter of Eq. (6.2).
It will be also used in the calibration of the soundboard model. Therefore, a simple
and robust method is proposed for its design. As proven in the Appendix, the decay
times of the digital waveguide with a one-pole loop �lter can be approximated with
the following formulas:

� � 1

c1 + c3#2
(6.12)

c1 = f0(1 � g)
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Figure 6.5: Prescribed (dotted line with black points) and approximated decay time
for �lter orders of 2 (solid line), 4 (dashed line), and 12 (dash-dotted line).

c3 = �f0 a1
2(a1 + 1)2

where # is the angular frequency in radians, and f0 is the fundamental frequency of
the digital waveguide in Hz. See Appendix for more details and comparison to the
one-zero FIR �lter.

The results of Eq. (6.12) can also be used in a reverse order: if one knows the
c1 and c3 parameters, the g and a1 coe�cients of the one-pole �lter can be easily
calculated.

As it was the approach of Eq. (6.3), the goal is to minimize the mean-square
error of the decay times, since that has been found to be a perceptually adequate
criterion. The expression of the error e� is:

e� =
KX
k=1

(�̂k � �k)
2 =

KX
k=1

�̂ 2k �
2
k

�
1

�̂k
� 1

�k

�2
=

KX
k=1

�̂ 2k �
2
k (�̂k � �k)

2 (6.13)

where �k = 1=�k are the prescribed, and �̂k = 1=�̂k are the approximated decay
rates.
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It can be noted from Eq. (6.12) that the decay rate � = 1=� is a second-order
polynomial of #. This means that its parameters c1 and c3 can be readily computed
by means of polynomial regression. The corresponding equation:

e� =
KX
k=1

wk(c1 + c3#
2
k � �k)

2 (6.14)

where #k are the angular frequencies of the partials, wk = � 2k �̂
2
k are the weights,

and e� is the approximation error which should be minimized with respect to the
parameters c1 and c3.

The problem with Eq. (6.14) lies in the weights wk: the approximated decay
times �̂k are not known beforehand. This can be solved by �rst using wk = � 4k and
then running the polynomial regression algorithm again, now computing �̂k from
the c1 and c3 values by applying Eq. (6.12). This iteration should be done until the
error e� does not decrease signi�cantly.

Di�erentiating Eq. (6.14) with respect to c1 and c3, and setting de�=dc1 = 0 and
de�=dc3 = 0 gives:

c3 =
M(wk)M(wk�k#

2
k)�M(wk�k)M(wk#

2
k)

M(wk)M(wk#4k)�M2(wk#2k)

c1 =
M(wk�k)� c3M(wk#

2
k)

M(wk)

M(xk) =
KX
k=1

xk (6.15)

The advantage of polynomial regression is that it is fast to compute and it does
not need any iteration or nonlinear approximation technique. However, the polyno-
mial regression should be run at least twice, since the weights wk can be computed
accurately only this way.

Figure 6.6 shows the results of the novel one-pole �lter design algorithm for the
note A]

4 (466 Hz). It can be seen that already the �rst approximation (wk = � 4k ) gives
good results, but it is biased towards the high decay times (dash-dotted line). The
second approximation was calculated by using the �̂k values from the output of the
�rst approximation for wk = � 2k �̂

2
k (dashed line). It is very close to the graph of the

100th iteration (solid line). Consequently, there is no need for using the polynomial
regression of Eq. (6.15) more than twice to achieve good results. This was valid for
other piano tones as well.

By looking at Fig. 6.6 one notes that the decay times of the �rst 10 partials
are matched quite well but the higher ones are much smaller in the approximation
than in the prescription. This is because of the nature of the one-pole �lter. A
more precise approximation for the higher partials, by e.g., minimizing the error
of Eq. (6.7) by applying wk = � 2k , would lead to a large error in the decay times
of the �rst partials, and thus in the overall decay time of the note. Comparing
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Figure 6.6: Prescribed (dotted line with black points), and approximated decay
times for one (dash-dotted line), two (dashed line) and 100 (solid line) iterations by
using the new one-pole �lter design algorithm.

Fig. 6.6 to Fig. 6.5, it can be seen that a fourth-order IIR �lter can give a solution
to this problem. It seems that the decay times of piano strings do not exactly follow
the theoretical curve of the string with �rst- and third-order losses. This is mainly
because that simple model does not take into account the string termination.

On the whole, the novel algorithm presented here gives good results for designing
the one-pole loss �lter. The error criterion optimizing for the decay times seems to
be appropriate, but any other kind of weighting can be used, if necessary. However,
it will not improve the approximation signi�cantly: for simulating the decay times
of the piano string higher-order �lters are needed. By using derivation similar to
that in Eqs. (A.2)-(A.5) for higher-order �lters, i.e., expressing the decay rate � as
the polynomial of #, the same �lter design method could be used. For example, a
two-pole �lter with real poles will lead to a polynomial of �̂ � c1+c3#

2+c5#
4, which

is the decay time of the string with �rst-, third- and �fth-order time derivates in the
wave equation. Using this polynomial regression based approach could give better
results than the transformation of the speci�cation Eq. (6.5), since the design is now
fully under control and no standard �lter design algorithm need to be used. The
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disadvantage of this technique is that quite much analytical work is needed, making
it unrealizable for high �lter orders. On the contrary, the transformation method
can be used for those cases easily. The author suggests the polynomial regression
based approach for low �lter orders, such as one or two, and the transformation
method for higher ones.

6.3.4 Designing the dispersion �lter

The dispersion of the string is implemented by an allpass �lter. This ensures that the
decay times will be controlled by the loss �lter and the stability of the delay loop will
depend on the loss �lter only. However, these are in�uenced by the dispersion �lter,
since it sets the resonance frequencies of the digital waveguide. By reformulating
Eq. (4.18) the e�ective length Deff of the digital waveguide should be:

Deff (fk) =
fsk

fk
= Dwg +DrF (fk) (6.16)

where fs is the sampling frequency, fk is the frequency of the partial k, Dwg = N is
the phase delay introduced by delay lines of the digital waveguide, and DrF is the
phase delay of the re�ection �lter.

Since the phase delay of the loss �lter can be neglected when designing the
dispersion �lter, the speci�cation for the dispersion �lter will be:

Ddisp(fk) =
fsk

fk
�Dwg (6.17)

When the inharmonicity indices fk=(kf0) increase with frequency, which is the case
for real strings, this will lead to a monotonically decreasing speci�cation. The delay
of the digital waveguide Dwg is a free parameter during the �lter design.

Here the approach suggested by Van Duyne and Smith [1994] is taken. The
dispersion �lter is a series of �rst-order allpass �lters, whose transfer function is as
follows:

H1ap(z) =
a1 + z�1

1 + a1z�1
(6.18)

The phase delay of such a �lter is similar to that what is needed for simulating the
inharmonicity of real strings. Unfortunately, one �lter is not enough to implement
the necessary phase delay. Therefore more �rst-order allpass �lters are connected in
series [Van Duyne and Smith 1994].

In [Van Duyne and Smith 1994] using the same a1 coe�cients for all the �rst-
order allpass �lters was motivated by computational reasons. They suggested a
multiplier-free implementation with a1 values being a power of 2 or 1 minus a power
of two. Here we do not restrict ourselves to these kind of coe�cients, a1 can be any
rational number. However, using the same a1 for all the �lters in the chain simpli�es
the �lter design process considerably.

The �lter coe�cient a1 was determined by minimizing the least squares error
in the phase delay. A weighting was used which gave more emphasis to the lower
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partials. The number of �rst-order allpass �lters in the chain was a given parameter.
For the lowest notes of the piano, 16 �rst-order allpass �lters were connected in chain.
For the higher ones, this number was 8 or 4. This was found to give satisfactory sonic
results, but it is not optimal in any sense. More work has to be done concerning
this part of the model.

Rocchesso and Scalcon [1996] suggested a more re�ned method by using the
allpass �lter design technique of Lang and Laakso [1994]. The analysis of that
technique and the sonic comparison to the simple method applied here will be a
part of future research. The results of listening tests by Rocchesso and Scalcon
[1999] and Järveläinen et al. [1999] could be also incorporated in the �lter design.

6.3.5 Setting the fundamental frequency

As mentioned earlier, the phase delay of the digital waveguide loop should be very
accurate at the fundamental frequency of the note. If it is not so, the corresponding
note will be out of tune. Once the loss and the dispersion �lters are designed, the
length of the digital waveguide D(f0) at the fundamental frequency f0 of the tone
should be:

D(f0) = Dwg +Dfd =
fs
f0
�Dgk (f0)�Ddisp(f0) (6.19)

where Dgk and Ddisp are the phase delay of the loss and dispersion �lters, respec-
tively.

The prescribed length of the waveguideD(f0) is not an integer. On the contrary,
only an integer phase delay can be implemented with delay lines. The solution is to
use fractional delay �lters [Välimäki 1995; Laakso et al. 1996] in series with the delay
line. Here a �rst-order allpass �lter was used for this purpose, as proposed in [Smith
1983; Ja�e and Smith 1983], whose transfer function is described by Eq. (6.18). The
integer part of D(f0) will be implemented as the delay line of the digital waveguide
with a length of Dwg = bD(f0) � 0:5c, and the fractional part will be realized
with a �rst-order allpass �lter with a phase delay of Dfd(f0) = D(f0)�Dwg at the
fundamental frequency f0. The resulting fractional delay will be 0:5 � Dfd(f0) < 1:5
which is the optimal range for the �rst-order allpass �lter [Välimäki 1995]. The
a1 coe�cient of the allpass �lter can be approximately calculated as a1 = (1 �
Dfd(f0))=(1 +Dfd(f0)) [Smith 1983; Ja�e and Smith 1983; Välimäki 1995].

6.4 Calibration of the resonator bank

This section will deal with the calibration of the novel resonator bank implemen-
tation for beating and two-stage decay. Since the resonator based approach for
modeling these e�ects is new, no analysis techniques could be found in the litera-
ture. The problem is similar to what is needed for designing the �lters for the model
of Fig. 5.10, but the corresponding paper [Daudet et al. 1999] only says that the
authors used parametric modeling. The method presented here has the advantage
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that there is no nonlinear optimization needed and it is robust for real piano tones.
Consequently, this new approach could also be useful for calibrating the model of
Daudet et al. [1999].

The structure was described in Section 5.3.3, and now the task is to determine
the poles pk and the amplitude coe�cients ak for the resonators (see Eqs. (5.2) and
(5.3)). To be able to do that, �rst we have to investigate what kind of amplitude
envelopes can arise from two exponentially damping sinusoids.

6.4.1 Analysis of the two-mode model

Our starting-point is the two-mode model, with two exponentially damping sinu-
soids, whose initial amplitude, phase, decay time and fundamental frequency pa-
rameters can all di�er. This simpli�ed model was found useful in describing the
main features of beating and two stage decay [Weinreich 1977]. The physics of these
two phenomena was described in Section 2.2.1. Let us assume that the parameters
of the two modes are already known. Then the sum of the two modes is:

x(t) = A1e
�

t
�1 sin(2�f1t+ '1) +A2e

�
t
�2 sin(2�f2t+ '2) (6.20)

where A1 and A2 are the initial amplitudes, '1 and '2 are the initial phases, f1 and
f2 are the frequencies, and �1 and �2 are the decay times of the two modes.

To simplify the derivation, the following notation will be used:

a = A1e
�

t
�1

b = A2e
�

t
�2

� = 2�f1t+ '1

� = 2�f2t+ '2 (6.21)

Accordingly, the sum of the two modes can be written as:

x(t) = a sin�+ b sin� =
a+ b

2
(sin�+ sin�) +

a� b

2
(sin� � sin �)

=

 
(a+ b) cos

�� �

2

!
sin

�+ �

2
+

 
(a� b) sin

�� �

2

!
cos

� + �

2
(6.22)

Since f1 � f2, Eq. (6.22) can be seen as a sum of an amplitude modulated sine
and an amplitude modulated cosine function. We are not interested here in the
instantaneous phase or frequency of the resulted signal, but in the evolution of the
modulating wave. The amplitude envelope A(t) of the signal x(t) will be:

A(t) =

s
(a+ b)2 cos2

� � �

2
+ (a� b)2 sin2

�� �

2

=

vuuta2 + b2 + 2ab

 
cos2

�� �

2
� sin2

� � �

2

!

=
q
a2 + b2 + 2ab cos(�� �) (6.23)
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The geometrical interpretation of this equation is the length of the sum of two
vectors in the x-y plane, whose lengths are a and b, and their angles to the x-axis
are � and �.

By substituting the original variables according to Eq. (6.21) we obtain:

A(t) =

s
A2

1e
�

2t
�1 +A2

2e
�

2t
�2 + 2A1A2e

�t

�
1

�1
+ 1

�2

�
cos(2�(f1 � f2)t+ '1 � '2) (6.24)

This is the amplitude envelope of the signal x(t). It covers not only the beating, but
also the decay of the sound. We can have better insight to beating if we reformulate
Eq. (6.20):

x(t) = A1e
�

t
�1

 
sin(2�f1t+ '1) +

A2

A1
e
�t

�
1

�2
�

1

�1

�
sin(2�f2t+ '2)

!

= A1e
�

t
�1 xrel(t) (6.25)

Now we have factored out the general exponential decay and normalized the initial
amplitudes. The amplitude envelope b(t) of the normalized signal xrel(t) will be:

b(t) =

r
1 +A2

be
�

2t
�b + 2Abe

�
t
�b cos(2�fbt+ 'b)

Ab =
A2

A1

�b =
1

�2
� 1

�1
fb = f1 � f2

'b = '1 � '2 (6.26)

We see from Eq. (6.26) that for Ab � 0 the upper and lower limits for the beating
signal b(t) are:

j1�Abe
�

t
�b j � b(t) � 1 +Abe

�
t
�b (6.27)

From Eq. (6.27) follows that the beating is the largest when Abe
�t=�b = 1, which is

when the amplitude envelope of the two decaying sinusoids cross. Before this point,
the decay grows, and after that decays. Note that the largest beating does not refer
to the maximal b(t) value, but to the maximal relative di�erence between the lower
and upper bounds of b(t), which is when the lower bound equals to zero.

For those cases where 0 � Abe
�t=�b � 1, the beating b(t) can be approximated

with an exponentially rising or decaying sinusoid:

b(t) � 1 +Abe
�

t
�b cos(2�fbt+ 'b) (6.28)

The smaller the Abe
�t=�b value, the more accurate the approximation. It comes form

the constraint Abe
�t=�b � 1 that Eq. (6.28) handles only either the decaying, or the

growing part of the beating. If we separate these parts during the analysis of real
amplitude envelopes, and �t this kind of curve on one of them, we can get all the
parameters which characterize the two-mode model. However, the synthesis model
will behave as in Eq. (6.26).
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6.4.2 Estimation of beating and two stage decay

The analysis is based on the theory described previously. The goal is �rst to remove
the general exponential decay from the amplitude envelope A(t) and then to �t a
signal model of Eq. (6.28) on the data. The analysis should be restricted only either
to the growing, or to the decaying part of the beating, since the simpli�ed model is
valid only for this case. The separation can be done by �nding the minimum of the
normalized beating signal b(t) after the general exponential decay is removed from
the amplitude envelope A(t).

Figure 6.7 shows the parts of the algorithm. First, the algorithm of Fig. 6.2 is
applied to the signal, which calculates the amplitude envelopes A(t) of the partials
and estimates the initial amplitude and decay time of the exponential decay A1e

�t=�1

for every single partial. The exponential trend is removed from A(t) by division,
yielding b0(t) = A(t)=(A1e

�t=�1). Since we try to �t a model of Eq. (6.28) to the
beating, we need a signal whose mean is 1. Therefore, b0(t) has to be normalized to
get the beating signal b(t) = b0(t)=Meanfb0(t)g. Then the DC component of b(t) is
removed, s(t) = b(t)�1. The frequency fb and initial phase 'b values of the beating
are found by taking the DFT of s(t) and picking the frequency and phase values
where the magnitude of the DFT is the largest.

Computing the amplitude Ab and decay time �b of the beating is more compli-
cated. Theoretically, the same procedure could be used as in Fig. 6.2, since the
envelope of an amplitude modulated sinusoidal signal s(t) has to be determined.
The di�erence is that here the frequency of the signal fb is very low, it is in the or-
der of 1 Hz. Accordingly, the lowpass �lter of Fig. 6.2 should be very narrow, which
would lead to an unacceptably bad time resolution. The solution here is based on
recognizing that the signal contains only one dominant frequency component, and
therefore no �ltering is needed. The amplitude envelope is calculated by taking the
absolute value of the analytic signal of s(t), which is js(t) + jHfs(t)gj, where H
denotes the Hilbert transform [Oppenheim and Schafer 1975]. The initial amplitude
Ab and decay time �b is estimated by means of linear regression in the logarithmic
domain, in the same way as it was mentioned in Section 6.2.1.

Note that all the operations performed here concern only one particular partial
of the analyzed signal. This procedure should be run for every partial separately.

Figure 6.7: The proposed analysis procedure for beating and two-stage decay.
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Figures 6.8 and 6.9 show the �tting procedure on the �rst and second partial
of the note A]

4, respectively. It can be seen that the �rst partial exhibits two-stage
decay (Fig. 6.8), and the second one is featured by a growing beating (Fig. 6.9).

In both �gures, (a) solid line shows the amplitude envelope of the partial and the
dashed line is the �tted exponential decay A1e

�t=�1. The normalized beating signal
b(t) is displayed in (c), solid line. The magnitude of the analytic signal of s(t), i.e.,
the amplitude of the beating is revealed in (b), solid line. The dashed line in (b)
refers to the �tted exponential envelope Abe

�t=�b. The dash-dotted line in (c) is the
approximated b(t) signal by using the model of Eq. (6.28), and the dash-dotted line
in (d) shows the approximated amplitude envelope.

The dashed lines of (c) and (d) display the real b(t) and A(t) signals, which will
arise if the parameters determined by this model are implemented with two expo-
nentially damping sinusoids. These signals were calculated by applying Eq. (6.26).
Note that the dash-dotted and dashed lines in (c) and (d) are close to each other.
This shows that the model of Eq. (6.28) is a good approximation.
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Figure 6.8: Analysis of the �rst partial of the A]
4 piano tone.
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Figure 6.9: Analysis of the second partial of the A]
4 piano tone.

6.4.3 The parameters of the resonator bank

Now that the fb, 'b, Ab, and �b parameters of the beating are known, the parameters
of the resonators can be calculated by the help of Eq. (6.26). However, the A1 and
�1 parameters determined during the analysis cannot be used for this purpose, since
the digital waveguide gives only a rough approximation of these. Consequently,
the features of the resulted beating would be di�erent. Thus, the parameters of
the resonators have to be determined relatively to the digital waveguide. As a
result, the characteristics of the beating are preserved, but the decay times and the
initial amplitudes of the partials will di�er from those of the original signal. This
is perceptually acceptable, although the synthetic envelopes will not match the real
ones precisely. The steps of the calibration process are displayed in Fig. 6.10.

First the digital waveguide of the string model is designed. Then its behavior is
analyzed. One way is simulating the impulse response of the corresponding string
model by sending an impulse to the force input, without using the hammer model.
Then this signal can be analyzed in the same way as it was described in Section 6.2.1,
in order to obtain the frequencies, initial amplitudes and decay times of the partials.
The initial phases can also be determined from the phase of the lowpass �ltered signal



98 CHAPTER 6. MODEL CALIBRATION

Figure 6.10: The calibration process for the resonators.

in Fig. 6.2. Another solution is the analytic determination of these parameters by
using an approach similar to Chapter 4, Eqs. (4.15)-(4.18). Nevertheless, this needs
more careful considerations, since, e.g., the length of the waveguide N in Eq. (4.15)
varies with frequency, as an e�ect of the dispersion �lter.

Once the A1, �1, f1, and '1 parameters of one partial of the digital waveguide
are known, the A2, �2, f2, and '2 parameters of the corresponding resonator are
determined by Eq. (6.26).

The bene�t of the new structure of Section 5.3.3 is that the accuracy of the
approximation can be adjusted by the number of the realized resonators. This
gives a new task: since not all the resonators are implemented, a decision has to
be made which partials should have their beating and two-stage decay simulated.
The others will have simple exponential decay determined by the digital waveguide.
The best method would be applying psychoacoustic criteria, but these were not
found in the literature. The method taken here is based on the energy of the
resonators and it is quite simple: the resonators with the K largest energy value are
implemented. This approach tries to minimize the energy di�erence between the
implementation with K resonators and the imaginary case when resonators for all
partials are used. This works pretty well for tones in the high and middle range,
where the number of partials is small anyway, but for the lower ones the sonic
result is not satisfactory. The resonators chosen by this algorithm are generally
next to each other, and probably a broader distribution in frequency would be
more appropriate. Choosing the resonators manually gave better results after some
experiments. Therefore, in the future a better criterion has to be found for this
purpose.

In the upper part of Fig. 6.11 the �rst 8 partial envelopes of the A]
4 note (466Hz)

are displayed. The lower part of Fig. 6.11 shows the output of the synthesis model
including all parts of the model, hence the hammer and the soundboard as well.
For the string model, the structure of Fig. 5.12 with 5 resonators was used. The
parameters of the resonator bank were determined by the method described in this
section. It can be noted that the characteristics of beating and two-stage decay are
well preserved, but the initial amplitudes and the decay times of the partials are
di�erent for the original and synthetic signals. This is by the nature of physical
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modeling techniques, since they model the sound generating behavior, and not the
signal, therefore only the main features of the sound are preserved. However, we
are not interested here to copy one speci�c piano tone, but to build a model which
sounds like a piano. The beating and the two-stage decay can be more accurate
because they are simulated by separate resonators.
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Figure 6.11: Partial envelopes of the original and synthesized A]
4 note.

To conclude, the new algorithm described here provides a robust solution for
calibrating the resonator bank. Although it contains many steps, and may therefore
seem to be complicated, these steps are simple operations. An advantage is that
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there is no need for any iteration or nonlinear optimization, and this ensures the
stability of the algorithm. The method was found to be reliable for all analyzed
piano tones.

The problem of the technique described here is that it should be done for all
piano notes. The decay times for re�ection �lter design can be interpolated from
one or two measurements in every octave. On the contrary, the characteristics of
beating and two-stage decay are so di�erent from note to note that these cannot
be determined by interpolation between the measured notes. By measuring the
impedance at some points along the bridge and calculating the parameters from
that could possibly overcome this problem. Then the impedance curve should be
sampled at the modal frequencies of the string and the parameters of the beating
could be calculated using the equations described in [Weinreich 1977]. This probably
would not give the same features as of the original tones, but it would give physically
meaningful behavior. The robustness of such a method is a question, since the noise
in impedance measurement can make the whole process unstable. Therefore, the
author suggests measuring all piano tones and using the method based on partial
envelopes. The analysis process is automatic. The only time-consuming operation
is the recording of the 88 piano notes.

6.5 Calibration of the soundboard model

The calibration of the soundboard model consists of two parts: determining the
parameters of the feedback delay network and designing the shaping �lter.

6.5.1 Parameters of the feedback delay network

The feedback delay network is described by the variables of Eq. (5.4) and by the
loss �lters Hk(z) connected to the delay lines in series. Choosing the length of the
delay lines was already discussed in Section 5.4.3.

The feedback matrix A was �rst chosen to be a special case of a circular matrix,
where all the eigenvalues of A are at 1 expect one, which is at �1. This results in
a feedback matrix, where the elements are the same expect the ones in the diagonal
[Rocchesso and Smith 1997]. This leads to a very e�cient implementation. However,
when the number of delay lines is higher than four, the magnitude of the elements
in the diagonal will be larger than the others. Consequently, the delay lines will get
more input from their own output than desired, and this results in more harmonic
timbre. Better solutions can be obtained by shifting the feedback matrix to the
right with one step. This spreads the eigenvalues of the feedback matrix around the
unit circle [Rocchesso and Smith 1997]. Thus, the �rst row of the circular feedback
matrix in our case is: [�1=4; 1 � 1=4;�1=4;�1=4;�1=4;�1=4;�1=4;�1=4].

The input and output coe�cient vectors b and c were chosen as suggested in
[Rocchesso and Smith 1997] to avoid coloration in arti�cial reverberators. However,
the equations in [Rocchesso and Smith 1997] are valid when the lengths of the delay
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lines are comparable. This is not the case here, hence the coloration cannot be
completely avoided. Note that this is not a problem, since real piano soundboards
color the sound as well.

The loss �lters were designed from the decay times of the di�erent frequency
regions of the impulse response, in a way suggested in [Jot and Chaigne 1991]. The
bridge of the piano was excited with an impulse hammer and the resulting sound
pressure was recorded. Then the temporal energy evolution of the response was
calculated in octave bands. The curves were smoothened by reverse-time integra-
tion [Jot and Chaigne 1991]. The decay times were determined by applying linear
regression to the logarithm of the smoothed envelopes, as discussed in Section 6.2.2.

One-pole �lters were used for loss �lters, and their parameters were determined
by the novel one-pole �lter design algorithm of Section 6.3.3. It is done as follows:
�rst the c1 and c3 parameters of Eq. (6.12) are calculated by using the method
of Section 6.3. These will be the same for all the loss �lters. Then the g and a1
parameters of the one-pole �lter are computed by using the inverse of Eq. (6.12)
with f0 = fs=mk, where fs is the sampling frequency and mk is the length of the
delay line to which the loss �lter Hk(z) is connected in series.

The decay times of the real piano soundboard (dotted lines with black dots) and
of the feedback delay network (solid line) are shown in Fig. 6.12. For measurement,
the bridge was excited at the string A]

4 with an impulse hammer.
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Figure 6.12: Original (dotted line with black dots) and synthesized (solid line) decay
times of a piano soundboard.
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It can be seen from Fig. 6.12 that the one-pole �lter can follow only the main
trend of the decay times. However, the perceptual quality of the soundboard model
with such a simple �lter is already quite high. It seems that there is no need
for very complicated loss �lters to reproduce the general characteristics of a piano
soundboard.

6.5.2 Shaping �lter design

For shaping �lter design, the bridge of the soundboard was excited by an impulse
hammer and the force and sound pressure signals were synchronously recorded.
Then their spectra were computed by the Discrete Fourier Transform. The transfer
function was obtained by the frequency domain division of the two signals. Unfor-
tunately, the noise level of both signals were high. This is especially critical in the
force signal, since its spectrum is in the denominator. Where the force spectrum
approaches zero, the transfer function of the soundboard has high peaks and this
leads to useless results.

This can be avoided by noting that the information content of the force signal is
concentrated only to the �rst hundred samples, since the excitation is of an impulse
type. After the impulse, when the force hammer has lost contact to the bridge, all
the values of the force signal were set to zero. This resulted in a large improvement
in the noise level. The reduction is proportional to the length of the force impulse
and of the analyzed record, which comes from the length of the pressure signal. For
typical measurements, the noise energy in the force signal was reduced to the 1/50
by this technique.

The impulse response of the soundboard was obtained by the Inverse Discrete
Fourier Transform of the transfer function. The shaping �lter Hsh(z) in Fig. 5.14 is
the windowed version of the impulse response. The length of the FIR �lter used in
the model was 100 taps. Using IIR �lters could lead to a more e�cient implementa-
tion. However, if the �lter order is high, the �lter design algorithms easily run into
stability problems.

The speci�cations for the correction �lters Hhigh(z) and Hlow(z) in Fig. 5.14
for the high and low range of the keyboard, respectively, are obtained by dividing
the transfer functions of the soundboard at the high and low range by the transfer
function of the shaping �lter Hsh(z). Then this frequency-domain data is smoothed
and the �lters are designed by standard �lter design methods. Typically, second or
third-order IIR �lters give good results.

6.6 Conclusion

In this chapter the calibration of the piano model was outlined. For the loss �lter
of the digital waveguide, a new design algorithm was presented. It is based on the
transformation of the speci�cation and optimizes the resulting decay times. The
method has been found stable even for high �lter orders. A fast and robust algo-
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rithm was presented for the design of the one-pole loss �lter, founded on polynomial
regression. A new algorithm was developed for the measurement of beating and two-
stage decay, which can be used for the calibration of the resonator bank. Methods
for determining the parameters of the soundboard model were also described.
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Chapter 7

Summary and future directions

7.1 The results

The thesis presented a model for the synthesis of piano sound. The approach is
grounded on physical principles, because the structure of the model follows that
of the real piano. However, the implementations of the di�erent parts are not
necessarily physical. The aim of the author was to �nd the most e�cient fusion
of the di�erent sound synthesis approaches.

The acoustical properties of the piano were discussed by both reviewing the
results of the literature and presenting the outcomes of measurements. Implications
were given for which features of the piano are responsible for the distinctive character
of the timbre. This part of the work forms the basis for the sound synthesis of the
piano.

This was followed in Chapter 4 by the discussion of an e�cient string modeling
technique: the digital waveguide modeling. The equations describing the digital
waveguide were given. The fractional expansion of the transfer function resulted in
a new approach in considering the behavior of digital waveguide. These equations
allowed the formulation of the equivalent resonator bank structure. When the poles
of the digital waveguide are equally distributed along the unit circle, the impulse
response of the waveguide and the amplitude coe�cients of the resonators are related
by the Discrete Fourier Transform. For lossy and dispersive digital waveguides,
the resonator coe�cients can be determined by solving a set of linear equations.
Because of being capable of implementing delay, the resonator bank can be also
used for simulating nonlinear interaction. This can be bene�cial for modeling largely
inharmonic instruments, such as, mallet percussion or bells.

After presenting the general principles of string modeling, Chapter 5 concen-
trated on modeling a speci�c instrument, the piano. The piano model is a combina-
tion of di�erent approaches. The physical modeling approach is most advantageous
for those parts of the model which are controlled by the musician. In the case of
the piano, the input from the outside world is the movement of the hammer and the
dampers. Consequently, the hammer is modeled by discretizing the physical equa-
tions of real hammers. Since the force signal experienced by the string is in�uenced
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by the movement of the string at the excitation point, it is essential to implement
the string as a physical model. The basic string behavior is modeled by a digital
waveguide. A feature of these two parts of the piano model is that all the variables
present are physical units. The beating and two-stage decay of the piano sound
are simulated by a parallel resonator bank. The frequencies and the decay times of
the resonators are determined through the analysis, however, the initial amplitudes
are controlled by the excitation signal, which is computed by the hammer model
and the digital waveguide. This way, even if it is treated in the analysis phase as
a signal model, it responds to the variation of impact velocity in a meaningful way.
The soundboard of the piano is modeled by a feedback delay network. This can be
considered as a statistical model of the impulse response of the soundboard since it
matches only its main features. The physical parameters of the soundboard, such
as size, shape, etc., are not visible in the model. Since these parameters cannot be
in�uenced by the musician, the nonphysical approach is adequate here. The message
of the thesis is that the secret of e�cient sound synthesis lies in the combination of
di�erent approaches.

During the description of the piano structure, some new inventions were also
presented. The thesis pointed out the discontinuity problem, which arises when
an interaction force is taken into the string. Then, solutions to the problem were
proposed. A multi-rate hammer was presented in order to overcome the stability
problem of the hammer model. The use of the same structure for modeling the
e�ect of dampers was outlined. A resonator bank based technique was introduced
for modeling the beating and two-stage decay. For the realistic simulation of the
characteristic attack noise of piano sounds a simple technique was proposed. To
resolve the di�erence between the computational load presented by the string models
of the high and low register, a multi-rate piano model was proposed.

Novel techniques for calibrating the model were also developed. For designing the
loss �lter of the digital waveguide, a transformation based technique was presented.
The method optimizes the resulting decay times, which has a perceptual sense.
The stability of the designed �lter is also assured. Its another advantage is simple
implementation. In the Appendix, the link between the decay times of a lossy string
and a digital waveguide with a one-pole �lter is described. The equivalence of the
one-zero �lter to the one-pole �lter is also outlined. Based on these results, a simple
and reliable algorithm is presented for designing the one-pole �lter. A technique for
the robust estimation of beating and two-stage decay parameters was also presented.

Most of the novelties of the thesis can be applied not only for modeling the piano,
but for the synthesis of other musical instruments as well. Some ideas (e.g., about
�lter design) may even �nd applications in other �elds of digital signal processing.
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7.2 The future

The piano model described in the thesis gives good results.1 Nevertheless, there is
still much to do in making the model more e�cient and the sonic outcome more
realistic.

Physical damper models have to be implemented. For their calibration, new
measurements are needed. This would be useful also from the analytical point
of view, since the e�ect of dampers in real pianos has not been discussed in the
literature.

For the dispersion �lter of the digital waveguide, a better approximation should
be found, because this is computationally the heaviest part of the simulation of low
piano strings. It would be even better to develop a reliable �lter design algorithm,
which could design the re�ection �lter as a whole. This could lead to more e�cient
implementation than separating the di�erent parts of the re�ection �lter. Exper-
iments have to be made, whether the nonlinear e�ects of piano strings should be
simulated.

The data of soundboard measurements used in this study were noisy, and there-
fore the calibration of the soundboard model could not be accurately done. New
measurements have been already made, but they still have to be processed. It would
be also worth to experiment with loss �lters exhibiting di�erent decay times for the
di�erent delay lines in the feedback delay network. Using other type of shaping
�lters than simple FIR �lters would lead to more e�cient simulation of the piano
soundboard. The soundboard model could be made more realistic by modeling
the coupled vibrations of the undamped highest strings. An e�cient method for
simulating the e�ect of sustain pedal also has to be developed.

A part of the plans is to implement the piano model in a real-time environment.
It would be bene�cial in many ways: it could allow the e�ciency evaluation of
di�erent parts of the model, and experimenting with the model parameters would
be more convenient that way. However, the real motivation is much more personal.
The author wishes to play his own instrument...

1Sound examples and the electronic version of this thesis are available at:
http://www.acoustics.hut.fi/�bbank
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Appendix

A.1 The secrets of the one-pole loss �lter

The one-pole loss �lter has been found to be a good approximation for many string
instruments [Välimäki et al. 1996; Välimäki and Tolonen 1998]. The pattern of
the decay times, which arises when one uses such a �lter, matches the decay of a
real string perceptually well. The author was motivated by this fact to �nd the
connection between the digital waveguide with a one-pole loss �lter and the lossy
string. The magnitude response of the one-pole �lter H1p(z) of Eq. (6.2) is:

jH1p(e
j#)j = g

1 + a1q
a21 + 1 + 2a1 cos#

(A.1)

The decay time � of the digital waveguide with such a �lter:

� = � 1

f0 ln jH1p(ej#)j �
1

f0(1� jH1p(ej#)j) (A.2)

where f0 is the fundamental frequency of the note, and for the ln function the �rst-
order Taylor-series approximation was used. Note that here we apply Eq. (4.16) for
computing the decay times and neglect the e�ect of the dispersion �lter (this was
discussed previously in relation with Eq. (6.8)).

Now we derive the decay rate � = 1=� , instead of the decay times:

� � f0(1� jH1p(e
j#)j) = f0

0
@1 � g

1 + a1q
a21 + 1 + 2a1 cos#

1
A =

= f0

q
a21 + 1 + 2a1 cos#� g(1 + a1)q

a21 + 1 + 2a1 cos#
(A.3)

using the second-order Taylor-series approximation for the cos function (cos x �
1 � x2=2 for x � 0):

� � f0

q
(a1 + 1)2 � a1#2 � g(1 + a1)q

(a1 + 1)2 � a1#2
= f0

q
1 � a1

(a1+1)2#
2 � gq

1 � a1
(a1+1)2#

2
(A.4)
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since the denominator is close to 1 and
p
1 + x � 1 + x=2 for x � 0:

� � f0

 s
1� a1

(a1 + 1)2
#2 � g

!
� f0

 
(1� g)� a1

2(a1 + 1)2
#2
!

(A.5)

It follows that the decay times of the digital waveguide with a one-pole loss �lter
will be:

� =
1

�
� 1

c1 + c3#2
(A.6)

c1 = f0(1 � g)

c3 = �f0 a1
2(a1 + 1)2

which is the decay time of a string with the simplest frequency dependent losses,
where the c1 and c3 coe�cients correspond to the �rst- and third-order time derivates
of the wave equation [see Chaigne and Askenfelt 1994a]. The approximation is very
accurate for g = 1 � �g and a1 = ��a, where �g and �a are small positive numbers.
This holds for loop �lters used in practice. Example values are available, e.g., in
[Välimäki and Tolonen 1998].

The same derivation can be done for the �rst-order FIR �lter, whose transfer
function is:

H1z(z) = g
1 + b1z

�1

1 + b1
(A.7)

where �b1 is the zero of the �lter and g is the DC gain. If jgj < 1 and b1 > 0, then
the �lter will be of a lowpass character and the stability of the digital waveguide
loop is guaranteed.

The decay times of the digital waveguide with a �rst-order FIR �lter:

� =
1

�
� 1

c1 + c3#2
(A.8)

c1 = f0(1 � g)

c3 = f0
b1

2(b1 + 1)2

By comparing Eqs. (A.6) and (A.8), the b1 parameter of the FIR �lter can be
calculated from the a1 coe�cient of the one-pole �lter in the following way:

b1 = �(a1 + 1)2 + 2a1 � (a1 + 1)
q
(a1 + 1)2 + 4a1

2a1
(A.9)

The expression under the square-root has to be nonnegative ((a1 + 1)2 + 4a1 � 0).
This gives a constraint for the realizable FIR �lter: Eq. (A.9) is valid only for
a1 � �3 + 2

p
2 � �0:1716. For a1 = �3 + 2

p
2 the b1 coe�cient of the FIR �lter

equals to 1, which corresponds to the �rst-order moving average �lter, also used
in the Karplus-Strong algorithm [Karplus and Strong 1983]. This is the maximum
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lowpass �ltering that can be achieved by a �rst-order FIR �lter. The corresponding
coe�cient in Eq. (A.8) will be c3 � f0=8. For the one-pole �lter there is no such
constraint.

Figure A.1 solid line shows the decay times of a digital waveguide with a one-pole
�lter. The parameters are: f0 = 500 Hz, fs = 44:1 kHz, g = 0:999, and a1 = �0:05.
The dash-dotted line illustrates the decay times calculated by the approximation of
Eq. (A.6), where c1 = 0:5 and c3 = 13:85. The dashed line represents the decay times
of the equivalent FIR �lter implementation, using Eq. (A.9), where b1 = 0:0625. It
can be seen from the �gure that the polynomial approximation for the decay rates
is very accurate. So is the one-zero �lter approximation. Whenever the FIR �lter is
realizable, it is equivalent to the one-pole �lter concerning the decay times.
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Figure A.1: Decay times of the digital waveguide with a one-pole �lter (solid line),
the decay times approximated by Eq. (A.6)(dash-dotted line), and the decay times
of the equivalent one-zero �lter according to Eq. (A.9)(dashed line).

To sum up, the one-pole and a one-zero �lter behave very similarly in terms of
the resulting decay times, the di�erence is that there is a limit for the FIR �lter
for what kind of decay times can be realized. This means that the one-pole �lter
is more �exible, it is more useful for our purposes. The advantage of the FIR �lter
comes into play when changing the loop �lter coe�cients during playing. This can
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be the case for the linear damper model in the piano or, more importantly, some
other e�ects in other instruments, e.g., in the guitar or in the violin. However, for
those c3 values, which can be still implemented as a FIR �lter, the a1 parameter
of the one-pole �lter is small, and so is the transient of the �lter when changing
coe�cients. Consequently, there is no real need for the one-zero implementation.
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A.2 Measurement of the piano

Measurement characteristics

� The grand piano: August Förster Mod. 170. SN 135178.

� Place: BUTE Schönherz Zoltán dormitory, Budapest, Hungary

� Date: July 21�23, 1999

Measurement equipment

description type sensitivity (EU/V)
accelerometer No. 1 PCB 353B13 1966
accelerometer No. 2 PCB 353B13 1869
microphone TMS13P10/TMS130B10 32.01
impact hammer PCB 086C03 441
8 channel ampli�er PCB F482A20
stereo soundcard Gravis Ultrasound P&P
personal computer

Sound card

frequency response 20 Hz � 20 kHz (�3 dB)
crosstalk � �50 dB
harmonic distortion (THD) � 0:01
signal-to-noise ratio (SNR) � 75 dB
nominal input level �5 dBVrms

Description of the measurements

The measurement equipment provided the opportunity of two channel measure-
ments. The transducers were connected to the input of the multichannel ampli�er.
The ampli�ed signals were recorded by a personal computer with a sound card in wav
format. The gain of the ampli�er was set to 10 in all the cases, and the accelerom-
eter No. 1 was always used. The only exception was the measurement of hammer
acceleration. Then, accelerometer No. 2 was employed, and the corresponding gain
factor of the ampli�er was set to unity.

Accelerometer No. 1 was attached to the bridge by wax. Accelerometer No. 2
was �xed on the hammer by the help of thin wire.

The microphone was placed above the string F4 at a distance 12 cm from the
soundboard, and 24 cm from the tuning pins.

The bridge was hit by the impact hammer next to the accelerometer.
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Performed measurements

� Examination of the bridge and the soundboard by hitting the bridge with the
impulse hammer

� without sustain pedal (strings damped):

measured parameters: force at the bridge � bridge acceleration
force at the bridge � sound pressure
bridge acceleration � sound pressure

measured notes: C1, G1, C2, F
]
2, C

]
3, F

]
3, A

]
4, G

]
5, F

]
6, F

]
7

number of measurements/note: 20

� with sustain pedal (strings undamped):

measured parameters: force at the bridge � bridge acceleration
force at the bridge � sound pressure
bridge acceleration � sound pressure

measured notes: C2, F
]
3, A

]
4, F

]
6

number of measurements/note: 20

� Examination of single string vibration with piano hammer excitation (the other
strings of the doublets and triplets were damped with felt and the una corda
pedal was depressed):

� without sustain pedal:

measured parameters: bridge acceleration � sound pressure

measured notes: C1, G1, C2, F
]
2, C

]
3, F

]
3, A

]
4, G

]
5, F

]
6, F

]
7

number of measurements/note: forte: 5, piano: 5

� with sustain pedal:

measured parameters: bridge acceleration � sound pressure

measured notes: C2, F
]
3, A

]
4, F

]
6

number of measurements/note: forte: 3

� Movement of the hammer

� without sustain pedal:

measured parameters: hammer acceleration � bridge acceleration

measured notes: C1, G1, C2, F
]
2, C

]
3, F

]
3, C4, A

]
4, G

]
5, F

]
6

number of measurements/note: legato piano: 2, mezzoforte: 2 forte: 2
staccato piano: 2, mezzoforte: 2, forte: 2

� Sound of the piano (in natural circumstances)

� without sustain pedal:

measured parameter: sound pressure

measured notes: C1, G1, C2, F
]
2, C

]
3, F

]
3, C4, A

]
4, G

]
5, F

]
6, F

]
7

number of measurements/note: legato piano: 2, mezzoforte: 2, forte: 2
staccato piano: 2, mezzoforte: 2, forte: 2
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� with sustain pedal:

measured parameter: sound pressure

measured notes: C1, G1, C2, F
]
2, C

]
3, F

]
3, C4, A

]
4, G

]
5, F

]
6, F

]
7

number of measurements/note: forte: 1


