IMTC 2003 - Instrumentation and Measurement
Technology Conference
Vail, CQ, USA, 20-22 May 2003

Automatic Testing of Graphical User Interfaces

Tamas Dabdczi, Istvan Kolldr, Gyula Simon, and Tamds Megyeri
Dept. of Measurement and Information Systems
Budapest University of Technology and Economics
H-1521 Budapest, Magyar tudésok krt, 2., HUNGARY
Tel.: +36 1 463-2065, Fax: +361463-4112
Email: {daboczi.kollar,simon } @mit.bme.hu, megyof @sch.bme.hu

Abstract - Graphical User Interfaces are very difficult 1o test, since
testing requires simulation of the activity of a person. The paper
presents an approach where “guided” random selection and
activation of the controls is performed. Guidance is implemented
on the basis of a probability table.

The technical means to perform the test is an action recorder
(event recorder). Besides testing, this is a useful tool to perform
demonstrations and self-guided introduction to the GUL The
recorder has been implemented in MATLAB, and it is available on
the WEB.

I. INTRODUCTION

Most of today's application software provide some kind of
graphical interface to the user. This is called Graphical User
Interface (GUI). The advantage of using a graphical interface
is quite obvious. If well designed, it is easy to use, the user
needs to follow logical and intvitively natural steps to reach
the desired result. It is easy to visualize the progress of data
processing, and to give the necessary background
information. The actions (if appropriately constructed) can be
accessed by simple mouse clicks on graphical objects. GUI's
may provide also textual information where necessary, and
give the possibility of entering arbitrary alphanumerical
values into edit boxes. Graphical visualization is not a
constraint, but rather an added benefit [1-2].

An application software with graphical user interface is
usually much more complex than conventional alpha-
numerical control. The possibility of undetected mistakes in
the program is also increased with the many parallel program
branches. Because of the desired reliability of the program,
there is a larger and larger demand for the testing of the GUI,
and also for the test of the whole system, governed by the
GUL

The whole performance of an embedded system (e.g.
mobile phone, Automatic Teller Machine, etc.) or a
measurement instrument (digital oscilloscope, car diagnostic
. analyzer, etc.) depend strongly on:the software running on the
dedicated hardware. The Quality of Service cannot be met
without ensuring a certain level of reliability of the software.
In the world of virtual instruments the role of testing the
software is even more important, since the application
software is embedded in a large operating system [3-5]. The
application software needs to be tested in an environment

0-7803-7705-2/03/$17.00 ©2003 IEEE 441

which is many times not well documented, sometimes it is
released with bugs and features.

One of the big software companies tests graphical user
interfaces by letting a couple of people sit in front of the
software for a couple of weeks, and letting them 1ry to catch
errors. Although this approach might be useful, it is rather
arbitrary, time consuming and expensive, and provides no
reliable coverage of all often occurring cases. People are
different: some try features which are never touched by
others. The repeatability of the test is also hard to assure.

Another usual approach is to write a program which tries
the functionalities of a GUI by a specially written program.
Theoretically this might also work, however, in many cases
such a program is as arbitrary as the above one, based on
human testers, moreover writing such a program is
cumbersome, and it is difficult to reach a good cover of the
cases.

Considering the possibilities of testing, the systematic one
is based on a formal description of the software system,
which allows automatic generation of a testing program. This
works well in theory, but in practice, it is rather rare to have a
good formal description of the system. Therefore this is rather
a theoretical option than a practical one.

We need to mention that for all the tests described above,
there is a limitation that running a program without having it
erroring out, assures only that none of the programs involved
(the GUI, the application program, the operational system)
have syntactic errors in the executed program branches, and
does not assure that they have no semantic errors. E.g.
calculation of the wrong result can immediately be seen from
some informative plots like the pole/zero pattern or the
transfer function by a specialist, but not by the computer.
Until now, ideas of automatically capture and evaluate the
computer plots were unsuccessful. In this respect, *natural
intelligence” usually outperforms the computer — therefore,
having a good engineer before the screen, which is
programmed to provide easy-to-capture information for the
user, is more effective than any kind of computer programs.
A method which tirelessly allows “non-subjective” trials in
the software, maybe combined with a human observer, is
very effective.

It is a reasonable idea to simulate the specialist who tests
the software. Why not let the computer act as an ordinary

user would do it; providing mouse clicks, entering numeric or
alphanumeric inputs, activating user controls etc. Exhaustive
testing of the application software is usually not possibie,
since the number of possible inputs from the users is virtually
non-limited. A random test can help to find many bugs.
Completely random test is not always a good approach: it
often does not describe well reality. Thus, we have found a
heuristic approach with guided randomness appropriate.

II. CAPTURINGIREPLAYING ACTIONS: THE ACTION
RECORDER

Let us summarize first what are the features we would like to
have:
e we would like to be able to act similarly as the user,
e if an error occurs, we would like to be able to store
and reproduce it.
Both requirements tell that we want to act as the user would
do it. We need to produce and collect computer simulated
user actions, and replay them when necessary. That is, we
need something which records and replays actions. What is
more intuitive for a person than to have an action recorder,
similar to tape recorders, dealing with actions instead of voice
and sound? We developed such an action recorder, which will
be described here.

Before going into details, we need to consider the system
requirements which are necessary to be abie to implement
such functionality. We need to be able to

e act on any contrels {pushbuttons, edit boxes, menus,
etc.) as the user can, that is we need to be able to
emulate all the user actions,
record such a sequence,
replay this sequence,

e bring the GUI into a well-defined initial state.

For testing, it is enough to be able to record programmed
actions only, but if properly programmed, the action recorder
can record both programmed test actions AND human
actions. This allows additional testing. The most typical user
actions (typical according the designers) can be recorded and
stored for later replay — this allows a quick test of the most
common actions in the GUIL. Such a possibility can also be
used to store demonstration sequences, which can provide an
introduction to the GUI, and the same time be used as test
sequences assuring that all introductory steps work indeed.
Observing the results of such sequences also allow to roughly
check the semantics (proper calculations) of the GUL

The basic operation for such a device is the mechanism to
capture each action in the GUI. Here there are two
possibilities. One is when the operational system or the
application program under which the GUI is realized can
return the information of each action. This seems to be THE
solution, however, in many cases this functionality is not
provided. In such cases we are referred to the second one: the
routines which are called after each user action (callbacks)
contain a program sequence which stores the corresponding
action when executed.

Replaying action can also be done in two ways. If the
operational system or the application program offers the
possibility to program the mouse to move above an object
and perform the push or writing, the user action can be
precisely emulated. If this is not the case, the caltbacks need
to be activated, and maybe the mouse cursor can be moved to
the desired place.

The MATLAB environment we used in this project
allowed the callback-based operation only, so we
implemented the recorder in this way. In the subsection
below we are going to briefly describe the main
functionalities of our recorder. The functionality of each
control is implemented also as a callable function, therefore
the recorder actions can also be programmed, allowing the
implementation of the random tester (see below).

A. Functionalities of a recorder

Figure 1 illustrates the graphical interface of the recorder.

-} Recnider for TU ook testessd.niat (history_data} -
Fie Edi Comentbox Window Hep

=l=1x

index [19 I
Woaow Tl varble wodow

€md | Select m variable
Farem | rohotern_frexyistn_agy

SoType [rormed |~ Pause

Pcmnn[l'__g}unmmm [Fatmars +] I Dicarapeuse [~ Locture bode
o] e]] =

Fig. 1 Display of an action recorder

Comrvnanyg #18 of 72,

Meaning of the controls of the recorder:

¢ the buttons « { PLAY STOP) » provide the vusual event
recorder functionalities using a traditional tape-recorder
front-end: fast backward (home), one step backward,
play, stop, one step forward, fast forward (end),

e the text box on the right-bottom side is a message
display, providing information about the state of the
recorder

¢ RECORD is the start of recording button — this starts the
recording, and steps forward after each recorded action

e the tickbox “Continuous” selects between non-stop or
step-by-step record and replay

¢ the tickbox “Emulate mouse motion” makes the recorder
to move the mouse cursor above the active control during
replay

e the tickbox “Pause” allows to set a breakpoint:
continuous replay can be stopped if this tickbox is on for
an action (this can be edited manually, after recording)

e the tickbox “Discard Pause” allows continuous execution
even if the Pause tickbox is set for certain actions, to
allow continuous execution of a demonstration which
usually contains pauses

s the tickbox “Lecture mode” allows special stopping:
when the recorder stopped: not the recorder display will

442

appear in the foreground, but the active GUI window, to
allow explanations during a lecture
o the large text box on the right-center side is for longer
explanations for a user observing demonstrations.
There are additional controls in the recorder display: these are
usually filled in by the action-recording step, but can also be
programmed. They are:
e “Index’: this is the serial number of the current action
+ “Window": name of the window where the action takes
place
e “Cmd”: name of the control to be activated
e “Param”: value of the action if necessary (tick/untick in
tickboxes, string in edit boxes, etc.)
e “SelType™: selection type of the user action (e.g. single
or double mouse-click)
The recorder contains also menu items: these allow easy
modification of action records: save to a file, load from a file,
clear/cut/paste action, insert a Matlab command (a special
possibility e.g. to quickly set environment variables by
calling a MATLAB command), etc.

The recorder also has built-in error handling and checking
capabilities. This feature allows the playback of actions that
normally would cause warnings or errors during execution,
thus the error handling of the program under test can be
compared with the expected behavior.

Effective use of the recorder for tests can be helped by
additional features not available in demonstration mode.

-} Recorder for FD 1 ool: Lestautolevel mat (histery data)
Fie Ect Commenthox Window Holb

T

e [T I DscodErrcr [Testpat fetor =
o [s3] neasen [
S
v [doa oot
oD [opori vatst S0
et [v i
o [
PBEM [robcbarn_trecdeta

SeiType [comal [Pause

W Conlinuous I~ Emulsbe mouss ma¥on fr ot npaces -
| em— |

Figure 2 Action recorder in test mode

I

[~ Oiscard pinate |~ Lechurs Mode

Command #7 of 53.

[
‘ RECORD'

The controls not shown in Fig. 1 are as follows:
a) Detailed information on each action is extended by precise
description:

¢ “CmdPar”; command parameter used in the callback

¢ “Fcn”: the name of the associated function

e “Win": tag of the current window (unique identifier)

e “CurObj”: tag of the current object

443

b) Addittonal Controls:

e Pull-down menu “ErrStatus”™: required
MATLAB after execution of the action:
OK/Warning/Error

¢ tickbox “Discard ErrChk™: if set, error status will not be
checked

s tickbox “Test plot”: collect plots into a postscript file for
later quick manual check

¢ Pull-down menu (currently “Test off”): Test mode
off/normal/quick, the mode of the test, e.g. in quick
mode long iteration are interrupted after 2 steps

e Edit box “Check Fcn™: name of the error checking
function to be invoked (usually empty).

The recorder can be used with any MATLAB-based GUI, see
[71.

IIL THE PROPOSED APPROACH FOR RANDOM
TESTING

status of

Our aim was to develop a tester, which simulates the user and
automatically tests graphical user interfaces in MATLAB
environment.

The tester is a software, which provides the graphical
interaction with graphical user interface in a heuristic way.
We aimed at catching the software failures, which cause an
abrupt termination of the application software. This abrupt
termination can be e.g. because of an unexpected input from
the user, for which the application software is not prepared.
(Users are very talented in this. They will enter the most
extraordinary strings, numeric values into edit boxes, thus the
application software needs to be tested for a very wide set of
possible inputs.}

Although the automatic tester software has been originally
developed for improving the reliability of the "Frequency
Domain System Identification Toolbox" of MATLAB, the
principles are very general and can be applied to other
environments also. The graphical user interface of the tester
software can bee seen in Fig. 3. The GUI of the tester can be
easily adapted to any application software.

A. Testing procedure

To be able to repeat the sequence of testing actions the
software environment needs to be brought into some
predefined status before starting the testing. This may be a
clean, or a well-defined workspace. MATLAB provides both
possibilities, which we introduced into the tester software.

After an error has been caught the environment needs to
be brought into the same condition than before the test has
been started. The action history can be then repeated step-by-
step, and the workspace can be investigated after every step.

Constraints windows to be tested

number of control
actions in primary

o i i TR probabilities
win OWS\ 3 _-‘%‘eﬁ&j‘} o
7 e . ‘wa&vem%f B ‘/
i e L2 N
m”"hﬁmww : w.uﬁj‘?_iﬁma . }&'@;—Mm———ﬁ user level
fipillr Abded MoteiSemn | e, . S o
starts fdtool by . f"““* ME&Q:,&@{Q] TRatmnced -11] of fdtool
loading session or ey . GH “ff“;g'zj:js@_@u;é; Iz mouse
session history £ T S A S emulation
\ ; Vezinhle: . : "
actions are saved to: ot 4 _H o ds || Browss
\;ﬁ“““’f“’aﬁaﬂ: e e e et D xS h 1 e o i 7SN 2t B il biolBrari
location of LA = . ‘
- ' tawa m-wmm [M sais_
probability table |, RS S i : { Browes
\:,vsa‘mm&mar“%:‘“““ = e ¢
loads the setting of S mmmw-sgmpmmw j { Browie
: T .
previous run —— N P starts testing
AR t,_ w,i:G;-a.t....‘fi;L ST ET ...,..a:,% #
status bar e ' 1

. K
it PR TR o A oy oy S, S ey)

Fig. 3 GUI of the tester

B. Activating the graphical objects through the action
recorder

We chose to interact with the graphical user interface
through the action recorder. We feed actions into the
recorder as if user actions had been recorded, and replay
them.

C. MATLAB graphical user interface

Matlab has many graphical objects, like figures, lines,
texts, surfaces, user interface controls and menus. All of
the graphical objects are uniquely identified with so called
handles. The graphical objects have different properties,
depending on their type. From our point of view the most
important properties are:

e action performed if the graphical object is activated
{(e.g. click on a push button with left-, right- or
double mouse click),

s visibility of the object,
whether it is active or grayed out.

D. Selecting a graphical object to be tested

There are many graphical objects on a GUI, but not all
of them are active at a certain time. Some of them might be
inactive, grayed out or invisible. There might be several
windows, containing different graphical objects. In
MATLAB a window can be made invisible instead of

444

deleting it, allowing to make it available quickly if
required again (e.g. help window),

There are two possibilities to select a visible and active
graphical object. The first approach is to collect the active
objects from all visible windows, and select one from this
set, The second approach is to select first a window, and
collect the active ohjects only on that one. We chose this
later approach, since it describes better how a user
interacts with the GUI. Moreover, this approach is faster.

We defined a certain increased weight to the window in
focus, and unity weight to all others. The window is
selected on a random basis, making use of the weights.
This emphasizes that users usually activate controls on the
foreground window.

The tester explores the visible and active graphical
objects on the selected window. One of the objects is
activated by calling its callback function through the action
recorder.

We provided also the possibility to test only a selected
window (window in focus). This is useful if software
modification affected only a particular window and the
others do not need to be tested again.

E. Defining probabilities to uicontrols/uimenus

In order to speed up the testing procedure it is
worthwhile to influence the selection of the graphical
objects to be activated. There are functions, which are
known to be critical, there are others, which do not
perform complicated computation or do not contain

branches. It is worth to investigate the critical parts more
thoroughly. That is why we introduced weights to
graphical objects. The larger the weight is the larger the
possibility is that the tester activates it. Assigning zero
weight provides the possibility to exclude the object from
the testing. The weights are stored in a lookup table, which
can be edited with a standard text processor. This requires
the unique identification of all graphical objects. Matlab
assigns a unique handle to them, however, this happens in
runtime. Fortunately, there is the possibility of assigning a
so-called tag to every object, which is a string. We propose
to assign unique tag to every object and identify them
based on this. Different applications provide different
ways to identify the objects, but all of them give the
programmer the possibility to uniquely identify the created
objects. i the programmer of the graphical user interface
did not pay attention to that, or the identification is not
unique, we loose the possibility to assign weights.
Selecting the object based on a uniform disteibution is still
possible.

One graphical object can be activated several times.
Another heuristics, which we introduced, is to decrease the
weight of the activated object. The decreasing factor can
be adjusted. Assigning zero factor gives the possibility to
test one object only ones.

F. Defining sets of possible inputs to edit boxes

-.A quite complicated question is what numeric or textual
input needs to be entered into edit boxes. Since the
behavior of the application software depends on the data to
be entered, theoretically there is no possibility for an
exhaustive test.

We propose to define set of possible inputs to edit
boxes. These sets can be assigned either to one particular
object or to a group of objects. The sets can be
conveniently edited with text processors. These sets can be
either additions to completely random inputs, or exclusive
sets.

Defining the sets of possible inputs is a hard task. This
is the point where an expert of the application software
needs to cooperate with somebody who has never seen that
particular software. An expert will try to introduce data
into the possible input set, which might be a valid data,
which is in the range of the required input etc. These data
should be included into the sets. However, there is 2 much
larger possibility that the software to be tested is not
prepared for an unusual input. E.g. negative number for
distance, a string for numeric input, funny characters for
. filenames etc. These inputs need to be introduced into the
possible set also. A fellow who does not know much about
the software might be much more useful for this purpose.
(A child can be also of great help to extend the set of
possible inputs.)

445

G. Catching errors

The tester stores the actions on the hard drive before it
is executed. This ensures that the history of actions and the
last action causing the error or an abrupt termination is
saved, even if the application software freezes or becomes
unstable.

If an error is caught, the testing procedure stops. The
whole testing can be replayed step by step, starting from
the same initial state as the tester did. The workspace can
be investigated after every step.

There is also the possibility to continue the testing after
an error has been caught (certainly not from this erroneous
state}). We can put the system to a predefined initial state,
and restart the heuristic random test. If another error is
caught, the action history is automaticatly stored on the
hard drive with a different name. This possibility is
advantageous at the first couple of test runs of a GUI test,
since it collects many errors without the need of user
interaction. It might be useful also after a major change in
the GUI software.

Iv, RESULTS

The concept of testing graphical user interfaces (GUI)
has been introduced. We developed a software tool which
test GUIs by simulating the user through an action
recorder. We proposed a heuristic test procedure:
providing random input to GUI, bui pguiding the
randomness with predefined weights assigned to the user
controls. The weights change also during the testing
process, as the controls are activated. The errors are
collected for later investigation.

ACKNOWLEDGMENT

This work has been supported by the Hungarian
Scientific Research Fund (OTKA F034900) and the
Research and Development Fund for Higher Education
(FKFP 0098/2001 and FKFP 0074/2001).

REFERENCES

[1] Viral Systems, IEEE Instrumentation and Measurement
Magazine, Vol. 2, No. 3 (the whole issue), September, 1999,

[2} User interface OGuidelines, hup/fwww.decunicamp.br/ ~hans/
mc750/ guidelines/ newfrontmatter.htmi

[3] WNational Instruments, ‘G Programming Reference Manual’*, 1988,

[4] Baroth, E., Hartsough, C., and G. Wells, “4 Review of HP VEE
4.0”, Evaluation Engineering, Oct. 1997 pp. 57462,

[51 IVI Foundation Home Page, http://www.ivifoundation.org/

[6] Frequency Domain System Identification Toolbox for MATLAB
home page: http://elecwww.vub.ac.be/fdident/

{7} Action Recorder for MATLAR home page:
http://www.mit. bme.hu/services/recorder/

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

