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Abstract—This paper studies a way to extend the Fourier
analyzer suggested by G. Péceli, with the aim of improving the
detectability of a known periodic signal component in its input
signal. Possibilities for modeling a signal structure assuming the
amplitude and phase relationships between its components to be
known are presented.

I. INTRODUCTION

Signal parameters may be measured and various transforms
can be calculated by using recursive estimation methods based
on conceptual signal models. These methods are well suited
for real-time applications due to their recursive nature.

The conceptual signal model used in these methods is a
hypothetical dynamical system, and the signal being measured
is assumed to be its output. The state vector of the conceptual
signal model, corresponding to the parameter vector of the
measured signal, will then be estimated by the structure. If
the conceptual signal model is deterministic, the measurement
system is referred to as observer.

Hostetter introduced a recursive observer calculating the dis-
crete Fourier transform of the input signal [1]. Péceli extended
this method and suggested an observer structure consisting of
signal channels containing a discrete integrator, allowing the
calculation of arbitrary linear transforms of the input signal
[2]. When used as a spectral observer, this structure is referred
to as Fourier Analyzer (FA).

The Fourier coefficients calculated by the Fourier analyzer
may be used to detect the presence of a signal component
with an arbitrary spectrum within the signal being measured.
In this paper, we assume a known amplitude and phase
relationship between the components of the signal structure
we aim to detect, and we investigate possibilities for building
a corresponding model into the Fourier analyzer.

II. THE FOURIER ANALYZER

This section presents the fundamentals of the Fourier ana-
lyzer introduced by Péceli [2].

A. The Conceptual Signal Model

The conceptual signal model used in Péceli’s signal observer
[2] is shown in Figure 1.
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When the observer structure is used as a spectral observer,
the state variables of the conceptual signal model correspond
to the complex Fourier components of the signal. Therefore,
the conceptual signal model itself can be viewed as a complex
multisine generator performing an inverse discrete Fourier
transform (DFT) on the Fourier components of the signal.
Each state variable represents a harmonic resonator of the
corresponding frequency, thus these are often referred to as
resonator channels.

In this paper, we will use the linear time-variant (LTV)
version of the resonator-based observer as starting point. In
this case, the conceptual signal model is a system described
by time-variant equations, with state variables that do not vary
in time: xn is constant and cn varies in time in (1)–(5) below.
It is worth mentioning here that a linear time-invariant (LTI)
realization has also been put forth [2].

The system equations describing the LTV conceptual signal
model of the Fourier analyzer are as follows:

xn+1 = xn, (1)

xn = [xi,n]
T ∈ CN×1, i = −K, . . . , K, (2)

yn = cTnxn, (3)

cn = [ci,n]
T ∈ CN×1, i = −K, . . . , K, (4)

ci,n = ej2πif0n = zni , zi = ej2πif0 , (5)

where yn is the signal we intend to observe. The state vector
xn contains the N = 2K + 1 complex Fourier components,
including DC, corresponding to the K harmonics of the signal.

With a real-valued input signal, the Fourier coefficients form
complex conjugate pairs: xi,n = x∗−i,n.

The relative frequency of the fundamental harmonic with
respect to the sampling frequency is f0 = f1/fs, where f1
is the frequency of the fundamental harmonic and fs is the
sampling frequency.

The number of harmonics K is such that the following
inequality holds: K · f1 < fs/2 ≤ (K + 1) · f1. In case of
equality, i = −K, . . . ,K + 1 and N = 2K + 2 above.

B. The Resonator-Based Observer

An appropriately designed observer can estimate the state
variables of the conceptual signal model, and thereby the
complex Fourier coefficients of the input signal. Figure 2
shows the block diagram of the observer matching the LTV
conceptual signal model presented in Section II-A.
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Fig. 1. Block diagram of the conceptual signal model, linear time-variant
model. The integrators hold their intial preset values, corresponding to the
complex Fourier coefficients of the signal. The output signal then arises as
the linear combination of the integrator outputs with the time-varying ci,n
coefficients.
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Fig. 2. Block diagram of the resonator-based observer, linear time-variant
model. Notice the similarity between the structure of the observer and that
of the conceptual signal model, shown in Figure 1. The observer, however, is
extended by the time-varying gi,n coupling coefficients at the inputs of the
integrators, and the common feedback.

The system equations of the observer are the following:

x̂n+1 = x̂n + gen = x̂n + g (yn − ŷn) , (6)

x̂n = [x̂i,n]
T ∈ CN×1, i = −K, . . . , K, (7)

ŷn = cTn x̂n, (8)

gn = [gi,n]
T ∈ CN×1, i = −K, . . . , K, (9)

gi,n =
α

N
c∗i,n, (10)

where x̂n is the estimated state vector, ŷn is the estimate of
the signal value and en is the error of the estimation.

The coupling vector gn is the product of the observer gain
α/N , a tunable parameter setting the dynamical behavior of
the observer, and the coupling vector cn. The latter is a vector
of complex roots of unity, setting the frequency response of
the individual observer channels through their poles. If the
coupling vectors are set according to (5) and (10), with α = 1
and f1 = fs/N , a dead-beat observer is obtained. In this case,
the transients of the observer settle in at most N steps and it
produces the recursive DFT of the input signal afterwards [3].

C. On Dead-Beat Settling

The dead-beat property of the observer means the state
variables of the observer converge to those of the conceptual
signal model, and the error of estimation en becomes 0
in N (or fewer) steps. As mentioned in Section II-B, the
Fourier analyzer possesses this property when the observer
gain and the frequency of the fundamental harmonic are set
appropriately. More generally speaking, the dead-beat nature
of the observer relies on the set of the coupling vectors cTi
and gi constituting a biorthogonal system [2].

This corresponds to CT = G−1 with

CT =




cT1
cT2
...
cTn


 , G =


 g1 g2 . . . gn


 . (11)

The vectors cTi and gi represent the values of the coupling
coefficients corresponding to all channels at time instant i. In
contrast, the column vectors of CT and the row vectors of G
contain the evolution of the coupling coefficients correspond-
ing to a particular channel over an entire time period.

III. MODELING THE SIGNAL STRUCTURE

Let SM denote the set of positive harmonic indexes con-
tained in the signal structure we intend to model: SM =
{is1,is2, . . . , ism}. Let wi represent the complex amplitude
of the signal structure component with index i: wi = Ai ·ejϕi .
The time function of the signal structure we are modeling can
then be expressed as:

ySM,n =
∑

i∈SM
2 · Re {wi · ci,n} , (12)

since the ci,n coefficients form complex conjugate pairs.
We need to select the dominant harmonic of the signal

structure. The harmonic with the highest signal-to-noise ratio
is a good candidate. Let its index be is1.

In the following, we describe the procedures we consid-
ered focusing on the harmonics with positive indexes, i.e.
frequencies 0 ≤ fr ≤ fs/2. Since we are assuming a real-
valued input signal, all suggested modifications need to be
extended to the negative counterparts of the state variables and
coupling coefficients concerned, being in a complex conjugate
relationship with the corresponding positive ones.

A. The Intuitive Way of Modeling

As a first attempt, we can simply bind all other harmonics
of the signal structure to the dominant harmonic. That is, after
the state update of the observer as in (6), we adjust the state
variables belonging to the signal structure model as follows:

x̂i,n+1 = x̂is1,n+1 ·
wi
wis1

, i ∈ SM, i 6= is1. (13)

This method, however, excludes all bound signal structure
harmonics from the common feedback loop in Figure 2.

As a result, we obtain an observer that no longer provides
dead-beat settling. However, reasonable tracking performance
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can be expected if we first let the original observer structure
converge before activating the signal structure model described
by (13). By design, the behavior of the signal structure model
is entirely governed by the dominant harmonic.

An output waveform can be seen in Figure 3a.

B. Modifying the Basis Structure

As an attempt to improve the model, we modified the
coupling vector corresponding to the dominant harmonic in
such a way that it generates the whole signal structure on its
own. In order to do this, we modified the appropriate column
vector1 of the coupling matrix CT defined in (11):

colis1,new CT =
∑

i∈SM
wi · coliCT . (14)

The corresponding g coupling vectors can then be obtained
as G =

(
CT
)−1

. It can be shown that the resulting values of
the modified vectors can be expressed as

rowis1,new G =
1

wis1
· rowis1 G, (15)

rowi,new G = − wi
wis1

· rowis1 G+ rowiG, i ∈ SM, i 6= is1.

This yields a convergent observer with dead-beat properties
by design (see Section II-C). However, as seen from (15),
the behavior of the state variable carrying the signal structure
model is determined by the dominant harmonic only.

An example output waveform is shown in Figure 3b.
Note. If we disable the non-dominant harmonics of the

signal structure model by setting

coli,new CT = 0, i ∈ SM, i 6= is1, (16)

we get a behavior matching that of the “intuitive way” de-
scribed in Section III-A.

C. All Harmonics Contributing to the Signal Structure Model

By modifying the CT matrix according to (14), the output
of the channel carrying the modified dominant harmonic will
contain all signal structure model harmonics with the ampli-
tude and phase relations prescribed by the wi coefficients.

We also found it desirable that all signal structure harmonics
contribute to the input of this channel proportionally to their
respective weights wi. We achieved this by setting

rowis1,new G =
1

|SM |
∑

i∈SM

1

wi
· rowiG. (17)

By scaling with the reciprocal of the cardinality (number of
elements) of the set SM , we maintain

rowis1,new G · colis1,new CT = 1. (18)

However, apart from the dominant harmonic, all signal struc-
ture harmonics are now coupled into two signal channels.

1The ith column and row of M are referred to by coli M and rowi M,
respectively. The suffix new always indicates the new value to be assigned
to the vector in question.

As a result, all harmonics of interest contribute to the
signal structure model. However, dead-beat settling is not
preserved and convergence becomes slower. By disabling the
non-dominant signal structure harmonics according to (16),
convergence can be accelerated. Since the basis vectors no
longer span CN×N , dead-beat behavior is not restored never-
theless. Figure 3c shows an output waveform.

D. A New Basis for the Subspace of the Signal Structure

We then aimed to restore the advantageous properties of the
observer while keeping a single signal channel representing
the entire signal structure, with all corresponding harmonics
coupled onto its input. Thus we transformed the basis vectors
of the subspace of CN×N spanned by the basis vectors
contained in the signal structure model:

{
coliC

T | i ∈ SM
}

.
We started by modifying the column corresponding to the

dominant harmonic in the coupling matrix CT according to
(14). At this point, our goal was to transform the remaining
basis vectors of the signal structure model into an orthogonal
set, including the previously modified basis vector.

For the transformation, we first considered the Gram-
Schmidt process [4]. Although easy to implement, the method
has numerical problems, so we ended up resorting to QR
decomposition by Householder reflections [5]. The leftmost
columns of the resulting unitary matrix are then a set of
orthonormal basis vectors spanning the subspace of CN×N
corresponding to the signal structure model, with the first one
being parallel (proportional) to the vector carrying the signal
structure model we calculated earlier using (14).

Once more, the corresponding g coupling vectors can then
be obtained as G =

(
CT
)−1

.
This yields an observer with attractive properties by design:
• The observer is convergent with dead-beat settling.
• All harmonics involved are proportionally represented in

the channel carrying the signal structure model.
It still needs to be determined how the values of the other

channels resulting from the QR decomposition relate to the
discrepancy between the model and the actual signal.

An output waveform is shown in Figure 3d.

IV. CONCLUSIONS

We suggested several ways to model a signal structure
within a Fourier analyzer. More detailed analysis will be
required to ascertain whether these methods offer any actual
advantage in signal detection applications.
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(a) The “intuitive way”. The observer converges in this case, but dead-beat settling is not ensured.
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(b) The dead-beat observer obtained through the first attempt at modifying the basis vectors.
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(c) The signal structure model is incorporated into both the corresponding g and cT vectors. The result is slower convergence.
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(d) The dead-beat observer obtained by tayloring the basis vectors using QR decomposition.
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Fig. 3. Output error and signal channel values obtained with different signal structure model realizations. The parameters of the signal structure model
match those of the test signal: y (t) = cos (2π · fdt) + 3 · cos (2π · 2fdt+ 1)+ 0.7 · cos (2π · 4fdt+ 2). The test signal is contaminated with white noise,
SNR = 10dB. For illustrative purposes, the dominant harmonic was not selected following the guideline in Section III: fd = 3Hz. In certain cases, this
results in reduced performance of the signal structure model.
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