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Abstract — When a signal passes a system having a static, nonlin-
ear transfer function, the output signal will be distorted. In addi-
tion to it, the detected output signal is usually contaminated by
noise, due to the noisy environment. If the distortion level of the
signal is not acceptable, we have to compensate it. This should be
done carefully, because an improper compensation function can
extremely amplify the noise. Our aim is to find a compensation
Sunction in the knowledge of the original nonlinear transfer func-
tion, which can keep both the distortion and the noise level low. In
this paper we will show the further developments of our method,
which can estimate the optimal level of noise suppression of the
compensation function, based on Tikhonov's regularization tech-
nique. We will show a method that can find the optimal value of
the regularization parameter.
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I. INTRODUCTION

A. Preliminaries

Signals can be distorted due to nonlinearity of devices. If the
distortion is not acceptable, we have to compensate it. The
method of the compensation is not straightforward, when the
detected, distorted signal is contaminated by noise. If we use
a wrong compensation function, this noise can be extremely
amplified and the estimate about the original signal could be
completely unusable.

A practical example is the distortion of audio signals. In the
case of tape recordings and movie films, the recorded signals
could be distorted due to the strong, static, nonlinear behavior
of the carrier. The principal causes of nonlinearities in sound-
recordings are saturation in magnpetic recordings, tracing dis-
tortions, groove deformations in gramophone-records and the
inherent nonlinearity of variable density optical soundtracks.
These distortions disturb the artistic enjoyment and some-
times make the sound-recording incomprehensible.

The first trial to reduce nonlinear distortions in audio re-
cordings was by S. A. White [1]. He used a histogram equali-
zation technique. An iterative method was shown by Preis
and Pohlclopek [2]. Troughton and Godsill [3] proposed an-
other iterative method, which is based on a nonlinear autore-
gressive model. The parameters of the model were computed
by a Bayesian approach. Other techniques were also pre-
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sented as compensation of loudspeaker nonlinearities [4] and
compensation of nonlinearities of cathode-ray tubes [5].

The problem of these techniques is that they are mainly itera-
tive techniques and require high computational time. Many of
these algorithms use signal prefiltering. In this case the ef-
fects of noise are negligible. However, in certain cases, we do
not have access to the input of the system and we cannot pre-
filter the signal. Our aim was to develop a technique that is a
non-iterative postfiltering method and can handle the prob-
lems produced by the noise. We developed a technique,
which was presented in [6]. This technique is based on Tik-
honov’s regularization method and provides good speed dur-
ing signal restoration. However, in that time, we could not
compute the exact value of the regularization parameters. We
could only find an approximation with a subjective decision
by listening to some estimated audio signal, computed with
different regularization value. This paper describes how we
overcame these difficulties and made the restoration proce-
dure completely automatic.

B. Novelty

In Section II, we will present the mathematical background of
using the Tikhonov regularization. In Section I, we will
show a novel method that can compute the parameters of the
compensation characteristics, knowing the static, nonlinear
distortion function, the probability density function of the
original signal and the probability density function of the
noise. For cases where we do not know any information
about the original signal and we do not know the density
function of it, we developed a method that can produce an
acceptable estimate from the output signal. This density func-
tion estimation algorithm will also be shown in Section III. In
Section IV, a simulation example will be presented. Conclu-
sions will be given in Section V.

II. MODELS

The model of the signal restoration process can be seen in
Figurel. The estimated signal can be described as

A
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where x, X, oand n refer to the original, the estimated, the
distorted and the noise signal respectively. N()is the static,

nonlinear transfer characteristics of the distorting device, and
K() is our compensation function.
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Figure 1 Model of signal restoration.

The evaluation of this equation is difficult, due to the nonlin-
ear functions. In the case of small signal variations, the
nonlinear functions can be well described with the first ele-
ments of their Taylor polynomials:

N(x, +Ax) = N(xg)+ VO Ay,
Ko +49) = K(yo)+ ‘”fi;y LIS @
Y=yo

The signal model for small variations can be seen in Figure 2.
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Figure 2 Signal model for small signal changes.

In this case the noise is not present directly in this model, but
affects the amplification of the compensation block. The es-
timated signal can be computed as

pp=dKrmy KDL s 5
do o0=0p dy y=yo

. . dN
For compensation, the reciprocal of d’(‘)‘) seems to be ob-

vious. This is the solution of the output error criterion:

Cost = nll;n(llAy - Aj}“) . @

However, it was shown in [6] that in this case the noise can
be extremely amplified. For the solution of this problem, we
propose to use one form of Tikhonov-regularization:

Cost = mAl;Il(]lAy - Aj’“"‘ /qlA’A‘")’ )

where A denotes the Tikhonov regularization parameter,
which makes a trade-off between bias and noise-level. The

solution of this criterion for d_Ifi(y_) is:
y
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III. FINDING THE EXACT VALUE OF THE
REGULARIZATION PARAMETER

In [6], the optimal value of the regularization parameter was
found with a subjective decision. We computed several com-
pensation functions with different regularization parameters
and we chose the best sound record estimate, which had the
“clearest” voice. This decision can be done in the case of an
audio file; however, we cannot use this technique in the case
of a distorted measurement file. In this case we have to use an
automatic method to omit human interaction.

The optimal value of the regularization parameter, A4, de-
pends on the input signal, on the noise and on the shape of the
original nonlinear function. If the input signal, x, is constant,
and if the probability density function of the output noise,
P, (v), is known, the norm of the difference between the

original signal and the estimate can be written in the follow-
ing form:

Efe(x D)}= Efs)-}=
= EJK(, D -1|}= ™

= [ RN+, D -Aav,

where e(x, A) refers to the difference of the original and the
estimated signal. Now, the expected error value can be com-
puted for all given x values. If the probability density func-
tion, P,(¥),of x is known, the expected error after restora-
tion can be written as

g{g{e(x,ﬂ)}}= ]P, () Ee(x, iy - ®

The optimal value of A can be found by minimizing (8). In
practice, P,(v) can be estimated from those signal parts
where only noise is present. However this method requires



the knowledge of the probability density function of the
original signal, which is often not known.

In this case P,(}) can be estimated iteratively from the out-
put signal. As the first step, P,(y) is approximated by the
probability density function of the observed signal, P, (o).
Now, A, and %, can be estimated. From x,, a more exact
estimate for P.(y) can be obtained. In our experiments,
three iterations were enough to estimate a proper P, (}) , and
have a proper 4 value.

IV. SIMULATION

To show the capabilities of the proposed algorithms, a multis-
inusoidal input signal consisting of four sinusoids was used.
This signal can be seen in Fig. 4a. Then this signal was dis-
torted by a Gaussian error-function, which is similar to the
density function of films:

N(x(2)) =0.5-erf (x(£) +0.5)-0.5. )

A Gaussian white noise was added to the signal to achieve a
35 dB signal-to-noise ratio. The resultant distorted, noisy
signal can be seen in Fig. 4b.

The distortion function is known, but we assume that the
probability density-characteristics of the original signal is not.
Hence, the optimal inverse characteristics were calculated by
the method proposed in Section 3. Here, five iterations were
made and the resultant value was compared with the real op-
timal value, computed from the density-characteristics of the
original signal. The resultant A values and the squared sum
of the difference of the original and the estimated signal are
given in Table I:

Table I: Regularization and error parameters of different regularized

characteristics:
Lambda Error
Underregularized 1-107"° 206.087
Optimal 3.036-10* | 6.388
Estimated 1.272.10°% | 7.499
Overregularized 10! 191.345

The difference between the optimal and estimated error is
relatively small.

The regularized inverses for the underregularized, optimal,
estimated and overregularized cases can be seen in Fig. 5.
Fig. 6 shows the reconstructed signals. The underregularized

inverse has large errors, due to the noise amplification. The
overregularized inverse has strong distortion. In the case of
the optimal and estimated characteristics, both the effects of
distortion and noise are small.

The method was tested also on real audio signals and per-
forms well.

V. CONCLUSIONS

In this paper a method for nonlinear compensation was de-
scribed that can provide an optimal output in the case of
noisy signals. The method is based on Tikhonov’s regulariza-
tion technique. A novel method was shown, which is able to
find automatically the optimal value of the regularization
parameter; it does not require human interaction. The re-
quired known parameters are the nonlinear distortion function
and the probability density functions of the original signal
and the noise. Even if the probability density function of the
original signal is not known, a good approximation can be
computed with an iterative method from the observed output
signal, which was also described. The effectiveness of the
method was shown on a simulation example.
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Figure 5: Underregularized (a), optimal regularized (b), estimated regularized (c) and overregularized (d) characteristics.
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Figure 4: Input signal (a) and the nonlinearly distorted, noisy signal (b).
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Fig. 6 Reconstructed signals: with underregularized (a), with optimal regularized (b),
estimated regularized (¢) and overregularized (d) characteristics.
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