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Reconstruction of Nonlinearly Distorted Signals
With Regularized Inverse Characteristics

Tamás B. Bakó and Tamás Dabóczi, Member, IEEE

Abstract—A signal distorted by a system having static, in-
vertible, nonlinear characteristics can be exactly restored in the
absence of noise. In this case, the inverse of the characteristics
can be used. When noise is superimposed to the distorted signal,
the inverse characteristics may not be proper because the noise
is strongly amplified. This noise has to be suppressed in the
reconstructed signal, which can be accomplished only at the price
of bias. This article presents a method to compensate the effect
of static nonlinearities in the presence of noise. This method is
based on Tikhonov’s regularization operators and provides a
compromise between noisy and biased estimates.

Index Terms—Nonlinear distortion, regularization, signal recon-
struction.

I. INTRODUCTION

NONLINEARITY of measurement systems or communica-
tion channels distort the measured or transmitted signal.

If the distortion is unacceptable, the detected signal should be
post processed to reconstruct the original one. The nonlinearly
distorted signal is usually corrupted by noise. In this case, the
inverse of the nonlinearity may not be optimal for reconstruc-
tion, because the noise is amplified during the reconstruction
process. Such an optimal inverse characteristic is needed, which
suppresses the noise.

A. Preliminaries

Several works deal with compensation of nonlinear systems.
These works usually use Volterra-kernels to describe the non-
linearity of the system. The Volterra-series method can handle
a wide range of nonlinearities [1]–[4].

A simpler method is used for nonlinear compensation in [5].
In this work a static, nonlinear system (a cathode ray tube) is de-
scribed. The static nonlinearity and the compensation function
are approximated by polynomials.

In [4], [6], and [7], the proposed algorithms are made specif-
ically for sound-restoration. In [6], the histogram equalization
technique is used to estimate a memoryless nonlinear transfer
function. In [7], the nonlinear function is assumed to be given
and an iterative technique is used for restoration of the signal.
In [4], a statistical model-based reconstruction process is
described.
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Fig. 1. Signal model of the reconstruction process.

Fig. 2. Signal model of the reconstruction process for small perturbations.

B. Novelties

As most of these previous works state, the effects of noise in
the proposed algorithms are not clearly described. Further work
is needed to establish the effect of noise in [1] and the analysis in
[2] is also a purely deterministic approach. In [6], the algorithm
is quite sensitive to noise whose distribution is markedly dif-
ferent from that of speech. In [3] and in [4], a prefiltering tech-
nique was used, where the effects of noise are smaller; therefore,
the effects of noise were not handled. However, sometimes only
the post-filtering technique can be used to reconstruct the de-
tected, noisy and nonlinearly distorted signals, where the noise
has strong effects. The algorithms in [7] and [8] are applicable
to handle the effect of noise, but they are iterative algorithms
and they require high computation time.

The proposed method in our paper is a post-processing
technique that works on static nonlinearities (the word “static”
means that the examined nonlinear device does not contain
linear distortion before or after the nonlinear distortion func-
tion; therefore, the output does not depend on the previous
input or output samples). We take the effect of the noise into
account. The emphasis in this article is to find the inverse
characteristics of a known static and invertible nonlinear
function, which handles the propagation of the noise through
the nonlinear inversion. The signal reconstruction itself is a
one-step process, so it does not require intensive computation
time. In Section II, we define the model of the nonlinear
distortion and the reconstruction process. In Section III, the
problems of the reconstruction will be discussed. Next, in
Section IV, the proposed method with regularization operators
will be shown. Section V includes a simulation example
demonstrating the result, which can be achieved by regularized
inverse characteristics. In Section VI, a practical application
will be discussed. Conclusions are given in Section VII.
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Fig. 3. Input signal (left) and the nonlinearly distorted; noisy signal (right).

II. M ODELING THE DISTORTION

The signal model of the reconstruction process can be seen in
Fig. 1, where denotes the nonlinear function of the mea-
surement system, denotes the input, and denotes the dis-
torted output of the system, where .

The observation,, is disturbed by the measurement noise,,
that is modeled as an additive one. is the inverse nonlinear
function and is the estimation about the input signal.

The mathematical analysis of this model is difficult because
in general, the nonlinear equations cannot be analytically
solved. In a given working point, at small changes of, we can
approximate with the first elements of the Taylor polynomial,
which will be a linear approximation

(1)

So the perturbation of is

(2)

The reconstruction process for the perturbation is shown in
Fig. 2.

This model is already linear and we can apply this model
in each point of the original characteristics. The noise in this
model is not additive, but affects the working point, hence the
amplification of the second box.

III. D IFFICULTIES AT RECONSTRUCTION

To optimize the model, first we need to define a measure for
the quality of the estimate. We define the best solution as the
minimum of the following equation:

(3)

where is a norm of . This is an input error criterion.
Unfortunately, the solution of this error criterion is not appli-
cable, because it requires the knowledge of. If we choose

for the error criterion (output error criterion),
it leads to the solution, where is the inverse of .
The problem of this solution is that the noise is amplified at
during reconstruction. The noise amplification can be seen in

the case of small noise amplitude, if the estimation is rewritten
into the following form:

(4)

The noise will be amplified, where the derivative of the non-
linear function of the system is small.

IV. REGULARIZED COMPENSATION

The solution of ill-posed equations was originally proposed
by Tikhonov [8], who created a method to solve ill-posed inte-
gral equations with regularization operators. The error criterion
used in Tikhonov’s method is an extension of the output error
criterion. One possible form is

(5)

In practice, the norm is used, because minimizing the
norm of the error minimizes the energy of it. In the case of sam-
pled signals we can write

(6)

The solution of this equation is found, where the derivative
equals 0. The solution expressed for is

(7)

We can create the regularized inverse filter of the non-
linear system by integrating (7), but we need a condition to de-
termine the integration constant. If , we can
determine the value of by minimizing in the func-
tion of . If the norm is the Euclidean-norm, the solution is the
solution of the following equation:

(8)

The regularized inverse characteristics of the nonlinear system
can be computed by numerical integration from (7) and (8). The
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Fig. 4. (Left) Unregularized inverse characteristics, (middle) regularized inverse characteristics for� = 0:01, and (right)� = 0:1.

Fig. 5. (Left) Reconstructed signals: unregularized inverse characteristics, (middle) regularized inverse characteristics for� = 0:01, and (right)� = 0:1. Note
that the scale of the figure of the unregularized characteristic is higher because of the high noise amplitude.

resulting characteristics can be used as , without any fur-
ther iteration; thus the reconstruction itself is a one-step process.

V. SIMULATION EXAMPLE

To illustrate the proposed algorithm, we solve a simple ex-
ample using a sine input signal
and an error-function nonlinearity . We added a
Gaussian noise to with 50 dB signal-to-noise ratio. The
original and the distorted, noisy signal can be seen in Fig. 3. The
inverse of the nonlinear function and the regularized inverses for

and can be seen in Fig. 4.
Fig. 5 shows the estimations. In the first figure, the estimation

reached by the inverse of the nonlinear function can be seen. The
maximum amplitude of the noise is about 100 times higher than
the original signal. In the second figure, the estimation reached
by regularized inverse for can be seen and in the third
figure that for can be seen.

The oscillation of the signal, caused by the noise, is small at
, but the distortion caused by the regularized inverse is

quite high. The unregularized inverse has no bias from regular-
ization, but the aberration caused by the noise is extremely high.
At the distortion and the noise are also small. Presently
we find this trade-off between noise and bias manually.

VI. PRACTICAL APPLICATION

An example for practical application is the reconstruction
of the optically recorded sound of old movies, in which the
movie-film has static nonlinear intensity characteristics. This

nonlinearity can be extremely strong, especially when the film
was badly developed, which causes a distorted sound.

On the professional film, the sound is optically recorded.
Today, the transversal recording technique is used, where the
sound information is carried by the width of the sound-stripe.
This is a very safe method, because the development and the
strength of the recording light cannot harm the linearity of the
sound characteristics. However, until the 1950s, the variable
density recording was used. In this method, the sound informa-
tion is carried by the darkness (density) of the sound stripe. At a
high volume level of the sound, or a wrong working point of the
development, the changing of the density can come out from
the linear domain of the characteristics and the recorded sound
can be strongly distorted and incomprehensible. In addition, a
strong noise is added to the old film produced by the chemical
decay of the film. The signal-to-noise ratio could be worse than
30 dB. The sound cannot be properly restored by the inverse of
the density characteristics due to the strong noise.

The algorithm was tested on these distorted sound signals of
real movie-films and gave good results. Experiments show that
human hearing is less sensitive for small distortions than for the
amplified noise.

VII. CONCLUSION

The reconstruction of nonlinearly distorted signals was ex-
amined, where the signals were distorted by a strong static non-
linearity and the distorted signals were corrupted by noise. The
effects of the noise were taken into account. The noisy signal
cannot be restored directly with the inverse of the nonlinear
characteristics, because the noise will be extremely amplified.
A method was shown, which is a point-by-point correction of
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the recorded data for the nonlinearity. The method based on
Tikhonov’s regularization operators can provide a trade-off be-
tween noisy and biased reconstruction. The performance of the
method was shown on simulated signals.
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