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Nonparametric Identification Assuming
Two Noise Sources:
A Deconvolution Approach

Tamas Daldczi

Abstract—Nonparametric identification of linear systems is to large deviations in the estimation [1], [2]. In other words,
investigated in this paper. Nonparametric identification is the the deconvolution process amplifies the measurement noise.
estimation of the time record of the impulse response of the This noise has to be suppressed [3]. However, suppression
system. It is a deconvolution problem, i.e., inverse operation f th . leads to bi f th ful si I’ A tradeoff
of the convolution of the impulse response and the excitation 0 € noise ea_ S o0 bias o € us_e u 5|gna_. rageo
signal. The problem is ill posed, i.e., deconvolution amplifies has to be found in the level of the noise reduction to keep a
the measurement noise to a great extent. The noise has to bebalance between the variance and the bias. The level of noise
suppressed with the price of a bias in the estimate. A tradeoff reduction is usually controlled with one or a few parameters
has to be found between the noisy and biased estimates. Becausgy the deconvolution filter. In order to ensure repeatability and

of the need for repeatability and to reduce the subjectivity, the S . -
level of noise reduction has to be set algorithmically. This paper reduce the level of subjectivity, the level of noise reduction

introduces a method that optimizes the parameter(s) of deconvo- Should be determined algorithmically, which is the aim of this

lution filters and, thus, controls the level of noise reduction. The paper. It will be shown that the extension of a previous work

proposed method assumes observation noise sources for both thg4], [13] improves the capabilities of the algorithm signifi-

measurement of the excitation signal and the system output. cantly, by taking both input and output observation noises

Index Terms—Deconvolutions, identification, inverse problem, into account.

nonparametric  identification, signal reconstruction, signal The results can be used also for signal reconstruction

restoration. problems. In this case, the second noise source, in addition
to the output noise, is the uncertainty of the estimate of the

|. INTRODUCTION transfer function.

DENTIFICATION of linear systems is the estimation of
some characteristic function of the system (e.g., impulse
response, transfer function, step response etc.). Parametric I

identification consists of two steps. First, an appropriate model ] . .
should be set up for the structure of the system; then theOne of the earliest results is reported in [5], developed by
parameters of the system have to be estimated. The resulf®fllaume and Nahman in the early 1980's. The estimated
nonparametric methods is the time or other domain wavefoffiPUlSe response is calculated in the frequency domain. The
of a characteristic function of the system (impulse responé‘gfeasured signal is tra_msformed into the discrete Fourlgr trans-
transfer function etc.), without any explicit information aboufor™ (DFT) domain, filtered, and transformed to the discrete
the structure of the system. As a consequence, nonparanjgi® domain. The originally real signal becomes complex
ric identification is preferred if the structural information i?ecause of the computational errors. The standard deviation
lacking. of th_e imaginary part of the estimated S|gn_al is rr_1|n|m|_zed_ to
The output signal of the investigated system is the Coﬁbtal_n the op_t|r_nal filter parameter. The optimization criterion
volution of the excitation signal with the impulse responséS quite heuristic; there is no proof for optimality yet. More-
Thus, nonparametric identification is a deconvolution probleRY€r: the errors of the imaginary part depend on the precision
(inverse operation of convolution). The problem is ill-posed@nd the number representation of the computer and on the

which means that a small uncertainty in the measurement le@@/émentation of the DFT and inverse DFT (IDFT) routines.
A more systematic approach is reported by Parruck and Riad

[6], [7]. They investigate the tail part of the estimated step
Manuscript received May 18, 1997; revised December 21, 1998. This waiesponse and define the conditions of the good reconstruction
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Fig. 2. Model of the identification procesls(i) is the impulse response of
Ty (1) the systemX'(f) is the DFT of the excitation signalX,, (f) is the DFT of

the measured (noisy) excitation sign&l;f) is the noise reduction filter, and

Fig. 1. Input/output noise model of the identification procesg) is the hest (i) is the estimated impulse response.

excitation signaly(¢) is the system response, (<) is the observation noise

of the excitation signak, (i) is the output noise of the system to be identified,

2, (1) andyy, () are the measured (noisy) input and output signalsing) ny(2) — A7) * ny(7)

is the transfer function of the system. 4

h(i) yn(i) 1 hest (Z)

X+ M) (D x| B s

Narduzzi and Offelli solve the deconvolution problem in the ' ,
time domain [8]. A similar approach is reported by Bertocco zn(2) 't /
et al. [9]. They define the optimization criterion based on. , _ A o

. Fig. 3. Equivalent output noise model of the identification proc@ss( f)
the output reconstruction error. Consequently, the approach€$e prT of the noise sequenca. (7).
assume perfect knowledge of the excitation signal.

Dhaeneet al. developed a method to optimize two param-

eters to obtain the best estimate for the transfer function of Tieg 1) K(f)

a system [10]. They separate the frequency region into pass, ¢ , / )
transition, and stop bands and define different noise factor&® X.0(F) _>®y"(z> 7 | —= B(H et
The optimum is defined by three conditions, which constrain -’ L

the solution to a subspace; however, the choice of the concrete Zeq(1) ?

value remains SUbJeCtlve' Fig. 4. Simplified equivalent output noise model of the identification

process.neq(i) and z.q(i) are the equivalent noise and excitation signal
sequences, andl’(f) is the inverse filter.

Ill. OPTIMIZATION OF THE DECONVOLUTION FILTER

Our aim is to develop a systematic algorithm to optimize Now we can define an equivalent output noise and an
the parameter(s) of the noise reduction filter. We assume betjuivalent excitation signal (Fig. 4)
input and output observation noises. We developed the method
for cases where the excitation signal is not perfectly known
or it has to be measured.

In previous works we developed a systematic optimization Xea(f) =X(f) + Nao(f) = Xa(f) @)
algorithm (model-based deconvolution), which is capable of
optimizing more parameters [4]. However, the algorithm agzpere X.,(f) is the Fourier transform of the equivalent

sumed an output noise, only. An extension of the model-basgghitation signal, which is the measured (noisy) excitation

deconvolution algorithm is proposed in this paper to take bolfynal, x, ( £); neq(4) is the equivalent output noise sequence,
input and output observation noises into account in order 40,4 « denotes convolution.

find the optimal level of the noise reduction.
Our approach is based on approximation of the signal spec-

tra [4], [13]. The spectral models are generated automaticaly pmeasure of the Accuracy of the Solution

by extracting the information from the measurement and,Th definiti fthe b lution biective choice [12
thus, no human interaction is required. The model of the € definition of the best solution is a subjective choice [12].

measurement process is depicted in Fig. 1. We will define |t_ as the soluu.on for which the squargd_summeq
error of the estimate of the impulse response is minimal. This
error can be expressed both in the time and frequency domain,

Neq(t) =1y (4) — h(7) * ny (4

A. Equivalent Output Noise Model using the duality provided by the Parseval’s theorem:
The input/output noise model will be transformed to an

equivalent output noise model. To do this, we will follow N—1

the flow of the estimation process rather than the signal flow. EE =T, Z (h(n) — hest(n))?

Thus, the input of the estimation process becomes the impulse n=0

response of the system (Fig. 2). 7 N-1
By rearranging the noises they can be concentrated to the = NS Z |H (k) — Hest(K)|? (2
output of the system (Fig. 3). k=0
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where EE is the error energyh(n) is the impulse response o.os———
of the measurement systei,(n) is the estimated impulse eXCQa\“"” signal

response,I; is the sampling periodN is the number of ol ]
sampled points, and the capital letters correspond to the DFT’s e
of the signal sequences. 005 1

Since the true impulse responéén) is unknown, some
approximations have to be done. Substituting the explicit form | system response
of the spectrum of the estimated impulse response into (2) we
get

-0.15f b

N-1
EE:%Z |H (k) = [H (k) Xoq(k)K (k) +Neg(F) K (k)]|? -o2r T
k=0

-0.25 '.—_J i

o N1
= 3 B - XK R
k=0

N1 0 02 04 06 08 1 12 14 16 18 2

TS 2 time in nanoseconds
3 O Nealh)K(R)] | — . -
k=0 Fig. 5. Measured excitation signal and the output signal of the investigated
digital oscilloscope.
9T, N-1
= D HE®L - Xeg(RE(R)])
k=0 its parameter(s)
“[Neq(R)K (F)| cos(io(k)) 3)

N-1
T
cost = N Z |Happx(k)[1 - Xeq(k)K(k)]|2
k

where H(k) is the transfer function of the measurement —

system, K(k) is the transfer function of the inverse filter, T Nl
Xeq(k) is the DFT of the measured excitation signalq (k) 4= Z | Neq.appx (k) K (k)2
is the DFT of the equivalent noise sequence, (k) is the N =0
phase angle of the two terms in the last sum. The error energy 7 Nl
is thus split into three terms = Ng | Hoppx (B)[1 — X, (B) K (K)]|?
k=0
EFE = EEbias + EEnoise + EEbias,noise (4) Nl

T
32 S Ny

where the bias term is due to the distortion of the useful signal, k=

0
. N2 A2
the noise term is due to the variance and ;. noise term + [ Happx (k) Ne,apps (F)| ) | K (K)] (6)

is due to the cross relation of the previous two terms. It hasn . .
; Where subscript appx refer to an approximate model of the
been shown in [13] that th& Ejias noise term can be neglected pt app bp

: .. . . agnitudes of signal spectra. The noise spectra will be as-
under some mild conditions. The equivalent noise takes t €med white: thus. the magnitude will be modeled with a
form ' '

constant. The level of noise-model can be eitlepriori
) ) measured or extracted from the spectrum of the noisy signal.
|Neq(R)|” =[Ny (k) — H(Kk)Nz (k)] The transfer function will be modeled iteratively, starting
=|N,(B)|? + |H(k)N,(E)|? from a rough model (straight frequency-domain division of
— 2| N (B)| |H (k)N (k) Fhe spgctrq o_f the output and the input_ mgasurements), and
cos(on, (k) — @ (k). (5) improving it in several step_s by substituting th_e result _of
v ® the estimated transfer function. More about this modeling

. .__.procedure can be read in [4] and [13].
There is not much knowledge about the last term consisting

of the phase information. The cosine term can be approximated
either by the upper or lower bourfd-1 or —1), or by its mean IV. EXPERIMENTAL RESULTS
value, which is zero if the noise sequeneegs) andn,(¢) The impulse response of a high-speed sampling oscilloscope
have zero mean value. We will assume zero mean value fas been estimated. The oscilloscope operates in equivalent
the noise sequences, which is in most cases appropriate, aimé& sampling mode. The equivalent sampling frequency was
neglect the third term of (5). 512 GHz. A step-like signal was applied to the input channel.
A further approximation is that instead of the absolut€he use of step-like signals has a partly historical, partly
values of the signal and noise spectra, approximate spectraoretical basis. Step-like signals excite the system in a broad
models will be substituted int& (%), N,.(k) and N, (k). Thus, frequency band and they are easy to generate. The repeatability
we get the cost function, which will be minimized to set thef the signals is very good, which is a basic need because of
level of noise reduction of the inverse filtéf(k) by varying the equivalent time sampling mode.
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model of the input noise
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Fig. 6. Magnitude of the DFT of the excitation signal and the model of thieig. 8. Initial approximation of the transfer function.
input noise.

equivalent output noise mode!

output noise model only

madel of the output noise
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Fig. 9. Equivalent output noise model after 10 iterations.
Fig. 7. Magnitude of the DFT of the system response and the model of the
output noise.
The magnitude of the transfer function is also required

o ) ) to compute the cost function. The initial approximation is
The excitation was also measured with another high-speg@ result of the frequency-domain division of the spectra

oscilloscope, having a larger bandwidth. The price for thg the Nahman—Guillaume extended output and input signals
increased bandwidth is the loss of resolution. The measurggy. 8). This model was improved in several iterations with
excitation signal has thus a significantly higher noise level th@e DFT of the new estimate of the impulse response. The
the output signal of the investigated system. The measuii@@del of the output noise and that of the equivalent output
input/output signals are depicted in Fig. 5. noise are shown in Fig. 9.

The step-like signals were extended with their mirrored ver- The regularization method was used as the deconvolution

sion to make them time limited (Nahman—Guillaume techniquiter with the second-order backward difference operator [11].
[11]), since the signals are processed in the frequency domaihe inverse filter takes the form

The DFT’s of the signals are shown in Figs. 6 and 7. Both the Xeog(k)*

input and output noises are assumed to be white. Their levels K(k) = X oo (F)Z + 7| (B2

were extracted from the measurement. The upper frequency “ i

band (from 75% of the Nyquist frequency to the Nyquist |L(k)|? =16 sin* <7r—> (7)
frequency) was assumed to contain only noise information. N

The average of the magnitude of the spectrum is considerebere L(k) is the DFT of the second-order backward differ-
as the level of the noise. ence operator.
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10' , , : it assumes two observation noise sources (input/output noises).
The method is based on approximate spectral models of the
signals. The models are built algorithmically by extracting

_ the information from the measurements. The measurement
example was shown to support the theoretical results. The
results can be used also for signal reconstruction tasks.

output noise model only
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input noise results in underestimating the necessary level of

noise reduction. However, with the proposed cost function the

solution is at the expected bias-noise tradeoff and the estimated

bandwidth of the system complies with the expectation.
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