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Nonparametric Identification Assuming
Two Noise Sources:

A Deconvolution Approach
Tamás Dab́oczi

Abstract—Nonparametric identification of linear systems is
investigated in this paper. Nonparametric identification is the
estimation of the time record of the impulse response of the
system. It is a deconvolution problem, i.e., inverse operation
of the convolution of the impulse response and the excitation
signal. The problem is ill posed, i.e., deconvolution amplifies
the measurement noise to a great extent. The noise has to be
suppressed with the price of a bias in the estimate. A tradeoff
has to be found between the noisy and biased estimates. Because
of the need for repeatability and to reduce the subjectivity, the
level of noise reduction has to be set algorithmically. This paper
introduces a method that optimizes the parameter(s) of deconvo-
lution filters and, thus, controls the level of noise reduction. The
proposed method assumes observation noise sources for both the
measurement of the excitation signal and the system output.

Index Terms—Deconvolutions, identification, inverse problem,
nonparametric identification, signal reconstruction, signal
restoration.

I. INTRODUCTION

I DENTIFICATION of linear systems is the estimation of
some characteristic function of the system (e.g., impulse

response, transfer function, step response etc.). Parametric
identification consists of two steps. First, an appropriate model
should be set up for the structure of the system; then the
parameters of the system have to be estimated. The result of
nonparametric methods is the time or other domain waveform
of a characteristic function of the system (impulse response,
transfer function etc.), without any explicit information about
the structure of the system. As a consequence, nonparamet-
ric identification is preferred if the structural information is
lacking.

The output signal of the investigated system is the con-
volution of the excitation signal with the impulse response.
Thus, nonparametric identification is a deconvolution problem
(inverse operation of convolution). The problem is ill-posed,
which means that a small uncertainty in the measurement leads
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to large deviations in the estimation [1], [2]. In other words,
the deconvolution process amplifies the measurement noise.
This noise has to be suppressed [3]. However, suppression
of the noise leads to bias of the useful signal. A tradeoff
has to be found in the level of the noise reduction to keep a
balance between the variance and the bias. The level of noise
reduction is usually controlled with one or a few parameters
of the deconvolution filter. In order to ensure repeatability and
reduce the level of subjectivity, the level of noise reduction
should be determined algorithmically, which is the aim of this
paper. It will be shown that the extension of a previous work
[4], [13] improves the capabilities of the algorithm signifi-
cantly, by taking both input and output observation noises
into account.

The results can be used also for signal reconstruction
problems. In this case, the second noise source, in addition
to the output noise, is the uncertainty of the estimate of the
transfer function.

II. PREVIOUS WORKS

One of the earliest results is reported in [5], developed by
Guillaume and Nahman in the early 1980’s. The estimated
impulse response is calculated in the frequency domain. The
measured signal is transformed into the discrete Fourier trans-
form (DFT) domain, filtered, and transformed to the discrete
time domain. The originally real signal becomes complex
because of the computational errors. The standard deviation
of the imaginary part of the estimated signal is minimized to
obtain the optimal filter parameter. The optimization criterion
is quite heuristic; there is no proof for optimality yet. More-
over, the errors of the imaginary part depend on the precision
and the number representation of the computer and on the
implementation of the DFT and inverse DFT (IDFT) routines.

A more systematic approach is reported by Parruck and Riad
[6], [7]. They investigate the tail part of the estimated step
response and define the conditions of the good reconstruction
based on the empirical mean and standard deviation of the
tail part. The optimal reconstruction satisfies the conditions;
however, the solution is not unique. One has to choose the
right parameter of the inverse filter from an interval. Moreover,
the borders of the interval are not exactly defined, only with
“much smaller” type conditions.
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Fig. 1. Input/output noise model of the identification process.x(i) is the
excitation signal,y(i) is the system response,nx(i) is the observation noise
of the excitation signal,ny(i) is the output noise of the system to be identified,
xn(i) andyn(i) are the measured (noisy) input and output signals andH(f)
is the transfer function of the system.

Narduzzi and Offelli solve the deconvolution problem in the
time domain [8]. A similar approach is reported by Bertocco
et al. [9]. They define the optimization criterion based on
the output reconstruction error. Consequently, the approaches
assume perfect knowledge of the excitation signal.

Dhaeneet al. developed a method to optimize two param-
eters to obtain the best estimate for the transfer function of
a system [10]. They separate the frequency region into pass,
transition, and stop bands and define different noise factors.
The optimum is defined by three conditions, which constrain
the solution to a subspace; however, the choice of the concrete
value remains subjective.

III. OPTIMIZATION OF THE DECONVOLUTION FILTER

Our aim is to develop a systematic algorithm to optimize
the parameter(s) of the noise reduction filter. We assume both
input and output observation noises. We developed the method
for cases where the excitation signal is not perfectly known
or it has to be measured.

In previous works we developed a systematic optimization
algorithm (model-based deconvolution), which is capable of
optimizing more parameters [4]. However, the algorithm as-
sumed an output noise, only. An extension of the model-based
deconvolution algorithm is proposed in this paper to take both
input and output observation noises into account in order to
find the optimal level of the noise reduction.

Our approach is based on approximation of the signal spec-
tra [4], [13]. The spectral models are generated automatically
by extracting the information from the measurement and,
thus, no human interaction is required. The model of the
measurement process is depicted in Fig. 1.

A. Equivalent Output Noise Model

The input/output noise model will be transformed to an
equivalent output noise model. To do this, we will follow
the flow of the estimation process rather than the signal flow.
Thus, the input of the estimation process becomes the impulse
response of the system (Fig. 2).

By rearranging the noises they can be concentrated to the
output of the system (Fig. 3).

Fig. 2. Model of the identification process.h(i) is the impulse response of
the system,X(f) is the DFT of the excitation signal,Xn(f) is the DFT of
the measured (noisy) excitation signal,R(f) is the noise reduction filter, and
hest(i) is the estimated impulse response.

Fig. 3. Equivalent output noise model of the identification process.Nx(f )
is the DFT of the noise sequencenx(i).

Fig. 4. Simplified equivalent output noise model of the identification
process.neq(i) and xeq(i) are the equivalent noise and excitation signal
sequences, andK(f) is the inverse filter.

Now we can define an equivalent output noise and an
equivalent excitation signal (Fig. 4)

(1)

where is the Fourier transform of the equivalent
excitation signal, which is the measured (noisy) excitation
signal, is the equivalent output noise sequence,
and denotes convolution.

B. Measure of the Accuracy of the Solution

The definition of the best solution is a subjective choice [12].
We will define it as the solution for which the squared summed
error of the estimate of the impulse response is minimal. This
error can be expressed both in the time and frequency domain,
using the duality provided by the Parseval’s theorem:

(2)
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where is the error energy, is the impulse response
of the measurement system, is the estimated impulse
response, is the sampling period, is the number of
sampled points, and the capital letters correspond to the DFT’s
of the signal sequences.

Since the true impulse response is unknown, some
approximations have to be done. Substituting the explicit form
of the spectrum of the estimated impulse response into (2) we
get

(3)

where is the transfer function of the measurement
system, is the transfer function of the inverse filter,

is the DFT of the measured excitation signal,
is the DFT of the equivalent noise sequence, and is the
phase angle of the two terms in the last sum. The error energy
is thus split into three terms

(4)

where the bias term is due to the distortion of the useful signal,
the noise term is due to the variance and the term
is due to the cross relation of the previous two terms. It has
been shown in [13] that the term can be neglected
under some mild conditions. The equivalent noise takes the
form

(5)

There is not much knowledge about the last term consisting
of the phase information. The cosine term can be approximated
either by the upper or lower bound or , or by its mean
value, which is zero if the noise sequences and
have zero mean value. We will assume zero mean value for
the noise sequences, which is in most cases appropriate, and
neglect the third term of (5).

A further approximation is that instead of the absolute
values of the signal and noise spectra, approximate spectral
models will be substituted into and . Thus,
we get the cost function, which will be minimized to set the
level of noise reduction of the inverse filter by varying

Fig. 5. Measured excitation signal and the output signal of the investigated
digital oscilloscope.

its parameter(s)

(6)

where subscript appx refer to an approximate model of the
magnitudes of signal spectra. The noise spectra will be as-
sumed white; thus, the magnitude will be modeled with a
constant. The level of noise-model can be eithera priori
measured or extracted from the spectrum of the noisy signal.
The transfer function will be modeled iteratively, starting
from a rough model (straight frequency-domain division of
the spectra of the output and the input measurements), and
improving it in several steps by substituting the result of
the estimated transfer function. More about this modeling
procedure can be read in [4] and [13].

IV. EXPERIMENTAL RESULTS

The impulse response of a high-speed sampling oscilloscope
has been estimated. The oscilloscope operates in equivalent
time sampling mode. The equivalent sampling frequency was
512 GHz. A step-like signal was applied to the input channel.
The use of step-like signals has a partly historical, partly
theoretical basis. Step-like signals excite the system in a broad
frequency band and they are easy to generate. The repeatability
of the signals is very good, which is a basic need because of
the equivalent time sampling mode.
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Fig. 6. Magnitude of the DFT of the excitation signal and the model of the
input noise.

Fig. 7. Magnitude of the DFT of the system response and the model of the
output noise.

The excitation was also measured with another high-speed
oscilloscope, having a larger bandwidth. The price for the
increased bandwidth is the loss of resolution. The measured
excitation signal has thus a significantly higher noise level than
the output signal of the investigated system. The measured
input/output signals are depicted in Fig. 5.

The step-like signals were extended with their mirrored ver-
sion to make them time limited (Nahman–Guillaume technique
[11]), since the signals are processed in the frequency domain.
The DFT’s of the signals are shown in Figs. 6 and 7. Both the
input and output noises are assumed to be white. Their levels
were extracted from the measurement. The upper frequency
band (from 75% of the Nyquist frequency to the Nyquist
frequency) was assumed to contain only noise information.
The average of the magnitude of the spectrum is considered
as the level of the noise.

Fig. 8. Initial approximation of the transfer function.

Fig. 9. Equivalent output noise model after 10 iterations.

The magnitude of the transfer function is also required
to compute the cost function. The initial approximation is
the result of the frequency-domain division of the spectra
of the Nahman–Guillaume extended output and input signals
(Fig. 8). This model was improved in several iterations with
the DFT of the new estimate of the impulse response. The
model of the output noise and that of the equivalent output
noise are shown in Fig. 9.

The regularization method was used as the deconvolution
filter with the second-order backward difference operator [11].
The inverse filter takes the form

(7)

where is the DFT of the second-order backward differ-
ence operator.
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Fig. 10. Estimated transfer function of the system.

Fig. 11. Estimated impulse response of the system.

The result of the deconvolution after ten iterations of
improving the model of the transfer function is shown in
Figs. 10 and 11. The high-frequency noise is not suppressed
enough if only an output noise is assumed. Neglecting the
input noise results in underestimating the necessary level of
noise reduction. However, with the proposed cost function the
solution is at the expected bias-noise tradeoff and the estimated
bandwidth of the system complies with the expectation.

V. SUMMARY

The optimization of nonparametric identification was dealt
with in this paper. The novelty of the proposed method is that

it assumes two observation noise sources (input/output noises).
The method is based on approximate spectral models of the
signals. The models are built algorithmically by extracting
the information from the measurements. The measurement
example was shown to support the theoretical results. The
results can be used also for signal reconstruction tasks.
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