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Abstract – Inverse filtering of time domain signals is investigated.
Inverse filtering requires the knowledge of the transfer function of
the measurement system, which can be estimated on the base of
measurements (system identification). The quality of the system
identification influences the quality of the signal reconstruction.
We investigate the influence of the identification on the signal
reconstruction in the case of ill-posed problems. It is shown that
overfiltering the noise in the identification stage introduces bias in
the pass- and transition region of the transfer function, which
causes trouble in the signal reconstruction stage. Underfiltering
the noise in the identification stage also causes bias, but its effect
is mostly in the stopband, which can be suppressed in the signal
reconstruction stage.
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I. INTRODUCTION

The quality of the measurement of time domain

waveforms is often limited by the finite bandwidth of the

measurement system. This means that the signal to be

measured is distorted, sharp edges are smoothed, peak

locations are delayed etc. If the level of the distortion is not

acceptable, a better (higher bandwidth) measurement system

has to be used. If it is available, this is the best way to

improve the quality. However, many times the bandwidth

cannot be increased more, because we already reached the

technical limits (e.g. calibration instruments). Another

constraint might be if the improvement of the measurement

system is uneconomic. In both cases the solution might be the

digital compensation of the distortion by postprocessing the

measured data. This procedure is called inverse filtering or

deconvolution.

Inverse filtering is an ill-posed problem. This means that

small changes in the measurement data caused by the noise

leads to large changes in the reconstructed data [1]. The

amplified noise has to be suppressed, which can be done only

at the price of introducing bias to the estimate. Many

algorithms are proposed in the literature to reduce the noise

and keep a balance between bias and variance [1]-[4].

Inverse filtering requires the knowledge of the distortion,

i.e. the knowledge of the transfer function of the

measurement system. The transfer function is estimated on

the base of measurements. This procedure is called system

identification. If the system is linear and time-shift invariant,

nonparametric system identification is also a deconvolution

problem, as in the case of signal reconstruction. The

difference is that the impulse response is estimated instead of

the excitation signal. System identification is also an ill-posed

problem, i.e. measurement noise strongly influences the

estimate of the impulse response.

Restoration of such distorted signals requires two steps

one after the other: first an identification step and then a

signal restoration phase. Obviously the quality of the second

deconvolution depends on the quality of the first one.

In this study we investigated the influence of the noise

reduction of the system identification stage on the quality of

the signal reconstruction.

II. VISUALIZATION OF THE PROBLEM

Let us consider the following linear and time-shift

invariant system, and the method of restoration, shown in

Fig. 1. We can write in the frequency domain:
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where capital letters correspond to the Fourier transform

of the signals. Note that the inverse filter depends on the

estimate of the transfer function of the measurement system

instead of the true transfer function. The best way to follow

the noise reduction is to split the inverse filter into a cascade

system; the first stage compensates the measurement system

in the least squares sense (minimizing the prediction error),

and the second one reduces the noise while keeping balance

between bias and variance. This second part is often called

regularization filter, because it is responsible to regularize

(suppress) the amplified noise (Fig. 2). Similarly, the

deconvolution filter of the system identification can also be

separated (Fig. 3).
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Fig. 1.  Setup of the measurement and reconstruction system
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Fig. 2.  Deconvolution in the case of signal reconstruction
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Fig. 3.  Deconvolution in the case of system identification

From the above separation it is obvious that the stronger

we suppress the noise in the system identification phase, the

stronger we will amplify the noise in the signal reconstruction

phase, because we divide by ( )fH
ˆ

:

( )
( )

( )

( ),fR

fH

fZ

fX
∧

∧

=

(2)

where Z(f) is the Fourier transform of the measured signal.

Large noise suppression in the system identification phase

increases the ill-posedness of the signal reconstruction task,

even if the noise is suppressed in the stopband, where not

much information can be extracted from the identification

measurement. There is an optimal regularization level for the

system identification, which leads to the best signal

reconstruction.

The question is, however, if we have noisy identification

measurements and the level of good regularization can be set

only with an uncertainty, which is the safe side? To suppress

the noise a little bit more than the optimal (which is not

known), and receive a smooth estimate for the impulse

response, or underregularize the estimate? In the next section

we will answer this question.

III. ERROR ANALYSIS OF THE SIGNAL

RECONSTRUCTION

Let us consider a measurement system which can be well

modeled with a second order lowpass filter. We will excite

the system with a rectangle signal to identify its transfer

function (Fig. 4 and 5).

For simplicity let us use the Tikhonov's regularization

method to suppress the noise in both the system identification

and signal reconstruction steps [5, 6]. The optimal estimate of

the transfer function with this type of regularization filter is

depicted in Fig. 6. (Optimum is defined from the point of

view of the reconstructed signal, and not the identification

itself. The optimum is the transfer function, which leads to

the minimal deviation of the reconstructed signal from the

true one in least squares sense.)
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 Fig. 4. Excitation signal and system response for the identification
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Fig. 5. Transfer function of the system
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Fig. 6. Optimal estimate of the transfer function.
True transfer function (smooth line) and the estimate (noisy line).

Using the above estimate for the transfer function let's try

to reconstruct two Gaussian shaped pulses distorted with the

second order system. Fig. 7 shows the signal to be

reconstructed and the simulated noisy system response (noise

level is small, hard to observe on the picture). Fig. 8 shows

the optimal reconstruction using the Tikhonov's

regularization.

The level of noise suppression (regularization) can be set

either manually or automatically. If it is set manually, it needs

expertise, and introduces subjectivity. It can also be set

automatically, based on heuristics or signal models ([1, 4, 7]).

In both cases there is a chance that the chosen noise

suppression differs from the optimum.

Let us investigate what happens if the system

identification is over- or underregularized. In Fig. 9 and 10

the transfer function estimate is under- and overregularized

with the same amount. (Same amount is meant by providing

the same error in least squares sense. The error is defined as

the deviation of the impulse response estimate from the true

one.) Underregularization consists more noise at the stop

band, less bias in the transition region, while

overregularization introduces more bias at the transition

region and less noise at the stopband.

Using the under- and overregularized estimates the best

possible reconstructions with the given regularization filter is

depicted in Fig. 11 and 12. The deviations of the estimates

from the true input signal are the following (sum of squared

error): cost_optimum=0.47, cost_underregularized=0.59,

cost_overregularized=4.42.

As it can bee seen from the simulation example, the

amplified noise in the transfer function estimate is

concentrated at the stopband. In the signal reconstruction

stage, stopband information is lost more or less because the

noise is highly amplified (ill-posed problem). This region will

be suppressed anyhow, thus it is less important to reconstruct

the transfer function in this region than to reconstruct it in the

pass- and transition bands. Moreover, the amplified noise in

the stopband acts as regularization, since in the signal

reconstruction stage the ill-posedness of the problem is

decreased ( ( )fH

∧

/1  will be smaller).

The bias of the transfer function estimate in the pass- and

transition bands, however, misleads the signal reconstruction.

In these regions the bias introduced in the identification stage

causes bias in the signal reconstruction, which cannot be

corrected.
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Fig. 7.  Signal to be measured and observed signal
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Fig. 8.  Optimal reconstruction. Reconstructed signal (noisy curve) and
signal to be measured (smooth curve).
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Fig. 9.  Underregularized estimate of the transfer function.
True transfer function (smooth line) and the estimate (noisy line).

10

-4

10

-3

10

-2

10

-1

10

0

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1

10

0

rel. frequency

m
a
g
n
i
t
u
d
e

Fig. 10.  Overregularized estimate of the transfer function.
True transfer function (smooth line) and the estimate (noisy line).
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Fig. 11.  Signal reconstruction using underregularized transfer function
estimate. Reconstructed signal (noisy curve) and signal to be

measured (smooth curve).
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Fig. 12.  Signal reconstruction using overregularized transfer function
estimate. Reconstructed signal (oscillating curve) and signal to be

measured (smooth curve).
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Let us have a look at the error surface of the signal

reconstruction as a function of regularizations in the

system identification and signal reconstruction phases. In

Fig. 13 lambda means the regularization parameter on

logatihmic scale. Larger number means more

regularization, i.e. larger noise suppression.

Fig. 13.  Error surface of the signal reconstruction as a function of
the regularization amount in both the system identification stage

(lambda(identifiication)), and the signal reconstruction stage
(lambda(input estimation)).

It can be observed that the slope of the surface becomes

larger if we move to the larger regularization direction in

the system identification axis, than if we move to the

moderate regularization direction. This also visualizes that

a slight underregularization is less harmful than

overregularization in the system identification step.

The problem is the same, if we use parametric

identification (i.e. providing a model for the system). The

question is then how to choose the model. And the answer

is: in the stopband it is better to model a moderate

suppression instead of a high one, because a high

suppression increases the ill-posedness of the signal

reconstruction problem (see again Fig. 11 and 12).

IV. CONCLUSION

Inverse filtering of time domain signals has been

investigated. Inverse filtering requires the knowledge of

the transfer function of the measurement system, which

can be estimated on the base of measurements (system

identification). The quality of the system identification

influences the quality of the signal reconstruction. It has

been shown that overfiltering the noise in the identification

stage introduces bias in the pass- and transition region of

the transfer function, which is disadvantageous.

Our recommendation: provide the best identification

you can. But if you are uncertain, stay on the safe side.

And the safe side is to allow more noise amplification in

the identification step (not to overregularize in the

identification step), instead of introducing bias in critical

regions by overfiltering the estimate of the transfer

function.
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